1
|
Mazhar H, Afzal A, Aman S, Babar Khawar M, Hamid SE, Ishaq S, Shahid Ali S, Zhu H, Hussain Z. Purification and characterization of lipase produced from Bacillus cereus (PCSIR NL-37). BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
There is a growing trend to produce lipase from microorganisms owing to their commercial demand in various industries. Bacillus cereus has been shown to have extracellular lipase activity and high growth rates. This study explains the purification of microbial lipase to homogeneity by dialysis, precipitation and chromatography. The purified enzyme with 56kDa relative molecular mass exhibited the highest activity at 60°C (95.56U/ml) and pH 7 (124.50U/ml). The enzyme activity was highly promoted in the presence of K+ (136.17U/ml) and Zn++(133.07 U/ml), and SDS did not affect the enzyme activity, whereas in the company of triton X100 activity of lipase is maximum (23.90 U/ml). The enzyme activity was enhanced by using almond oil (120.00 U/ml) as a substrate. We deduce cheaper protocols for producing extracellular lipase via simple laboratory techniques, which could be a good insight for its production at the commercial level.
Keywords: Lipase; Bacillus cereus; chromatography; enzyme activity; purification.
Collapse
Affiliation(s)
- Haniya Mazhar
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China. 2Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Suneela Aman
- University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology & Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Saira Ishaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Syed Shahid Ali
- Institute of Zoology, University of Punjab, Quaid-e-Azam Campus, Lahore-Pakistan
| | - Hongxin Zhu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China. 2Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zahid Hussain
- Institute of Industrial Biotechnology, Government College University, Lahore-54000, Pakistan
| |
Collapse
|
2
|
Rave AFG, Kuss AV, Peil GHS, Ladeira SR, Villarreal JPV, Nascente PS. Biochemical identification techniques and antibiotic susceptibility profile of lipolytic ambiental bacteria from effluents. BRAZ J BIOL 2019; 79:555-565. [DOI: 10.1590/1519-6984.05616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/09/2018] [Indexed: 11/21/2022] Open
Abstract
Abstract Different methodologies have been developed throughout the years to identify environmental microorganisms to improve bioremediation techniques, determine susceptibility profiles of bacteria in contaminated environments, and reduce the impact of microorganisms in ecosystems. Two methods of bacterial biochemical identification are compared and the susceptibility profile of bacteria, isolated from residential and industrial wastewater, is determined. Twenty-four bacteria were retrieved from the bacteria bank of the Environmental Microbiology Laboratory at the Institute of Biology (IB) of the Universidade Federal de Pelotas, Pelotas, Brazil. Bacteria were identified by conventional biochemical tests and by the VITEK ®2 automated system. Further, the susceptibility profile to antibiotics was also determined by the automated system. Six species of bacteria (Raoutella planticola, K. pneumoniae ssp. pneumoniae , Serratia marcescens, Raoutella sp., E. cloacae and Klebsiella oxytoca) were identified by conventional biochemical tests, while three species of bacteria (K. pneumoniae ssp. pneumoniae, S. marcescens and K. oxytoca ) were identified by VITEK®2 automated system. VITEK ®2 indicated agreement in 19 (79.17%) isolates and difference in five (20.83%) isolates when compared to results from conventional biochemical tests. Further, antibiotic susceptibility profile results showed that all isolates (100%) were resistant to at least one out of the 18 antibiotics tested by VITEK®2. Thus, no multi-resistant bacteria that may be used in effluent treatment systems or in bioremediation processes have been reported. Results indicate VITEK ® 2 automated system as a potential methodology in the determination of susceptibility profile and identification of environmental bacteria.
Collapse
|
3
|
Malafatti-Picca L, de Barros Chaves MR, de Castro AM, Valoni É, de Oliveira VM, Marsaioli AJ, de Franceschi de Angelis D, Attili-Angelis D. Hydrocarbon-associated substrates reveal promising fungi for poly (ethylene terephthalate) (PET) depolymerization. Braz J Microbiol 2019; 50:633-648. [PMID: 31175657 PMCID: PMC6863199 DOI: 10.1007/s42770-019-00093-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recalcitrant characteristics and insolubility in water make the disposal of synthetic polymers a great environmental problem to be faced by modern society. Strategies towards the recycling of post-consumer polymers, like poly (ethylene terephthalate, PET) degradation/depolymerization have been studied but still need improvement. To contribute with this purpose, 100 fungal strains from hydrocarbon-associated environments were screened for lipase and esterase activities by plate assays and high-throughput screening (HTS), using short- and long-chain fluorogenic probes. Nine isolates were selected for their outstanding hydrolytic activity, comprising the genera Microsphaeropsis, Mucor, Trichoderma, Westerdykella, and Pycnidiophora. Two strains of Microsphaeropsis arundinis were able to convert 2-3% of PET nanoparticle into terephthalic acid, and when cultured with two kinds of commercial PET bottle fragments, they also promoted weight loss, surface and chemical changes, increased lipase and esterase activities, and led to PET depolymerization with release of terephthalic acid at concentrations above 20.0 ppm and other oligomers over 0.6 ppm. The results corroborate that hydrocarbon-associated areas are important source of microorganisms for application in environmental technologies, and the sources investigated revealed important strains with potential for PET depolymerization.
Collapse
Affiliation(s)
- Lusiane Malafatti-Picca
- Environmental Studies Center, UNESP, São Paulo State University, 24-A Av., 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| | | | - Aline Machado de Castro
- Biotechnology Department, R&D Center, PETROBRAS, Av. Horácio Macedo, 950, Ilha do Fundão, Rio de Janeiro, RJ, 21941-915, Brazil
| | - Érika Valoni
- Biotechnology Department, R&D Center, PETROBRAS, Av. Horácio Macedo, 950, Ilha do Fundão, Rio de Janeiro, RJ, 21941-915, Brazil
| | - Valéria Maia de Oliveira
- Division of Microbial Resources, CPQBA - State University of Campinas, Alexandre Cazellato Str., 999, Paulínia, SP, 13148-218, Brazil
| | - Anita Jocelyne Marsaioli
- Institute of Chemistry, State University of Campinas, PO Box 6154, Campinas, SP, 13084-971, Brazil
| | - Dejanira de Franceschi de Angelis
- Department of Biochemistry and Microbiology, UNESP, São Paulo State University, 24-A Av., 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Derlene Attili-Angelis
- Environmental Studies Center, UNESP, São Paulo State University, 24-A Av., 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
- Division of Microbial Resources, CPQBA - State University of Campinas, Alexandre Cazellato Str., 999, Paulínia, SP, 13148-218, Brazil
- Department of Biochemistry and Microbiology, UNESP, São Paulo State University, 24-A Av., 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
4
|
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:190-213. [PMID: 29175684 DOI: 10.1016/j.envpol.2017.11.060] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 05/26/2023]
Abstract
Due to recalcitrance of some pharmaceutically active compounds (PhACs), conventional wastewater treatment is not able to remove them effectively. Therefore, their occurrence in surface water and potential environmental impact has raised serious global concern. Biological transformation of these contaminants using white-rot fungi (WRF) and their oxidoreductase enzymes has been proposed as a low cost and environmentally friendly solution for water treatment. The removal performance of PhACs by a fungal culture is dependent on several factors, such as fungal species, the secreted enzymes, molecular structure of target compounds, culture medium composition, etc. In recent 20 years, numerous researchers tried to elucidate the removal mechanisms and the effects of important operational parameters such as temperature and pH on the enzymatic treatment of PhACs. This review summarizes and analyzes the studies performed on PhACs removal from spiked pure water and real wastewaters using oxidoreductase enzymes and the data related to degradation efficiencies of the most studied compounds. The review also offers an insight into enzymes immobilization, fungal reactors, mediators, degradation mechanisms and transformation products (TPs) of PhACs. In brief, higher hydrophobicity and having electron-donating groups, such as amine and hydroxyl in molecular structure leads to more effective degradation of PhACs by fungal cultures. For recalcitrant compounds, using redox mediators, such as syringaldehyde increases the degradation efficiency, however they may cause toxicity in the effluent and deactivate the enzyme. Immobilization of enzymes on supports can enhance the performance of enzyme in terms of reusability and stability. However, the immobilization strategy should be carefully selected to reduce the cost and enable regeneration. Still, further studies are needed to elucidate the mechanisms involved in enzymatic degradation and the toxicity levels of TPs and also to optimize the whole treatment strategy to have economical and technical competitiveness.
Collapse
Affiliation(s)
- Mitra Naghdi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, B3J 1Z1, Nova Scotia, Canada
| | - Mausam Verma
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - R Y Surampalli
- Global Institute for Energy, Environment and Sustainability, P.O. Box 14354, Lenexa, KS 66285, USA
| |
Collapse
|
5
|
The Candida rugosa lipase adsorbed onto titania as nano biocatalyst with improved thermostability and reuse potential in aqueous and organic media. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Gowthami P, Muthukumar K, Velan M. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1. Biocontrol Sci 2016; 20:125-33. [PMID: 26133510 DOI: 10.4265/bio.20.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The overproduction of enzymes was performed by manipulating the medium components. In our study, solvent-tolerant thermophilic lipase-producing Bacillus coagulans was isolated from soil samples and a stepwise optimization strategy was employed to increase the lipase production using coconut oil cake basal medium. In the first step, the influence of pH, temperature, carbon source, nitrogen source and inducers on lipase activity was investigated by the One-Factor-At-A-Time (OFAT) method. In the second step, the three significant factors resulted from OFAT were optimized by the statistical approach (CCD).The optimum values of olive oil (0.5%), Tween 80 (0.6%) and FeSO4 (0.05%) was found to be responsible for a 3.2-fold increase in the lipase production identified by Central Composite Design.
Collapse
Affiliation(s)
- Palanisamy Gowthami
- Department of Chemical Engineering, AC College of technology, Anna University
| | | | | |
Collapse
|
7
|
de Cazes M, Abejón R, Belleville MP, Sanchez-Marcano J. Membrane bioprocesses for pharmaceutical micropollutant removal from waters. MEMBRANES 2014; 4:692-729. [PMID: 25295629 PMCID: PMC4289862 DOI: 10.3390/membranes4040692] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/02/2023]
Abstract
The purpose of this review work is to give an overview of the research reported on bioprocesses for the treatment of domestic or industrial wastewaters (WW) containing pharmaceuticals. Conventional WW treatment technologies are not efficient enough to completely remove all pharmaceuticals from water. Indeed, these compounds are becoming an actual public health problem, because they are more and more present in underground and even in potable waters. Different types of bioprocesses are described in this work: from classical activated sludge systems, which allow the depletion of pharmaceuticals by bio-degradation and adsorption, to enzymatic reactions, which are more focused on the treatment of WW containing a relatively high content of pharmaceuticals and less organic carbon pollution than classical WW. Different aspects concerning the advantages of membrane bioreactors for pharmaceuticals removal are discussed, as well as the more recent studies on enzymatic membrane reactors to the depletion of these recalcitrant compounds.
Collapse
Affiliation(s)
- Matthias de Cazes
- Institut Européen des Membranes (IEM), ENSCM, UM2, CNRS, Université de Montpellier 2, CC 047, Place Eugène Bataillon 34095, France.
| | - Ricardo Abejón
- Institut Européen des Membranes (IEM), ENSCM, UM2, CNRS, Université de Montpellier 2, CC 047, Place Eugène Bataillon 34095, France.
| | - Marie-Pierre Belleville
- Institut Européen des Membranes (IEM), ENSCM, UM2, CNRS, Université de Montpellier 2, CC 047, Place Eugène Bataillon 34095, France.
| | - José Sanchez-Marcano
- Institut Européen des Membranes (IEM), ENSCM, UM2, CNRS, Université de Montpellier 2, CC 047, Place Eugène Bataillon 34095, France.
| |
Collapse
|
8
|
Andrade MM, Barbosa AM, Bofinger MR, Dekker RFH, Messias JM, Guedes CLB, Zaminelli T, de Oliveira BH, de Lima VMG, Dall'antonia LH. Lipase production by Botryosphaeria ribis EC-01 on soybean and castorbean meals: optimization, immobilization, and application for biodiesel production. Appl Biochem Biotechnol 2013; 170:1792-806. [PMID: 23749470 DOI: 10.1007/s12010-013-0309-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
The effects of soybean and castorbean meals were evaluated separately, and in combinations at different ratios, as substrates for lipase production by Botryosphaeria ribis EC-01 in submerged fermentation using only distilled water. The addition of glycerol analytical grade (AG) and glycerol crude (CG) to soybean and castorbean meals separately and in combination, were also examined for lipase production. Glycerol-AG increased enzyme production, whereas glycerol-CG decreased it. A 2(4) factorial design was developed to determine the best concentrations of soybean meal, castorbean meal, glycerol-AG, and KH2PO4 to optimize lipase production by B. ribis EC-01. Soybean meal and glycerol-AG had a significant effect on lipase production, whereas castorbean meal did not. A second treatment (2(2) factorial design central composite) was developed, and optimal lipase production (4,820 U/g of dry solids content (ds)) was obtained when B. ribis EC-01 was grown on 0.5 % (w/v) soybean meal and 5.2 % (v/v) glycerol in distilled water, which was in agreement with the predicted value (4,892 U/g ds) calculated by the model. The unitary cost of lipase production determined under the optimized conditions developed ranged from US$0.42 to 0.44 based on nutrient costs. The fungal lipase was immobilized onto Celite and showed high thermal stability and was used for transesterification of soybean oil in methanol (1:3) resulting in 36 % of fatty acyl alkyl ester content. The apparent K m and V max were determined and were 1.86 mM and 14.29 μmol min(-1) mg(-1), respectively.
Collapse
Affiliation(s)
- Milena M Andrade
- Departamento de Química, CCE, Universidade Estadual de Londrina, 86051-990 Londrina, Parana, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lailaja VP, Chandrasekaran M. Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World J Microbiol Biotechnol 2013; 29:1349-60. [DOI: 10.1007/s11274-013-1298-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
|
10
|
Dhake KP, Thakare DD, Bhanage BM. Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. FLAVOUR FRAG J 2013. [DOI: 10.1002/ffj.3140] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kishor P. Dhake
- Department of Chemistry; Institute of Chemical Technology; Matunga; Mumbai; 400 019; India
| | - Dinesh D. Thakare
- Department of Chemistry; Institute of Chemical Technology; Matunga; Mumbai; 400 019; India
| | - Bhalchandra M. Bhanage
- Department of Chemistry; Institute of Chemical Technology; Matunga; Mumbai; 400 019; India
| |
Collapse
|
11
|
Facchin S, Alves PDD, Siqueira FDF, Barroca TM, Victória JMN, Kalapothakis E. Biodiversity and secretion of enzymes with potential utility in wastewater treatment. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/oje.2013.31005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Guncheva M, Dimitrov M, Zhiryakova D. Novel nanostructured tin dioxide as promising carrier for Candida rugosa lipase. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Gaur R, Khare SK. Solvent tolerant Pseudomonads as a source of novel lipases for applications in non-aqueous systems. BIOCATAL BIOTRANSFOR 2011. [DOI: 10.3109/10242422.2011.609588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Dahiya P, Arora P, Chaudhury A, Chand S, Dilbaghi N. Characterization of an extracellular alkaline lipase from Pseudomonas mendocina M-37. J Basic Microbiol 2010; 50:420-6. [PMID: 20586067 DOI: 10.1002/jobm.200900377] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A strain of Pseudomonas mendocina producing extracellular lipase was isolated from soil. The bacterium accumulates lipase in culture fluid when grown aerobically at 30 °C for 24 h in a medium composed of olive oil (1%) as substrate. Pseudomonas mendocina lipase was optimally active at pH 9.0, temperature of 50 °C and was found to be stable between pH 7.0-11.0. The lipase was inhibited by detergents such as SDS and Tween-80. The enzyme was stable in various organic solvents tested with maximum stability in chloroform followed by toluene and exhibited 1-3 regiospecificity for hydrolytic reaction. This lipase was capable of hydrolyzing a variety of lipidic substrates and is mainly active towards synthetic triglycerides and fatty acid esters that possess a butyryl group. Metal ions like Mg(2+), Ca(2+) and Na(+) stimulated lipase activity, whereas, Cu(2+), Mn(2+) and Hg(2+) ions caused inhibition.
Collapse
Affiliation(s)
- Praveen Dahiya
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | | | | | | | | |
Collapse
|
15
|
Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Hernández-Rodríguez B, Córdova J, Bárzana E, Favela-Torres E. Effects of organic solvents on activity and stability of lipases produced by thermotolerant fungi in solid-state fermentation. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Kumar AK, Vatsyayan P, Goswami P. Production of Lipid and Fatty Acids during Growth of Aspergillus terreus on Hydrocarbon Substrates. Appl Biochem Biotechnol 2009; 160:1293-300. [DOI: 10.1007/s12010-009-8669-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
|
18
|
Karadzic I, Masui A, Zivkovic LI, Fujiwara N. Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J Biosci Bioeng 2007; 102:82-9. [PMID: 17027868 DOI: 10.1263/jbb.102.82] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 04/25/2006] [Indexed: 11/17/2022]
Abstract
Extracellular lipase was isolated and purified from the culture broth of Pseudomonas aeruginosa, an extremophile which naturally grows in water-soluble mineral cutting oil (pH 10) used as metalworking fluid (MWF) for cooling and lubrication in industrial metalworking processes. The molecular mass of the purified lipase was estimated by SDS-PAGE to be 54 kDa. The optimum pH and temperature were 11 and 70 degrees C, respectively. The enzyme is stabile over a broad pH range (pH 4-11.5). The lipase preferably acted on triacylglycerols with medium-chain fatty acids. The lipase was inhibited strongly by Zn(2+), Hg(2+), Cu(2+) and slightly by Ca(2+) and Mg(2+). Non-ionic detergents and sodiumdeoxycholate enhanced lipase activity. Alkaline lipase from P. aeruginosa, capable of growing in a water-restricted medium has excellent properties and good potential for biotechnological applications in the metal industry. Its marked stability and activity in organic solvents suggest that this lipase is highly suitable as a biotechnological tool in a water-restricted medium with a variety of applications including organosynthetic reactions and the control and prevention of MWF putrification in the metal industry.
Collapse
Affiliation(s)
- Ivanka Karadzic
- School of Medicine, Department of Chemistry, Belgrade University, Visegradska 26, 11000 Belgrade, Serbia and Montenegro.
| | | | | | | |
Collapse
|
19
|
Current Awareness in Flavour and Fragrance. FLAVOUR FRAG J 2003. [DOI: 10.1002/ffj.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|