1
|
Halahlah A, Piironen V, Mikkonen KS, Ho TM. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit Rev Food Sci Nutr 2022; 63:6983-7015. [PMID: 35213281 DOI: 10.1080/10408398.2022.2038080] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural bioactive compounds (BCs) are types of chemicals found in plants and certain foods that promote good health, however they are sensitive to processing and environmental conditions. Microencapsulation by spray drying is a widely used and cost-effective approach to create a coating layer to surround and protect BCs and control their release, enabling the production of high functional products/ingredients with extended shelf life. In this process, wall materials determine protection efficiency, and physical properties, bioavailability, and storage stability of microencapsulated products. Therefore, an understanding of physicochemical properties of wall materials is essential for the successful and effective spray-dried microencapsulation process. Typically, polysaccharide-based wall materials are generated from more sustainable sources and have a wider range of physicochemical properties and applications compared to their protein-based counterparts. In this review, we highlight the essential physicochemical properties of polysaccharide-based wall materials for spray-dried microencapsulation of BCs including solubility, thermal stability, and emulsifying properties, rheological and film forming properties. We provide further insight into possibilities for the chemical structure modification of native wall materials and their controlled release behaviors. Finally, we summarize the most recent studies involving polysaccharide biopolymers as wall materials and/or emulsifiers in spray-dried microencapsulation of BCs.
Collapse
Affiliation(s)
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|
2
|
Zhang C, Coasne B, Guyer R, Derome D, Carmeliet J. Moisture-induced crossover in the thermodynamic and mechanical response of hydrophilic biopolymer. CELLULOSE (LONDON, ENGLAND) 2019; 27:89-99. [PMID: 32009745 PMCID: PMC6960215 DOI: 10.1007/s10570-019-02808-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/21/2019] [Indexed: 05/30/2023]
Abstract
The use of natural sustainable resources such as wood in green industrial processes is currently limited by our poor understanding of the impact of moisture on their thermodynamic and mechanical behaviors. Here, a molecular dynamics approach is used to investigate the physical response of a typical hydrophilic biopolymer in softwood hemicellulose-xylan-when subjected to moisture adsorption. A unique moisture-induced crossover is found in the thermodynamic and mechanical properties of this prototypical biopolymer with many quantities such as the heat of adsorption, heat capacity, thermal expansion and elastic moduli exhibiting a marked evolution change for a moisture content about 30 wt%. By investigating the microscopic structure of the confined water molecules and the polymer-water interfacial area, the molecular mechanism responsible for this crossover is shown to correspond to the formation of a double-layer adsorbed film along the amorphous polymeric chains. In addition to this moisture-induced crossover, many properties of the hydrated biopolymer are found to obey simple material models.
Collapse
Affiliation(s)
- Chi Zhang
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
| | - Benoit Coasne
- CNRS, LIPhy, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Robert Guyer
- Department of Physics, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557 USA
| | - Dominique Derome
- Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Kumar PS, Yaashikaa P, Saravanan A. Isolation, characterization and purification of xylanase producing bacteria from sea sediment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Xylan-hydrolyzing thermotolerant Candida tropicalis HNMA-1 for bioethanol production from sugarcane bagasse hydrolysate. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1292-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
|
6
|
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 2016; 234:139-157. [DOI: 10.1016/j.jbiotec.2016.07.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
|
7
|
Puseenam A, Tanapongpipat S, Roongsawang N. Co-expression of Endoxylanase and Endoglucanase in Scheffersomyces stipitis and Its Application in Ethanol Production. Appl Biochem Biotechnol 2015; 177:1690-700. [DOI: 10.1007/s12010-015-1846-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
|
8
|
Bhattacharya AS, Bhattacharya A, Pletschke BI. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 2015; 37:1117-29. [DOI: 10.1007/s10529-015-1779-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/21/2015] [Indexed: 12/15/2022]
|
9
|
Screening of signal sequences for extracellular production of Aspergillus niger xylanase in Pichia pastoris. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Bian J, Peng F, Peng XP, Peng P, Xu F, Sun RC. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2013; 127:236-41. [PMID: 23131647 DOI: 10.1016/j.biortech.2012.09.112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/26/2012] [Accepted: 09/28/2012] [Indexed: 05/11/2023]
Abstract
Xylooligosaccharides (XOS) were prepared from xylan-rich hemicelluloses isolated by potassium hydroxide from sugarcane bagasse by hydrolysis with crude xylanase secreted by Pichia stipitis. Hydrolysis for 12h produced XOS with a maximum yield of 31.8%, equivalent to 5.29 mg mL(-1) in the hydrolyzate. XOS with degrees of polymerization (DP) from 2 to 4 (xylobiose, xylotriose, and xylotetraose) were the major components in the hydrolysates, whereas the oligosaccharides with higher DP of 5-6 (xylopentaose and xylohexose) showed a constant low level. FT-IR and NMR ((1)H, (13)C, HSQC) demonstrated that XOS contained Araf and 4-O-Me-α-D-GlcpA residues. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that the XOS exhibited concentration-dependent antioxidant activity. The results obtained indicate that the XOS produced from sugarcane bagasse can be employed in food-related applications.
Collapse
Affiliation(s)
- Jing Bian
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 2011; 30:1207-18. [PMID: 22085593 DOI: 10.1016/j.biotechadv.2011.10.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/12/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
Abstract
To build an energy and material secure future, a next generation of renewable fuels produced from lignocellulosic biomass is required. Although lignocellulosic biomass, which represents an abundant, inexpensive and renewable source for bioethanol production, is of great interest as a feedstock, the complicated ethanol production processes involved make the cost of producing bioethanol from it higher compared to corn starch and cane juice. Therefore, consolidated bioprocessing (CBP), which combines enzyme production, saccharification and fermentation in a single step, has gained increased recognition as a potential bioethanol production system. CBP requires a highly engineered microorganism developed for several different process-specific characteristics. The dominant strategy for engineering a CBP biocatalyst is to express multiple components of a cellulolytic system from either fungi or bacteria in the yeast Saccharomyces cerevisiae. The development of recombinant yeast strains displaying cellulases and hemicellulases on the cell surface represents significant progress toward realization of CBP. Regardless of the process used for biomass hydrolysis, CBP-enabling microorganisms encounter a variety of toxic compounds produced during biomass pretreatment that inhibit microbial growth and ethanol yield. Systems biology approaches including disruptome screening, transcriptomics, and metabolomics have been recently exploited to gain insight into the molecular and genetic traits involved in tolerance and adaptation to the fermentation inhibitors. In this review, we focus on recent advances in development of yeast strains with both the ability to directly convert lignocellulosic material to ethanol and tolerance in the harsh environments containing toxic compounds in the presence of ethanol.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | |
Collapse
|
13
|
van Zyl WH, Chimphango AFA, den Haan R, Görgens JF, Chirwa PWC. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa. Interface Focus 2011; 1:196-211. [PMID: 22482027 PMCID: PMC3262263 DOI: 10.1098/rsfs.2010.0017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/12/2011] [Indexed: 11/12/2022] Open
Abstract
The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation.
Collapse
Affiliation(s)
- W. H. van Zyl
- Department of Microbiology, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - A. F. A. Chimphango
- Department of Process Engineering, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - R. den Haan
- Department of Microbiology, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - J. F. Görgens
- Department of Process Engineering, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - P. W. C. Chirwa
- Forest Science Postgraduate Programme, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
14
|
la Grange DC, den Haan R, van Zyl WH. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 2010; 87:1195-208. [DOI: 10.1007/s00253-010-2660-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/02/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
|
15
|
Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 2009; 84:19-35. [PMID: 19568746 DOI: 10.1007/s00253-009-2079-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Xylanases have received great attention in the development of environment-friendly technologies in the paper and pulp industry. Their use could greatly improve the overall lignocellulosic materials for the generation of liquid fuels and chemicals. Fungi are widely used as xylanase producers and are generally considered as more potent producers of xylanases than bacteria and yeasts. Large-scale production of xylanases is facilitated with the advent of genetic engineering. Recent breakthroughs in genomics have helped to overcome the problems such as limited enzyme availability, substrate scope, and operational stability. Genes encoding xylanases have been cloned in homologous and heterologous hosts with the objectives of overproducing the enzyme and altering its properties to suit commercial applications. Owing to the industrial importance of xylanases, a significant number of studies are reported on cloning and expression of the enzymes during the last few years. We, therefore, have reviewed recent knowledge regarding cloning of fungal xylanase genes into various hosts for heterologous production. This will bring an insight into the current status of cloning and expression of the fungal xylanases for industrial applications.
Collapse
|
16
|
Fukuda H, Kondo A, Tamalampudi S. Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.11.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Carapito R, Carapito C, Jeltsch JM, Phalip V. Efficient hydrolysis of hemicellulose by a Fusarium graminearum xylanase blend produced at high levels in Escherichia coli. BIORESOURCE TECHNOLOGY 2009; 100:845-850. [PMID: 18707875 DOI: 10.1016/j.biortech.2008.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 05/26/2023]
Abstract
A Fusarium graminearum-based enzyme blend for the efficient hydrolysis of hemicellulose, a crucial step for competitive bioethanol production, is described. The heretofore-uncharacterized endo-1,4-beta-xylanase (XylD), 1,4-beta-xylosidase (XyloA), and bifunctional xylosidase/arabinofuranosidase (Xylo/ArabA) were produced at high levels in Escherichia coli (10-38 mg/l). They displayed compatible pH and temperature-dependences, allowing their utilization for simultaneous substrate digestions. Monosaccharide analysis indicated a strong positive synergism between the enzymes during the degradation of oat spelt xylan. Two units of each protein catalyzed the release of 61% and 15% of the total amount of available d-xylose and l-arabinose, respectively, in only 4 h. The detailed cooperative mechanism of the three hydrolases was elucidated by polysaccharide analysis using carbohydrate gel electrophoresis (PACE) and the enzymes were shown to be suitable for the partial hydrolysis of pretreated crude plant biomass.
Collapse
Affiliation(s)
- Raphaël Carapito
- U.M.R. 7175, Ecole Supérieure de Biotechnologie de Strasbourg, Université Louis Pasteur-CNRS, Boulevard Sébastien Brandt, BP 10413, 67412 Illkirch-Graffenstaden, France
| | | | | | | |
Collapse
|
18
|
van de Vondervoort PJI, de Groot MJL, Ruijter GJG, Visser J. Selection and characterisation of a xylitol-derepressed Aspergillus niger mutant that is apparently impaired in xylitol transport. Appl Microbiol Biotechnol 2006; 73:881-6. [PMID: 16932954 DOI: 10.1007/s00253-006-0527-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Aspergillus niger is known for its biotechnological applications, such as the use of xylanase enzyme for the degradation of hemicellulose. Depending on culture conditions, several polyols may also be accumulated, such as xylitol during D: -xylose oxidation. Also during industrial fermentation of xylose for the production of fuel ethanol by recombinant yeast, xylitol is a by-product. We studied xylitol metabolism by isolating mutants that have impaired xylitol-mediated repression. Genetic and biochemical characterisation revealed that one of these mutants was affected not only in xylitol-mediated carbon repression, but also had impaired xylitol transport.
Collapse
Affiliation(s)
- Peter J I van de Vondervoort
- Section Molecular Genetics of Industrial Microorganisms, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Ilmén M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M. Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 2006; 73:117-23. [PMID: 17071782 PMCID: PMC1797125 DOI: 10.1128/aem.01311-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial conversion of renewable raw materials to useful products is an important objective in industrial biotechnology. Pichia stipitis, a yeast that naturally ferments xylose, was genetically engineered for l-(+)-lactate production. We constructed a P. stipitis strain that expressed the l-lactate dehydrogenase (LDH) from Lactobacillus helveticus under the control of the P. stipitis fermentative ADH1 promoter. Xylose, glucose, or a mixture of the two sugars was used as the carbon source for lactate production. The constructed P. stipitis strain produced a higher level of lactate and a higher yield on xylose than on glucose. Lactate accumulated as the main product in xylose-containing medium, with 58 g/liter lactate produced from 100 g/liter xylose. Relatively efficient lactate production also occurred on glucose medium, with 41 g/liter lactate produced from 94 g/liter glucose. In the presence of both sugars, xylose and glucose were consumed simultaneously and converted predominantly to lactate. Lactate was produced at the expense of ethanol, whose production decreased to approximately 15 to 30% of the wild-type level on xylose-containing medium and to 70 to 80% of the wild-type level on glucose-containing medium. Thus, LDH competed efficiently with the ethanol pathway for pyruvate, even though the pathway from pyruvate to ethanol was intact. Our results show, for the first time, that lactate production from xylose by a yeast species is feasible and efficient. This is encouraging for further development of yeast-based bioprocesses to produce lactate from lignocellulosic raw material.
Collapse
Affiliation(s)
- Marja Ilmén
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | | | | | | | | |
Collapse
|
20
|
Görgens JF, Passoth V, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. Amino acid supplementation, controlled oxygen limitation and sequential double induction improves heterologous xylanase production by Pichia stipitis. FEMS Yeast Res 2005; 5:677-83. [PMID: 15780668 DOI: 10.1016/j.femsyr.2004.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 11/05/2004] [Accepted: 12/03/2004] [Indexed: 11/26/2022] Open
Abstract
Heterologous endo-beta-1,4-xylanase was produced by Pichia stipitis under control of the hypoxia-inducible PsADH2-promoter in a high-cell-density culture. After promoter induction by a shift to oxygen limitation, different aeration rates (oxygen transfer rates) were applied while maintaining oxygen-limitation. Initially, enzyme production was higher in oxygen-limited cultures with high rates of oxygen transfer, although the maximum xylanase activity was not significantly influenced. Amino acid supplementation increased the production of the heterologous endo-beta-1,4-xylanase significantly in highly aerated oxygen-limited cultures, until glucose was depleted. A slight second induction of the promoter was observed in all cultures after the glucose had been consumed. The second induction was most obvious in amino acid-supplemented cultures with higher oxygen transfer rates during oxygen limitation. When such oxygen-limited cultures were shifted back to fully aerobic conditions, a significant re-induction of heterologous endo-beta-1,4-xylanase production was observed. Re-induction was accompanied by ethanol consumption. A similar protein production pattern was observed when cultures were first grown on ethanol as sole carbon source and subsequently glucose and oxygen limitation were applied. Thus, we present the first expression system in yeast with a sequential double-inducible promoter.
Collapse
Affiliation(s)
- Johann F Görgens
- Department of Applied Microbiology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
21
|
Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 2004; 70:5407-14. [PMID: 15345427 PMCID: PMC520881 DOI: 10.1128/aem.70.9.5407-5414.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemicellulose is one of the major forms of biomass in lignocellulose, and its essential component is xylan. We used a cell surface engineering system based on alpha-agglutinin to construct a Saccharomyces cerevisiae yeast strain codisplaying two types of xylan-degrading enzymes, namely, xylanase II (XYNII) from Trichoderma reesei QM9414 and beta-xylosidase (XylA) from Aspergillus oryzae NiaD300, on the cell surface. In a high-performance liquid chromatography analysis, xylose was detected as the main product of the yeast strain codisplaying XYNII and XylA, while xylobiose and xylotriose were detected as the main products of a yeast strain displaying XYNII on the cell surface. These results indicate that xylan is sequentially hydrolyzed to xylose by the codisplayed XYNII and XylA. In a further step toward achieving the simultaneous saccharification and fermentation of xylan, a xylan-utilizing S. cerevisiae strain was constructed by codisplaying XYNII and XylA and introducing genes for xylose utilization, namely, those encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. After 62 h of fermentation, 7.1 g of ethanol per liter was directly produced from birchwood xylan, and the yield in terms of grams of ethanol per gram of carbohydrate consumed was 0.30 g/g. These results demonstrate that the direct conversion of xylan to ethanol is accomplished by the xylan-utilizing S. cerevisiae strain.
Collapse
Affiliation(s)
- Satoshi Katahira
- Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|