1
|
Lu J, Liu Y, Song M, Xi Y, Yang H, Liu W, Li X, Norvienyeku J, Zhang Y, Miao W, Lin C. The CsPbs2-interacting protein oxalate decarboxylase CsOxdC3 modulates morphosporogenesis, virulence, and fungicide resistance in Colletotrichum siamense. Microbiol Res 2024; 284:127732. [PMID: 38677265 DOI: 10.1016/j.micres.2024.127732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.
Collapse
Affiliation(s)
- Jingwen Lu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Miao Song
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yitao Xi
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hong Yang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Wenbo Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiao Li
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Justice Norvienyeku
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Weiguo Miao
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Chunhua Lin
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Graham EB, Garayburu-Caruso VA, Wu R, Zheng J, McClure R, Jones GD. Genomic fingerprints of the world's soil ecosystems. mSystems 2024; 9:e0111223. [PMID: 38722174 PMCID: PMC11237643 DOI: 10.1128/msystems.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.
Collapse
Affiliation(s)
- Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Zan X, Yan Y, Chen G, Sun L, Wang L, Wen Y, Xu Y, Zhang Z, Li X, Yang Y, Sun W, Cui F. Recent Advances of Oxalate Decarboxylase: Biochemical Characteristics, Catalysis Mechanisms, and Gene Expression and Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10163-10178. [PMID: 38653191 DOI: 10.1021/acs.jafc.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.
Collapse
Affiliation(s)
- Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ying Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Gege Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Linhan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yixin Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ziying Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xinlin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yumeng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
4
|
Grąz M. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential. World J Microbiol Biotechnol 2024; 40:178. [PMID: 38662173 PMCID: PMC11045627 DOI: 10.1007/s11274-024-03973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Oxalic acid and oxalates are secondary metabolites secreted to the surrounding environment by fungi, bacteria, and plants. Oxalates are linked to a variety of processes in soil, e.g. nutrient availability, weathering of minerals, or precipitation of metal oxalates. Oxalates are also mentioned among low-molecular weight compounds involved indirectly in the degradation of the lignocellulose complex by fungi, which are considered to be the most effective degraders of wood. The active regulation of the oxalic acid concentration is linked with enzymatic activities; hence, the biochemistry of microbial biosynthesis and degradation of oxalic acid has also been presented. The potential of microorganisms for oxalotrophy and the ability of microbial enzymes to degrade oxalates are important factors that can be used in the prevention of kidney stone, as a diagnostic tool for determination of oxalic acid content, as an antifungal factor against plant pathogenic fungi, or even in efforts to improve the quality of edible plants. The potential role of fungi and their interaction with bacteria in the oxalate-carbonate pathway are regarded as an effective way for the transfer of atmospheric carbon dioxide into calcium carbonate as a carbon reservoir.
Collapse
Affiliation(s)
- Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
5
|
He N, Hu L, Jiang C, Liu Y, Zhao H. Effect of Phanerochaete chrysosporium induced phosphate precipitation on bacterial diversity during the soil remediation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13523-13534. [PMID: 38253835 DOI: 10.1007/s11356-024-31993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Biomineralization by phosphate minerals and phosphate solubilizing fungi (PSF) has attracted great interest as a novel remediation method for heavy metal(loid) co-contaminated soil. It was very essential to investigate the microenvironment response with the application of amendments. In this study, three grain sizes of hydroxyapatites (HAP) and Phanerochaete chrysosporium (P. chrysosporium) were used to investigate the change in heavy metal(loid) fractions, soil physicochemical properties, and bacterial community during the remediation of Mangchang and Dabaoshan acidic mine soils. The results showed that the residual fractions in the two soils increased significantly after 35 days of remediation, especially that of As and Zn in Dabaoshan soils were presented at over 87%. In addition, soil pH, organic matter (OM), and available phosphorous (AP) were almost improved. 16S rRNA sequencing analysis indicated that the introduction of culture medium and P. chrysosporium alone changed bacterial abundance, but the addition of HAP changed the bacterial diversity and community composition by altering environmental conditions. The amendments in the research showed good performance on immobilizing heavy metal(loid)s and reducing their bioavailability. Moreover, the research suggested that environmental factors and soil inherent properties could influence the microbial community structure and composition.
Collapse
Affiliation(s)
- Ni He
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Liang Hu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Chunyangzi Jiang
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yayuan Liu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hongbo Zhao
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
6
|
Cao X, Cai R, Zuo S, Niu D, Yang F, Xu C. Enhanced lignin degradation by Irpex lacteus through expanded sterilization further improved the fermentation quality and microbial community during the silage preservation process. BIORESOUR BIOPROCESS 2024; 11:14. [PMID: 38647879 PMCID: PMC10992542 DOI: 10.1186/s40643-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/10/2024] [Indexed: 04/25/2024] Open
Abstract
Traditional autoclaving, slow degradation rate and preservation of biomass treated by fungi are the main factors restricting biological treatment. In our previous studies, strains with high efficiency and selective lignin degradation ability were obtained. To further solve the limiting factors of biological treatment, this paper proposed a composite treatment technology, which could replace autoclaves for fungal treatment and improve the preservation and utilization of fungal-pretreated straw. The autoclaved and expanded buckwheat straw were, respectively, degraded by Irpex lacteus for 14 days (CIL, EIL), followed by ensiling of raw materials (CK) and biodegraded straw of CIL and EIL samples with Lactobacillus plantarum for different days, respectively (CP, CIP, EIP). An expansion led to lactic acid bacteria, mold, and yeast of the samples below the detection line, and aerobic bacteria was significantly reduced, indicating a positive sterilization effect. Expansion before I. lacteus significantly enhanced lignin selective degradation by about 6%, and the absolute content of natural detergent solute was about 5% higher than that of the CIL. Moreover, EIL decreased pH by producing higher organic acids. The combination treatment created favorable conditions for ensiling. During ensiling, EIP silage produced high lactic acid about 26.83 g/kg DM and the highest acetic acid about 22.35 g/kg DM, and the pH value could be stable at 4.50. Expansion before I. lacteus optimized the microbial community for ensiling, resulting in EIP silage co-dominated by Lactobacillus, Pediococcus and Weissella, whereas only Lactobacillus was always dominant in CP and CIP silage. Clavispora gradually replaced Irpex in EIP silage, which potentially promoted lactic acid bacteria growth and acetic acid production. In vitro gas production (IVGP) in EIL was increased by 30% relative to CK and was higher than 24% in CIL. The role of expansion was more significant after ensiling, the IVGP in EIP was increased by 22% relative to CP, while that in CIP silage was only increased by 9%. Silage of fungal-treated samples reduced methane emissions by 28% to 31%. The study demonstrated that expansion provides advantages for fungal colonization and delignification, and further improves the microbial community and fermentation quality for silage, enhancing the nutrition and utilization value. This has practical application value for scaling up biological treatment and preserving the fungal-treated lignocellulose.
Collapse
Affiliation(s)
- Xiaohui Cao
- College of Engineering, China Agricultural University, (East Campus), 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083, People's Republic of China
| | - Rui Cai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Sasa Zuo
- College of Engineering, China Agricultural University, (East Campus), 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083, People's Republic of China
| | - Dongze Niu
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, People's Republic of China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, (East Campus), 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
7
|
Mori T, Takahashi S, Soga A, Arimoto M, Kishikawa R, Yama Y, Dohra H, Kawagishi H, Hirai H. Aerobic H 2 production related to formate metabolism in white-rot fungi. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1201889. [PMID: 37746127 PMCID: PMC10512323 DOI: 10.3389/ffunb.2023.1201889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 09/26/2023]
Abstract
Biohydrogen is mainly produced by anaerobic bacteria, anaerobic fungi, and algae under anaerobic conditions. In higher eukaryotes, it is thought that molecular hydrogen (H2) functions as a signaling molecule for physiological processes such as stress responses. Here, it is demonstrated that white-rot fungi produce H2 during wood decay. The white-rot fungus Trametes versicolor produces H2 from wood under aerobic conditions, and H2 production is completely suppressed under hypoxic conditions. Additionally, oxalate and formate supplementation of the wood culture increased the level of H2 evolution. RNA-seq analyses revealed that T. versicolor oxalate production from the TCA/glyoxylate cycle was down-regulated, and conversely, genes encoding oxalate and formate metabolism enzymes were up-regulated. Although the involvement in H2 production of a gene annotated as an iron hydrogenase was uncertain, the results of organic acid supplementation, gene expression, and self-recombination experiments strongly suggest that formate metabolism plays a role in the mechanism of H2 production by this fungus. It is expected that this novel finding of aerobic H2 production from wood biomass by a white-rot fungus will open new fields in biohydrogen research.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Saaya Takahashi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Ayumi Soga
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Misa Arimoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | | | - Yuhei Yama
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hideo Dohra
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
- Faculty of Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
8
|
Peng M, Bervoets S, Chin-A-Woeng T, Granchi Z, Hildén K, Mäkelä MR, de Vries RP. The transcriptomic response of two basidiomycete fungi to plant biomass is modulated by temperature to a different extent. Microbiol Res 2023; 270:127333. [PMID: 36804127 DOI: 10.1016/j.micres.2023.127333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Many fungi show a strong preference for specific habitats and growth conditions. Investigating the molecular mechanisms of fungal adaptation to varying environmental conditions is of great interest to biodiversity research and is important for many industrial applications. In this study, we compared the transcriptome profiles of two previously genome-sequenced white-rot wood-decay fungi, Trametes pubescens and Phlebia centrifuga, during their growth on two common plant biomass substrates (wheat straw and spruce) at two temperatures (15 °C and 25 °C). The results showed that both fungi partially tailored their molecular responses to different types of carbon sources, differentially expressing genes encoding polysaccharide degrading enzymes, transporters, proteases and monooxygenases. Notably, more lignin modification related AA2 genes and cellulose degradation related AA9 genes were differentially expressed in the tested conditions of T. pubescens than P. centrifuga. In addition, we detected more remarkable transcriptome changes to different growth temperature in P. centrifuga than in T. pubescens, which reflected their different ability to adapt to the temperature fluctuations. In P. centrifuga, differentially expressed genes (DEGs) related to temperature response mainly encode protein kinases, trehalose metabolism, carbon metabolic enzymes and glycoside hydrolases, while the main temperature-related DEGs identified in T. pubescens are only the carbon metabolic enzymes and glycoside hydrolases. Our study revealed both conserved and species-specific transcriptome changes during fungal adaptation to a changing environment, improving our understanding of the molecular mechanisms underlying fungal plant biomass conversion at varying temperatures.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Sander Bervoets
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, the Netherlands
| | | | - Zoraide Granchi
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, the Netherlands
| | - Kristiina Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
9
|
Mali T, Laine K, Hamberg L, Lundell T. Metabolic activities and ultrastructure imaging at late-stage of wood decomposition in interactive brown rot - white rot fungal combinations. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Grąz M, Ruminowicz-Stefaniuk M, Jarosz-Wilkołazka A. Oxalic acid degradation in wood-rotting fungi. Searching for a new source of oxalate oxidase. World J Microbiol Biotechnol 2023; 39:13. [PMID: 36380124 PMCID: PMC9666339 DOI: 10.1007/s11274-022-03449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Oxalate oxidase (EC 1.2.3.4) is an oxalate-decomposing enzyme predominantly found in plants but also described in basidiomycete fungi. In this study, we investigated 23 fungi to determine their capability of oxalic acid degradation. After analyzing their secretomes for the products of the oxalic acid-degrading enzyme activity, three groups were distinguished among the fungi studied. The first group comprised nine fungi classified as oxalate oxidase producers, as their secretome pattern revealed an increase in the hydrogen peroxide concentration, no formic acid, and a reduction in the oxalic acid content. The second group of fungi comprised eight fungi described as oxalate decarboxylase producers characterized by an increase in the formic acid level associated with a decrease in the oxalate content in their secretomes. In the secretomes of the third group of six fungi, no increase in formic acid or hydrogen peroxide contents was observed but a decline in the oxalate level was found. The intracellular activity of OXO in the mycelia of Schizophyllum commune, Trametes hirsuta, Gloeophyllum trabeum, Abortiporus biennis, Cerrena unicolor, Ceriosporopsis mediosetigera, Trametes sanguinea, Ceriporiopsis subvermispora, and Laetiporus sulphureus was confirmed by a spectrophotometric assay.
Collapse
Affiliation(s)
- Marcin Grąz
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Marta Ruminowicz-Stefaniuk
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkołazka
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| |
Collapse
|
11
|
Lira Pérez J, Rodríguez Vázquez R. Removal of orange G dye by Aspergillus niger and its effect on organic acid production. Prep Biochem Biotechnol 2022:1-12. [PMID: 36527445 DOI: 10.1080/10826068.2022.2153368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Azo dyes have been found in wastewater from textile industries. These compounds continuously persist in the environment for long periods of time and may be toxic for living beings. An alternative treatment for dye removal that has proven to be effective is aerobic treatment with fungi. In this study, Aspergillus niger was investigated as a mechanism to remove orange G (OG). Removal of 200 mg/L of OG by A. niger biomass was carried out in solid and liquid medium, which showed a positive correlation between A. niger growth and dye removal. In liquid media what was proved is that the efficiency of OG removal by A. niger depends on its concentration; at 200 mg/L of OG remove by degradation and at 400 mg/L by processes as sorption and degradation. During OG removal, the generation of organic acids by A. niger was modified compared to constitutive generation, one of the modifications was the increase of gluconic acid production and the decrease of acids involved in the Krebs cycle, as well as the null detection of oxalic acid. The monitoring of organic acids by high-performance liquid chromatography (HPLC) was important because some of them have been linked to dye removal.
Collapse
|
12
|
Cloning and Molecular Characterization of CmOxdc3 Coding for Oxalate Decarboxylase in the Mycoparasite Coniothyrium minitans. J Fungi (Basel) 2022; 8:jof8121304. [PMID: 36547637 PMCID: PMC9785797 DOI: 10.3390/jof8121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Coniothyrium minitans (Cm) is a mycoparasitic fungus of Sclerotinia sclerotiorum (Ss), the causal agent of Sclerotinia stem rot of oilseed rape. Ss can produce oxalic acid (OA) as a phytotoxin, whereas Cm can degrade OA, thereby nullifying the toxic effect of OA. Two oxalate decarboxylase (OxDC)-coding genes, CmOxdc1 and CmOxdc2, were cloned, and only CmOxdc1 was found to be partially responsible for OA degradation, implying that other OA-degrading genes may exist in Cm. This study cloned a novel OxDC gene (CmOxdc3) in Cm and its OA-degrading function was characterized by disruption and complementation of CmOxdc3. Sequence analysis indicated that, unlike CmOxdc1, CmOxdc3 does not have the signal peptide sequence, implying that CmOxDC3 may have no secretory capability. Quantitative RT-PCR showed that CmOxdc3 was up-regulated in the presence of OA, malonic acid and hydrochloric acid. Deletion of CmOxdc3 resulted in reduced capability to parasitize sclerotia of Ss. The polypeptide (CmOxDC3) encoded by CmOxdc3 was localized in cytoplasm and gathered in vacuoles in response to the extracellular OA. Taken together, our results demonstrated that CmOxdc3 is a novel gene responsible for OA degradation, which may work in a synergistic manner with CmOxdc1.
Collapse
|
13
|
Marinovíc M, Di Falco M, Aguilar Pontes MV, Gorzsás A, Tsang A, de Vries RP, Mäkelä MR, Hildén K. Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora. Biomolecules 2022; 12:biom12081017. [PMID: 35892327 PMCID: PMC9330253 DOI: 10.3390/biom12081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Mila Marinovíc
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada; (M.D.F.); (A.T.)
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.V.A.P.); (R.P.d.V.)
| | - András Gorzsás
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada; (M.D.F.); (A.T.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.V.A.P.); (R.P.d.V.)
| | - Miia R. Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
| | - Kristiina Hildén
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
- Correspondence:
| |
Collapse
|
14
|
Li J, Hao R, Zhang J, Shan B, Xu X, Li Y, Ye Y, Xu H. Proteomics study on immobilization of Pb(II) by Penicillium polonicum. Fungal Biol 2022; 126:449-460. [DOI: 10.1016/j.funbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
|
15
|
He N, Hu L, He Z, Li M, Huang Y. Mineralization of lead by Phanerochaete chrysosporium microcapsules loaded with hydroxyapatite. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126902. [PMID: 34418828 DOI: 10.1016/j.jhazmat.2021.126902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, microcapsules assembled with Phanerochaete chrysosporium (P. chrysosporium, PC) and hydroxyapatite (HAP) were successfully prepared and applied for Pb(II) immobilization in aqueous solution. The effect of different conditions on Pb(II) removal was investigated, such as pH, temperature, dosages of microcapsules and HAP, and initial concentrations of Pb(II). The removal efficiency of Pb(II) was in order of HAP+PC > HAP > PC > CK (control check) at the Pb(II) initial concentration of 100 mg L-1, which were 87.7%, 82.82%, 63.67% and 2.06%, respectively. Under HAP+PC treatment, P. chrysosporium secreted plentiful organic acids like formic, oxalic and citric acids, when the addition dose of HAP increased from 5 g L-1 to 15 g L-1, the production of formic acid increased remarkably from 32.37 g L-1 to 66.02 g L-1. After reaction, P. chrysosporium kept a good biological activity evidenced by the live/dead stain test. The characterization results indicated that the insoluble apatite could transform to soluble phosphate due to the secreted organic acids, then reacted with Pb(II) to form pyromorphite [Pb10(PO4)6Cl2] and lead phosphate hydroxide [Pb10(PO4)6(OH)2]. The overall results clearly demonstrated that combining P. chrysosporium with HAP could be used as a promising technology to accelerate lead immobilization.
Collapse
Affiliation(s)
- Ni He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Mengke Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yongji Huang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
16
|
Microbial Depolymerization of Epoxy Resins: A Novel Approach to a Complex Challenge. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this project is evaluating the potential of microbes (fungi and bacteria) for the depolymerization of epoxy, aiming at the development of a circular management of natural resources for epoxy in a long-term prospective. For depolymerization, epoxy samples were incubated for 1, 3, 6 and 9 months in soil microcosms inoculated with Ganoderma adspersum. Contact angle data revealed a reduction in the hydrophobicity induced by the fungus. Environmental scanning electron microscopy on epoxy samples incubated for more than 3 years in microbiological water revealed abundant microbiota. This comprised microbes of different sizes and shapes. The fungi Trichoderma harzianum and Aspergillus calidoustus, as well as the bacteria Variovorax sp. and Methyloversatilis discipulorum, were isolated from this environment. Altogether, these results suggest that microbes are able to colonize epoxy surfaces and, most probably, also partially depolymerize them. This could open promising opportunities for the study of new metabolisms potentially able depolymerize epoxy materials.
Collapse
|
17
|
Experimental and modeling studies of competitive Pb (II) and Cd (II) bioaccumulation by Aspergillus niger. Appl Microbiol Biotechnol 2021; 105:6477-6488. [PMID: 34424384 DOI: 10.1007/s00253-021-11497-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Co-existence of toxic metals causes complex toxicity to microorganisms during bioremediation in water and soil. This study investigated the immobilization of Pb2+ and Cd2+ by fungus Aspergillus niger, which has been widely applied to environmental remediation. Five treatments were set, i.e., CK (no toxic metals), Pb2+ only, Cd2+ only, Pb2+/Cd2+ = 1:1(molar ratio), and Pb2+/Cd2+ = 2:1. Cadmium induced strong toxicity to the fungus, and maintained the high toxicity during incubation. However, as Pb/Cd ratio increased from 0 to 2, the removal rates of Cd2+ by A. niger were raised from 30 to 50%. The elevated activities of pyruvate dehydrogenase (PDH) and citrate synthetase (CS) enzymes confirmed that Pb addition could stimulate the growth of A. niger. For instance, citric acid concentrations and CS activities were 463.22 mg/L and 78.37 nmol/min/g, respectively, during 3-day incubation as Pb/Cd = 1. However, these two values were as low as ~ 50 with addition of only Cd. It was hence assumed that appropriate co-existence of Pb2+ enhanced microbial activity by promoting TCA cycle of the fungus. Moreover, the SEM analysis and geochemical modeling demonstrated that Pb2+ cations were more easily adsorbed and mineralized on A. niger with respect to Cd2+. Therefore, instead of intensifying metal toxicity, the addition of appropriate Pb actually weakened Cd toxicity to the fungus. This study sheds a bright future on application of A. niger to the remediation of polluted water with co-existence of Pb and Cd. KEY POINTS: • Cd2+ significantly inhibited P consumption, suggesting its high toxicity to A. niger. • Pb2+ stimulated the growth of A. niger by promoting TCA cycle in the cells. • Cd2+ removal by A. niger were improved with co-existence of Pb2+.
Collapse
|
18
|
Tian D, Wang L, Hu J, Zhang L, Zhou N, Xia J, Xu M, Yusef KK, Wang S, Li Z, Gao H. A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger. J Microbiol 2021; 59:819-826. [PMID: 34382148 DOI: 10.1007/s12275-021-1178-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
Phosphate solubilizing fungi (PSF) have been widely applied to dissolve insoluble phosphates (IPs). However, the PSF usually demonstrates a different phosphate solubilizing capacity for various IPs. This study explored the mechanisms of Aspergillus niger for the dissolution of ferric phosphate (FePO4, Fe-P), and tricalcium phosphate (Ca3[PO4]2, Ca-P) regarding the tricarboxylic acid (TCA) cycle. Aspergillus niger has higher phosphorus (P) content released from Ca-P, reached the maximum value of 861 mg/L after seven days of incubation, compared with the 169 mg/L from Fe-P. Oxalic acid promoted the release of P from Ca-P through the formation of calcium oxalate. The presence of Fe-P can stimulate A. niger to secrete large amounts of citric acid, confirmed by the enhancement of citrate synthase (CS) activity. However, citric acid only promotes 0.5% of P released from Fe-P. Meanwhile, although oxalic acid still dominates the release of P from Fe-P, its abundance was significantly declined. In contrast, oxalic acid also shows a higher P release ratio in Ca-P than citric acid, i.e., 36% vs. 22%. This study points to the future usage of A. niger to dissolve IPs in soil required to enhance oxalic acid secretion.
Collapse
Affiliation(s)
- Da Tian
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China. .,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Liyan Wang
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Jun Hu
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Liangliang Zhang
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Ningning Zhou
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Jingjing Xia
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Meiyue Xu
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Kianpoor Kalkhajeh Yusef
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hongjian Gao
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China. .,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
19
|
Mao L, van Arkel J, Hendriks WH, Cone JW, de Vos RC, Sonnenberg AS. Assessing the nutritional quality of fungal treated wheat straw: Compounds formed after treatment with Ceriporiopsis subvermispora and Lentinula edodes. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest. J Fungi (Basel) 2021; 7:jof7060412. [PMID: 34070657 PMCID: PMC8228407 DOI: 10.3390/jof7060412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Deadwood represents an important carbon stock and contributes to climate change mitigation. Wood decomposition is mainly driven by fungal communities. Their composition is known to change during decomposition, but it is unclear how environmental factors such as wood chemistry affect these successional patterns through their effects on dominant fungal taxa. We analysed the deadwood of Fagus sylvatica and Abies alba across a deadwood succession series of >40 years in a natural fir-beech forest in the Czech Republic to describe the successional changes in fungal communities, fungal abundance and enzymatic activities and to link these changes to environmental variables. The fungal communities showed high levels of spatial variability and beta diversity. In young deadwood, fungal communities showed higher similarity among tree species, and fungi were generally less abundant, less diverse and less active than in older deadwood. pH and the carbon to nitrogen ratio (C/N) were the best predictors of the fungal community composition, and they affected the abundance of half of the dominant fungal taxa. The relative abundance of most of the dominant taxa tended to increase with increasing pH or C/N, possibly indicating that acidification and atmospheric N deposition may shift the community composition towards species that are currently less dominant.
Collapse
|
21
|
Storage temperature and time and its influence on feed quality of fungal treated wheat straw. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Wickramasinghe PK, Munafo JP. Fermentation Dynamics and Benzylic Derivative Production in Ischnoderma resinosum Isolates. ACS OMEGA 2020; 5:22268-22277. [PMID: 32923784 PMCID: PMC7482237 DOI: 10.1021/acsomega.0c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Fermentation dynamics and benzylic derivative production were evaluated in the fermentation broth of six different Ischnoderma resinosum (P. Karst) isolates over a period of 30 days to understand their potential applications in bioreactor optimization for natural flavor compound production. d-Glucose and d-fructose levels decreased from 20.4 ± 0.4 to 7.1 ± 1.4 g/L and 1.0 ± 0.1 to <0.1 g/L, respectively, in all fermentations. Isolate I2 produced the highest concentration of ethanol (546. 4 ± 0.4 mg/L). l-Lactic acid production varied between 4.3 ± 0.6 and 3.7 ± 0.2 mg/L, whereas acetic acid concentrations decreased from 81.0 ± 3.3 to <40.0 mg/L. pH decreased from 4.9 ± 0.0 to 3.6 ± 0.4 at the end of 30 days in all fermentations. Isolate I3 was the highest producer of benzaldehyde (BA) (12.0 ± 0.2 mg/kg) and 4-methoxybenzaldehyde (4-MBA) (239.6 ± 3.9 mg/kg), while isolate I4 was the highest producer of 3,4-dimethoxybenzaldehyde (3,4-DMBA) (27.8 ± 0.2 mg/18 kg). Identification of isolate I3 as a high BA and 4-MBA producer and isolate I4 as a high 3,4-DMBA producer suggested differential benzylic derivative production among I. resinosum isolates. This study lays the foundation for future investigations evaluating additional I. resinosum isolates for benzylic derivative production as well as studies aimed at bioreactor optimization with potential commercial application.
Collapse
|
23
|
Soil Type Affects Organic Acid Production and Phosphorus Solubilization Efficiency Mediated by Several Native Fungal Strains from Mexico. Microorganisms 2020; 8:microorganisms8091337. [PMID: 32887277 PMCID: PMC7565533 DOI: 10.3390/microorganisms8091337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Phosphorus (P) is considered a scarce macronutrient for plants in most tropical soils. The application of rock phosphate (RP) has been used to fertilize crops, but the amount of P released is not always at a necessary level for the plant. An alternative to this problem is the use of Phosphorus Solubilizing Microorganisms (PSM) to release P from chemically unavailable forms. This study compared the P sorption capacity of soils (the ability to retain P, making it unavailable for the plant) and the profile of organic acids (OA) produced by fungal isolates and the in vitro solubilization efficiency of RP. Trichoderma and Aspergillus strains were assessed in media with or without RP and different soils (Andisol, Alfisol, Vertisol). The type and amount of OA and the amount of soluble P were quantified, and according to our data, under the conditions tested, significant differences were observed in the OA profiles and the amount of soluble P present in the different soils. The efficiency to solubilize RP lies in the release of OAs with low acidity constants independent of the concentration at which they are released. It is proposed that the main mechanism of RP dissolution is the production of OAs.
Collapse
|
24
|
Mali T, Mäki M, Hellén H, Heinonsalo J, Bäck J, Lundell T. Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns. FEMS Microbiol Ecol 2020; 95:5554004. [PMID: 31494677 PMCID: PMC6736282 DOI: 10.1093/femsec/fiz135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Effect of three wood-decaying fungi on decomposition of spruce wood was studied in solid-state cultivation conditions for a period of three months. Two white rot species (Trichaptum abietinum and Phlebia radiata) were challenged by a brown rot species (Fomitopsis pinicola) in varying combinations. Wood decomposition patterns as determined by mass loss, carbon to nitrogen ratio, accumulation of dissolved sugars and release of volatile organic compounds (VOCs) were observed to depend on both fungal combinations and growth time. Similar dependence of fungal species combination, either white or brown rot dominated, was observed for secreted enzyme activities on spruce wood. Fenton chemistry suggesting reduction of Fe3+ to Fe2+ was detected in the presence of F. pinicola, even in co-cultures, together with substantial degradation of wood carbohydrates and accumulation of oxalic acid. Significant correlation was perceived with two enzyme activity patterns (oxidoreductases produced by white rot fungi; hydrolytic enzymes produced by the brown rot fungus) and wood degradation efficiency. Moreover, emission of four signature VOCs clearly grouped the fungal combinations. Our results indicate that fungal decay type, either brown or white rot, determines the loss of wood mass and decomposition of polysaccharides as well as the pattern of VOCs released upon fungal growth on spruce wood.
Collapse
Affiliation(s)
- Tuulia Mali
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland
| | - Mari Mäki
- Department of Forest Sciences, University of Helsinki, Viikki Campus, P.O.Box 27, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland
| | - Heidi Hellén
- Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland
| | - Jussi Heinonsalo
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland.,Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland
| | - Jaana Bäck
- Department of Forest Sciences, University of Helsinki, Viikki Campus, P.O.Box 27, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland
| | - Taina Lundell
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
25
|
Xu X, Hao R, Xu H, Lu A. Removal mechanism of Pb(II) by Penicillium polonicum: immobilization, adsorption, and bioaccumulation. Sci Rep 2020; 10:9079. [PMID: 32493948 PMCID: PMC7270113 DOI: 10.1038/s41598-020-66025-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022] Open
Abstract
Currently, lead (Pb) has become a severe environmental pollutant and fungi hold a promising potential for the remediation of Pb-containing wastewater. The present study showed that Penicillium polonicum was able to tolerate 4 mmol/L Pb(II), and remove 90.3% of them in 12 days through three mechanisms: extracellular immobilization, cell wall adsorption, and intracellular bioaccumulation. In this paper. the three mechanisms were studied by Raman, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results indicated that Pb(II) was immobilized as lead oxalate outside the fungal cell, bound with phosphate, nitro, halide, hydroxyl, amino, and carboxyl groups on the cell wall, precipitated as pyromorphite [Pb5(PO4)3Cl] on the cell wall, and reduced to Pb(0) inside the cell. These combined results provide a basis for additionally understanding the mechanisms of Pb(II) removal by P. polonicum and developing remediation strategies using this fungus for lead-polluted water.
Collapse
Affiliation(s)
- Xiyang Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Hui Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
26
|
Grąz M, Jarosz-Wilkołazka A, Pawlikowska-Pawlęga B, Janusz G, Kapral-Piotrowska J, Ruminowicz-Stefaniuk M, Skrzypek T, Zięba E. Oxalate oxidase from Abortiporus biennis - protein localisation and gene sequence analysis. Int J Biol Macromol 2020; 148:1307-1315. [PMID: 31739051 DOI: 10.1016/j.ijbiomac.2019.10.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
We have described for the first time the localisation of oxalate oxidase (OXO, EC 1.2.3.4) in Abortiporus biennis cells, using histochemical and immunochemical methods coupled with transmission electron microscopy. Rabbit anti-oxalate oxidase immunoglobulins with anti-rabbit secondary antibody conjugated with 10-nm gold particles were used. Moreover, the formation of electron dense precipitation of reaction of diaminobenzidine (DAB) with horseradish peroxidase (HRP) for histochemical localisation of the enzyme was found. OXO was localised close to the membranous structures of the cell membranes, in membranous vesicles located close to the outer cell membrane, and vacuolar membranes surrounding vacuoles. The positive immunoreaction to OXO was also intense in cell wall areas. Moreover, we proved that gene coding for OXO was expressed in the same cultures. Corresponding mRNA was isolated, full length cDNA was synthesized, cloned and sequenced. Two copies of cupin domains were found in the sequence of amino-acids conserved domain coding for the cupin enzyme. Comparison of the genomic DNA and cDNA sequences has revealed the presence of seventeen introns in the gene. The isoelectric point of the protein was estimated at pH 4.5 and several possible N-glycosylation sites were predicted.
Collapse
Affiliation(s)
- Marcin Grąz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland.
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland; Electron Microscopy Laboratory, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Justyna Kapral-Piotrowska
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland; Electron Microscopy Laboratory, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | | | - Tomasz Skrzypek
- Center for Interdisciplinary Research, Confocal and Electron Microscopy Laboratory, The John Paul II Catholic University of Lublin, Konstantynów 1J, Lublin, Poland
| | - Emil Zięba
- Center for Interdisciplinary Research, Confocal and Electron Microscopy Laboratory, The John Paul II Catholic University of Lublin, Konstantynów 1J, Lublin, Poland
| |
Collapse
|
27
|
Veloz Villavicencio E, Mali T, Mattila HK, Lundell T. Enzyme Activity Profiles Produced on Wood and Straw by Four Fungi of Different Decay Strategies. Microorganisms 2020; 8:microorganisms8010073. [PMID: 31906600 PMCID: PMC7022816 DOI: 10.3390/microorganisms8010073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Four well-studied saprotrophic Basidiomycota Agaricomycetes species with different decay strategies were cultivated on solid lignocellulose substrates to compare their extracellular decomposing carbohydrate-active and lignin-attacking enzyme production profiles. Two Polyporales species, the white rot fungus Phlebia radiata and brown rot fungus Fomitopsis pinicola, as well as one Agaricales species, the intermediate "grey" rot fungus Schizophyllum commune, were cultivated on birch wood pieces for 12 weeks, whereas the second Agaricales species, the litter-decomposing fungus Coprinopsis cinerea was cultivated on barley straw for 6 weeks under laboratory conditions. During 3 months of growth on birch wood, only the white rot fungus P. radiata produced high laccase and MnP activities. The brown rot fungus F. pinicola demonstrated notable production of xylanase activity up to 43 nkat/mL on birch wood, together with moderate β-glucosidase and endoglucanase cellulolytic activities. The intermediate rot fungus S. commune was the strongest producer of β-glucosidase with activities up to 54 nkat/mL, and a notable producer of xylanase activity, even up to 620 nkat/mL, on birch wood. Low lignin-attacking but moderate activities against cellulose and hemicellulose were observed with the litter-decomposer C. cinerea on barley straw. Overall, our results imply that plant cell wall decomposition ability of taxonomically and ecologically divergent fungi is in line with their enzymatic decay strategy, which is fundamental in understanding their physiology and potential for biotechnological applications.
Collapse
|
28
|
Sun H, Wu L, Hao Y, Liu C, Pan L, Zhu Z. Tolerance mechanism of Trichoderma asperellum to Pb2+: response changes of related active ingredients under Pb2+ stress. RSC Adv 2020; 10:5202-5211. [PMID: 35498294 PMCID: PMC9049547 DOI: 10.1039/c9ra10517d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Trichoderma asperellum ZZY has good tolerance to Pb2+, but the tolerance mechanism is not clear.
Collapse
Affiliation(s)
- Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Lingran Wu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Yali Hao
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Chunyu Liu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Lichao Pan
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| |
Collapse
|
29
|
Zhang L, Song X, Shao X, Wu Y, Zhang X, Wang S, Pan J, Hu S, Li Z. Lead immobilization assisted by fungal decomposition of organophosphate under various pH values. Sci Rep 2019; 9:13353. [PMID: 31527665 PMCID: PMC6746775 DOI: 10.1038/s41598-019-49976-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022] Open
Abstract
Organic phosphates (OP) account for approximately 30-90% of total soil P. However, it is too stable to be utilized by plants as available P source. Aspergillus niger (A. niger) has considerable ability to secret phytase to decompose OP. Meanwhile, mineralization of lead (Pb) is efficient to achieve its remediation. This study hence investigated Pb immobilization by A. niger assisted decomposition of OP under variable acidic environments. A. niger can survive in the acidic environment as low as pH = 1.5. However, alternation of environmental pH within 3.5-6.5 significantly changed fungal phytase secretion. In particular, weakly acidic stimulation (pH of ~5.5) increased phytase activity secreted by A. niger to 0.075 µmol/min/mL, hence elevating P release to a maximal concentration of ~20 mg/L. After Pb addition, ATR-IR and TEM results demonstrated the formation of abundant chloropyromorphite [Pb5(PO4)3Cl] mineral on the surface of mycelium at pH = 5.5. Anglesite, with a higher solubility than pyromorphite, was precipitated massively in other treatments with pH lower or higher than 5.5. This study elucidated the great potential of applying OP for Pb immobilization in contaminated water.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinwei Song
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoqing Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yiling Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinyu Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jianjun Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
- Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
30
|
Production of lignin-modifying enzymes by Trametes ochracea on high-molecular weight fraction of olive mill wastewater, a byproduct of olive oil biorefinery. N Biotechnol 2019; 50:44-51. [DOI: 10.1016/j.nbt.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
|
31
|
Javaid R, Sabir A, Sheikh N, Ferhan M. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals. Molecules 2019; 24:E786. [PMID: 30813221 PMCID: PMC6412211 DOI: 10.3390/molecules24040786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Processing of fossil fuels is the major environmental issue today. Biomass utilization for the production of chemicals presents an alternative to simple energy generation by burning. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for variety of purposes. Among them, lignin polymer having phenyl-propanoid subunits linked together either through C-C bonds or ether linkages can produce chemicals. It can be depolymerized by fungi using their enzyme machinery (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Fungal natural organic acids production is thought to have many key roles in nature depending upon the type of fungi producing them. Biological conversion of lignocellulosic biomass is beneficial over physiochemical processes. Laccases, copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H₂O₂. Lignin depolymerization yields value-added compounds, the important ones are aromatics and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic fungi can generate certain value added and environmentally friendly chemicals.
Collapse
Affiliation(s)
- Rehman Javaid
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Aqsa Sabir
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| | - Nadeem Sheikh
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Muhammad Ferhan
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| |
Collapse
|
32
|
Di Marino D, Jestel T, Marks C, Viell J, Blindert M, Kriescher SMA, Spiess AC, Wessling M. Carboxylic Acids Production via Electrochemical Depolymerization of Lignin. ChemElectroChem 2019. [DOI: 10.1002/celc.201801676] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Tim Jestel
- AVT.EPT Forckenbeckstr. 51 52074 Aachen Germany
| | | | - Jörn Viell
- AVT.SVT Forckenbeckstr. 51 52074 Aachen Germany
| | | | | | - Antje C. Spiess
- AVT.EPT Forckenbeckstr. 51 52074 Aachen Germany
- ibvt - Institute of Biochemical Engineering Rebenring 56 38106 Braunschweig Germany
| | - Matthias Wessling
- AVT.CVT Forckenbeckstr. 51 52074 Aachen Germany
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany
| |
Collapse
|
33
|
Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent Improvement. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Palmieri F, Estoppey A, House GL, Lohberger A, Bindschedler S, Chain PSG, Junier P. Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions. ADVANCES IN APPLIED MICROBIOLOGY 2018; 106:49-77. [PMID: 30798804 DOI: 10.1016/bs.aambs.2018.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxalic acid is the most ubiquitous and common low molecular weight organic acid produced by living organisms. Oxalic acid is produced by fungi, bacteria, plants, and animals. The aim of this review is to give an overview of current knowledge about the microbial cycling of oxalic acid through ecosystems. Here we review the production and degradation of oxalic acid, as well as its implications in the metabolism for fungi, bacteria, plants, and animals. Indeed, fungi are well known producers of oxalic acid, while bacteria are considered oxalic acid consumers. However, this framework may need to be modified, because the ability of fungi to degrade oxalic acid and the ability of bacteria to produce it, have been poorly investigated. Finally, we will highlight the role of fungi and bacteria in oxalic acid cycling in soil, plant and animal ecosystems.
Collapse
Affiliation(s)
- Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Geoffrey L House
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Andrea Lohberger
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
35
|
Wang X, Wang C, Sui J, Liu Z, Li Q, Ji C, Song X, Hu Y, Wang C, Sa R, Zhang J, Du J, Liu X. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities. AMB Express 2018; 8:63. [PMID: 29679179 PMCID: PMC5910442 DOI: 10.1186/s13568-018-0593-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/13/2018] [Indexed: 11/10/2022] Open
Abstract
Rhizospheric microorganisms can increase phosphorus availability in the soil. In this regard, the ability of phosphofungi to dissolve insoluble phosphorus compounds is greater than that of phosphate-solubilizing bacteria. The aim of the current study was to identify efficient phosphofungi that could be developed as commercial microbial agents. Among several phosphate-solubilizing fungal isolates screened, strain CS-1 showed the highest phosphorus-solubilization ability. Based on phylogenetic analysis of the internal transcribed spacer region sequence, it was identified as Aspergillus niger. High-performance liquid chromatography analysis revealed that the mechanism of phosphorus solubilization by CS-1 involved the synthesis and secretion of organic acids, mainly oxalic, tartaric, and citric acids. Furthermore, strain CS-1 exhibited other growth-promoting abilities, including efficient potassium release and degradation of crop straw cellulose. These properties help to returning crop residues to the soil, thereby increasing nutrient availability and sustaining organic matter concentration therein. A pot experiment revealed that CS-1 apparently increased the assessed biometric parameters of wheat seedlings, implying the potential of this strain to be developed as a commercial microbial agent. We used Illumina MiSeq sequencing to investigate the microbial community composition in the rhizosphere of uninoculated wheat plants and wheat plants inoculated with the CS-1 strain to obtain insight into the effect of the CS-1 strain inoculation. The data clearly demonstrated that CS-1 significantly reduced the content of pathogenic fungi, including Gibberella, Fusarium, Monographella, Bipolaris, and Volutella, which cause soil-borne diseases in various crops. Strain CS-1 may hence be developed into a microbial agent for plant growth improvement.
Collapse
|
36
|
Abdulrahma A, Ismail Ali W, Mohamed Gh K, Mohamed Ra Y. Oxalic Acid as the Main Molecule Produced by Trichoderma asperellum MG323528 Fermented on Corn Stover Based Medium. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/biotech.2018.95.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Draft Genome Sequence of the Basidiomycete White-Rot Fungus Phlebia centrifuga. GENOME ANNOUNCEMENTS 2018; 6:6/14/e01414-17. [PMID: 29622620 PMCID: PMC5887033 DOI: 10.1128/genomea.01414-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the genome sequence of wood-decaying white-rot fungus Phlebia centrifuga strain FBCC195, isolated from Norway spruce (Picea abies) in Finnish Lapland. The 34.66-Mb genome containing 13,785 gene models is similar to the genome length reported for other saprobic white-rot species.
Collapse
|
38
|
Mao L, Sonnenberg ASM, Hendriks WH, Cone JW. Preservation of Ceriporiopsis subvermispora and Lentinula edodes treated wheat straw under anaerobic conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1232-1239. [PMID: 29030967 PMCID: PMC5846887 DOI: 10.1002/jsfa.8745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND No attention has been paid so far to the preservation of fungal-treated lignocellulose for longer periods. In the present study, we treated wheat straw (WS) with the white-rot fungi Ceriporiopsis subvermispora and Lentinula edodes for 8 weeks and assessed changes in pH, chemical composition and in vitro gas production (IVGP) weekly. Fungal-treated WS was also stored for 64 days 'as is', with the addition of lactic acid bacteria (LAB) or with a combination of LAB and molasses in airtight glass jars mimicking ensiling conditions. RESULTS Both fungi significantly reduced the lignin and hemicellulose content of WS, and increased the cellulose content. The IVGP increased with increasing time of incubation, indicating the increase in digestibility. Both fungi lowered the pH of WS under 4.3, which guarantees an initial and stable low pH during anaerobic storage. Minor changes in fibre composition and IVGP were observed for stored L. edodes treated WS, whereas no change occurred for C. subvermispora. CONCLUSION It is possible to conserve C. subvermispora and L. edodes treated straw under anaerobic condition without additives up to 64 days. This finding is important for practical application to supply fungi-treated feed to ruminant animals for a prolonged period. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Mao
- Animal Nutrition GroupWageningen University & ResearchWageningenThe Netherlands
| | | | - Wouter H Hendriks
- Animal Nutrition GroupWageningen University & ResearchWageningenThe Netherlands
| | - John W Cone
- Animal Nutrition GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
39
|
Qin X, Su X, Luo H, Ma R, Yao B, Ma F. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:58. [PMID: 29507610 PMCID: PMC5833081 DOI: 10.1186/s13068-018-1060-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. RESULTS Irpex lacteus CD2 efficiently decomposed 74.9% lignin, 86.3% cellulose, and 83.5% hemicellulose in corn stover within 9 days. Manganese peroxidases were rapidly induced, followed by accumulation of cellulase and hemicellulase. Genomic analysis revealed that I. lacteus CD2 possessed a complete set of lignocellulose-degrading enzyme system composed mainly of class II peroxidases, dye-decolorizing peroxidases, auxiliary enzymes, and 182 glycoside hydrolases. Comparative transcriptomic analysis substantiated the notion of a selection mode of degradation. These analyses also suggested that free radicals, derived either from MnP-organic acid interplay or from Fenton reaction involving Fe2+ and H2O2, could play an important role in lignocellulose degradation. CONCLUSIONS The selective strategy employed by I. lacteus CD2, in combination with low extracellular glycosidases cleaving plant cell wall polysaccharides into fermentable sugars, may account for high pretreatment efficiency of I. lacteus. Our study also hints the importance of free radicals for future designing of novel, robust lignocellulose-degrading enzyme cocktails.
Collapse
Affiliation(s)
- Xing Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Fuying Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
40
|
Mali T, Kuuskeri J, Shah F, Lundell TK. Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes. PLoS One 2017; 12:e0185171. [PMID: 28953947 PMCID: PMC5617175 DOI: 10.1371/journal.pone.0185171] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
Fomitopsis pinicola is a species of Polyporales frequently encountered in Nordic temperate and boreal forests. In nature, the fungus causes destructive brown rot in wood, colonizing tree trunks often occupied by other Basidiomycota species. We mimicked these species-species interactions by introducing F. pinicola to five white rot species, all common saprotrophs of Norway spruce. Hyphal interactions and mycelial growth in various combinations were recorded, while activities of lignocellulose-acting CAZymes and oxidoreductases were followed in co-cultures on two different carbon-source media. Of the species, Phlebia radiata and Trichaptum abietinum were the strongest producers of lignin-modifying oxidoreductases (laccase, manganese peroxidase) when evaluated alone, as well as in co-cultures, on the two different growth media (low-nitrogen liquid medium containing ground coniferous wood, and malt extract broth). F. pinicola was an outstanding producer of oxalic acid (up to 61 mM), whereas presence of P. radiata prevented acidification of the growth environment in the liquid malt-extract cultures. When enzyme profiles of the species combinations were clustered, time-dependent changes were observed on wood-supplemented medium during the eight weeks of growth. End-point acidity and production of mycelium, oxalic acid and oxidoreductase activities, in turn clustered the fungal combinations into three distinct functional groups, determined by the presence of F. pinicola and P. radiata, by principal component analysis. Our findings indicate that combinations of wood-decay fungi have dramatic dynamic effects on the production of lignocellulose-active enzymes, which may lead to divergent degradative processes of dead wood and forest litter.
Collapse
Affiliation(s)
- Tuulia Mali
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland
| | - Jaana Kuuskeri
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland
| | - Firoz Shah
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland
| | - Taina Kristina Lundell
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
41
|
Copley TR, Duggavathi R, Jabaji S. The transcriptional landscape of Rhizoctonia solani AG1-IA during infection of soybean as defined by RNA-seq. PLoS One 2017; 12:e0184095. [PMID: 28877263 PMCID: PMC5587340 DOI: 10.1371/journal.pone.0184095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Rhizoctonia solani Kühn infects most plant families and can cause significant agricultural yield losses worldwide; however, plant resistance to this disease is rare and short-lived, and therefore poorly understood, resulting in the use of chemical pesticides for its control. Understanding the functional responses of this pathogen during host infection can help elucidate the molecular mechanisms that are necessary for successful host invasion. Using the pathosystem model soybean-R. solani anastomosis group AG1-IA, we examined the global transcriptional responses of R. solani during early and late infection stages of soybean by applying an RNA-seq approach. Approximately, 148 million clean paired-end reads, representing 93% of R. solani AG1-IA genes, were obtained from the sequenced libraries. Analysis of R. solani AG1-IA transcripts during soybean invasion revealed that most genes were similarly expressed during early and late infection stages, and only 11% and 15% of the expressed genes were differentially expressed during early and late infection stages, respectively. Analyses of the differentially expressed genes (DEGs) revealed shifts in molecular pathways involved in antibiotics biosynthesis, amino acid and carbohydrate metabolism, as well as pathways involved in antioxidant production. Furthermore, several KEGG pathways were unique to each time point, particularly the up-regulation of genes related to toxin degradation (e.g., nicotinate and nicotinamid metabolism) at onset of necrosis, and those linked to synthesis of anti-microbial compounds and pyridoxine (vitamin B6) biosynthesis 24 h.p.o. of necrosis. These results suggest that particular genes or pathways are required for either invasion or disease development. Overall, this study provides the first insights into R. solani AG1-IA transcriptome responses to soybean invasion providing beneficial information for future targeted control methods of this successful pathogen.
Collapse
Affiliation(s)
- Tanya R. Copley
- Plant Science Department, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Animal Science Department, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Suha Jabaji
- Plant Science Department, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
42
|
Marinović M, Aguilar-Pontes MV, Zhou M, Miettinen O, de Vries RP, Mäkelä MR, Hildén K. Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood. Fungal Genet Biol 2017; 112:47-54. [PMID: 28754284 DOI: 10.1016/j.fgb.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
The basidiomycete white-rot fungus Obba rivulosa, a close relative of Gelatoporia (Ceriporiopsis) subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to their abilities to convert plant cell wall polymers.
Collapse
Affiliation(s)
- Mila Marinović
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Maria Victoria Aguilar-Pontes
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Otto Miettinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miia R Mäkelä
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Kristiina Hildén
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
43
|
Grąz M, Jarosz-Wilkołazka A, Janusz G, Mazur A, Wielbo J, Koper P, Żebracki K, Kubik-Komar A. Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis – response to oxalic acid. Microbiol Res 2017; 199:79-88. [DOI: 10.1016/j.micres.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/30/2017] [Accepted: 03/10/2017] [Indexed: 01/23/2023]
|
44
|
Chatha SAS, Asgher M, Iqbal HMN. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14005-14018. [PMID: 28401390 DOI: 10.1007/s11356-017-8998-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/05/2017] [Indexed: 02/05/2023]
Abstract
The textile industry, as recognized conformist and stake industry in the world's economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based "classical/conventional" treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.
Collapse
Affiliation(s)
- Shahzad Ali Shahid Chatha
- Natural Products/Synthetic Chemistry Laboratory, Department of Applied Chemistry & Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L, Mexico.
| |
Collapse
|
45
|
Casado López S, Theelen B, Manserra S, Issak TY, Rytioja J, Mäkelä MR, de Vries RP. Functional diversity in Dichomitus squalens monokaryons. IMA Fungus 2017; 8:17-25. [PMID: 28824837 PMCID: PMC5493533 DOI: 10.5598/imafungus.2017.08.01.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 01/06/2023] Open
Abstract
Dichomitussqualens is a white-rot fungus that colonizes and grows mainly on softwood and is commonly found in the northern parts of Europe, North America, and Asia. We analyzed the genetic and physiological diversity of eight D. squalens monokaryons derived from a single dikaryon. In addition, an unrelated dikaryon and a newly established dikaryon from two of the studied monokaryons were included. Both growth and lignocellulose acting enzyme profiles were highly variable between the studied monokaryotic and dikaryotic strains, demonstrating a high level of diversity within the species.
Collapse
Affiliation(s)
- Sara Casado López
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Serena Manserra
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Tedros Yonatan Issak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Finland
| | - Miia R Mäkelä
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.,Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Finland
| | - Ronald P de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.,Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Finland
| |
Collapse
|
46
|
Genome Sequence of the Basidiomycete White-Rot Fungus Trametes pubescens FBCC735. GENOME ANNOUNCEMENTS 2017; 5:5/8/e01643-16. [PMID: 28232439 PMCID: PMC5323618 DOI: 10.1128/genomea.01643-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report the genome sequence of the basidiomycete white-rot fungus Trametes pubescens FBCC735, isolated from Finland. The 39.67-Mb genome containing 14,451 gene models is typical among saprobic wood-rotting species.
Collapse
|
47
|
Rytioja J, Hildén K, Di Falco M, Zhou M, Aguilar-Pontes MV, Sietiö OM, Tsang A, de Vries RP, Mäkelä MR. The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses. Environ Microbiol 2017; 19:1237-1250. [PMID: 28028889 DOI: 10.1111/1462-2920.13652] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi, (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study, we evaluated how well the enzymatic machinery of the white-rot fungus Dichomitus squalens is tailored to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analyzed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good a match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant biomass types not present in its natural habitat.
Collapse
Affiliation(s)
- Johanna Rytioja
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marcos Di Falco
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Miaomiao Zhou
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, 3584, CT, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, 3584, CT, The Netherlands
| | - Outi-Maaria Sietiö
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Ronald P de Vries
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, 3584, CT, The Netherlands
| | - Miia R Mäkelä
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Nur Indah Koni T, Hanim C. Effect of pH and Temperature on <I>Bacillus subtilis</I> FNCC 0059 Oxalate Decarboxylase Activity. Pak J Biol Sci 2017; 20:436-441. [PMID: 30187731 DOI: 10.3923/pjbs.2017.436.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Bacillus subtilis is a bacterium that can produce the oxalate decarboxylase (ODC) enzyme. This enzyme decomposes oxalate. ODC enzyme activity is influenced by temperature and pH. This study was conducted to determine the optimum pH and temperature for ODC enzyme activity in B. subtilis FNCC 0059. MATERIALS AND METHODS B. subtilis was cultivated in oxalate medium at different incubation temperatures for 24 h. The tested temperatures were 25, 29, 33, 37, 41 and 45°C. In separate experiments, cultures were grown in oxalate medium at varying pH from 4-8.5. The cell growth assay and enzyme activity were performed and all the experiments were done with 3 replicates. Data were analyzed using one-way analysis of variance. RESULTS The optimum temperature of 37°C could produce maximum ODC enzyme activity (0.041 U mL-1) enzyme activity increased to the point of the optimum pH and then decreased 5.6% when the pH was increased 0.5 from the optimum. Maximum ODC enzyme activity (0.0413 U mL-1) was achieved at pH 5.5. CONCLUSION Temperature and the pH of the medium affected ODC enzyme activity. Optimum medium condition of B. subtilis was reached at 37°C and pH 5.5.
Collapse
|
49
|
Zhao M, Zhang C, Zeng G, Cheng M, Liu Y. A combined biological removal of Cd(2+) from aqueous solutions using Phanerochaete chrysosporium and rice straw. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:87-92. [PMID: 27088621 DOI: 10.1016/j.ecoenv.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
The removal of Cd(2+) from aqueous solutions by agricultural residues rice straw combined with white rot fungus Phanerochaete chrysosporium (P. chrysosporium) was investigated. The results showed that over 99% of the total Cd(2+) (initial concentration of 150mgL(-1)) was removed at the optimal operating conditions (pH 5.0 at 35°C). We also found that P. chrysosporium could survive under Cd(2+) stress even with an initial Cd(2+) concentration of 250mgL(-1). But when Cd(2+) concentration increased to 250mgL(-1), fungus growth and reproduction were remarkably restrained, and as a result, Cd(2+) removal dropped to 59.2%. It was observed that the fungus biomass and activities of ligninolytic enzymes decreased at some degree under high concentration of Cd(2+) (above 100mgL(-1)). Also, we found that a moderate Cd(2+) stress (below 150mgL(-1)) could stimulate P. chrysosporium's production of the heavy metals chelator - oxalate. This study will provide useful information for the application of biological removal of heavy metal irons from wastewater.
Collapse
Affiliation(s)
- Meihua Zhao
- College of Civil Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Chaosheng Zhang
- College of Civil Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
50
|
A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep 2016; 6:25313. [PMID: 27126606 PMCID: PMC4850453 DOI: 10.1038/srep25313] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/14/2016] [Indexed: 11/24/2022] Open
Abstract
Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.
Collapse
|