1
|
Niu XX, Tao Y, Wang QH, Xu MQ, Zhang FL, Xie YK, Xiao HW. Postharvest ripening-induced modification of cell wall polysaccharide affects plum phenolic bioavailability. Food Chem 2025; 479:143780. [PMID: 40068538 DOI: 10.1016/j.foodchem.2025.143780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/06/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025]
Abstract
The mechanisms by which cell wall polysaccharides regulate phenolic release are essential to human health. Scanning electron microscopy (SEM), surface area and porosimetry analyzer, high-performance liquid chromatography (HPLC), and atomic force microscopy (AFM) indicated that compared to fresh plums, postharvest ripening reduced chain linearity in the homogalacturonan region of pectins and the degree of branching of RG-I; pectin and hemicellulose underwent solubilization and depolymerization by cell wall-degrading enzymes; and the specific surface area of cellulose was reduced by 19.5 %-26.8 %, with aggregation of cellulose occurring. In addition, confocal laser scanning microscopy (CLSM), polyphenol adsorption experiments, and in vitro gastrointestinal digestion experiments showed that the cell wall modifications under postharvest ripening process induced phenolics release and increased the bioaccessibility of plums: compared to the fresh plums, the equilibrium adsorption capacity of the cell wall of late postharvest ripened plums was reduced by 42.6 % (for epicatechin) and 27.4 % (for chlorogenic acid), and the bioaccessibility index of postharvest plum phenolics was increased by 11.2 %-23.9 %. These findings indicate cell wall modification under postharvest ripening process induces phenolic release and improves plum phenolic bioavailability.
Collapse
Affiliation(s)
- Xiao-Xiao Niu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing-Hui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China.
| | - Ming-Qiang Xu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Feng-Lun Zhang
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Yong-Kang Xie
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
2
|
Yang B, Xu Y, Zhang W, Zhu D, Huang B, Yang Y, Jia X, Feng L. Oral absorption mechanisms of polysaccharides and potential as carriers for the construction of nano-delivery systems: A review. Int J Biol Macromol 2025; 310:143184. [PMID: 40253019 DOI: 10.1016/j.ijbiomac.2025.143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Polysaccharides have garnered increasing attention in recent years for their potential in oral drug delivery within biomaterials and pharmaceuticals, owing to their excellent physicochemical properties, bioactivity, and low toxicity. However, the absorption of polysaccharides encounters multiple challenges posed by the biological, chemical, mechanical, and immune barriers of the intestinal mucosa. Therefore, elucidating the mechanisms by which polysaccharides traverse the intestinal mucosa for oral absorption is essential for their further development and application. Current studies have identified several polysaccharide absorption pathways, including transcellular transport, paracellular transport, M cell and Peyer's patches mediated transport, and intestinal flora mediated transport. Furthermore, numerous studies have demonstrated that polysaccharides can enhance the solubility, gastrointestinal stability, and permeability of small molecule components, which significantly improves their bioavailability. More importantly, nano-delivery systems utilizing polysaccharides as carriers have shown great promise in enhancing the targeting of small molecule components, thereby opening new avenues for drug delivery applications. We hope this review will provide theoretical support and inspiration for a deeper understanding of oral absorption mechanisms and the potential of polysaccharides in the development of nano-delivery systems.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yan Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weiye Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Dandan Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bin Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Nezbedova L, McGhie T, Mehta S, Christensen M, Nasef NA, Heyes J. Using the orchard-to-fork approach in designing nutritional trials: the apple phenolics case. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2878-2886. [PMID: 40126207 DOI: 10.1039/d4ay02017k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Nutritional trials often yield inconsistent results due to the lack of standardised study designs, especially when evaluating the health benefits of fruits and vegetables. Apple phenolics, linked to various health benefits, have particular challenges in human nutritional studies due to compositional changes influenced by factors like fruit maturity, growing conditions, tissue type, and processing methods. This study applied an 'orchard-to-fork' approach to evaluate Monty's Surprise apple phenolics in the skin and flesh, controlling for harvest procedures, fruit maturity, and seasonal impact. It further assessed processing methods to preserve phenolic content, with the goal of developing a standardised material for dietary intervention trials. Monty's Surprise apples were collected over two seasons following standardised harvesting protocols and various fruit maturity parameters (firmness, starch pattern, and total soluble solids) were controlled and measured for various apple sizes. Phenolic content in the skin and flesh was analysed with LC-HRAM-MS and compared across seasons. The impacts of processing (pureeing, air drying, and slicing) on phenolic content were also evaluated. Cold storage for four weeks reduced maturity variability across apple sizes. Monty's Surprise apple skin (5270.49 ± 214.95 mg kg-1 FW) had significantly (p < 0.0001) higher phenolic concentrations than the flesh (863.69 ± 12.71 mg kg-1 FW), with procyanidins as the main phenolic group. No seasonal impact was observed. Pureed apples retained significantly higher phenolics compared to sliced or dehydrated samples. Monty's Surprise apple is a rich source of health-beneficial phenolics, and pureeing effectively preserves these compounds. This study offers guidance for the development of standardised apple material for dietary intervention trials to more accurately investigate the health benefits of apples.
Collapse
Affiliation(s)
- Linda Nezbedova
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand.
| | - Tony McGhie
- The New Zealand Institute of Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Noha Ahmed Nasef
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Julian Heyes
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
4
|
Song Y, Lin L, Zhao M. A new perspective to explore the bioactive ingredients of honeysuckle tea infusion by structure, function and stability characterization of self-assembled nano/microaggregates. Food Res Int 2025; 204:115923. [PMID: 39986770 DOI: 10.1016/j.foodres.2025.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
The self-assembled nano/microaggregates formed by the interaction of polyphenols and polysaccharide are key bioactive ingredients in substitute tea infusions, but lack in-depth investigation. Taking honeysuckle tea infusion as a mode infusion, the self-assembled nano/microaggregates were characterized as compact advanced spherical submicroparticles with a particle size of about 155 nm and composed of 47.75 % esterification pectin, 6.53 % of 20 kinds of small molecular substances (mainly phenolic acids and flavonoids) and a small amount of protein at 3.49 % through hydrogen bonding and hydrophobic interaction. The submicroparticles exhibited 1.03 and 1.25 times greater ABTS+ scavenging activity than honeysuckle tea and particle-deficient tea infusion, respectively. During productive and storage processes, the submiroparticles showed notable stability under diverse external physical and chemical conditions. The submicroparticles were verified as the key bioactive ingredients in honeysuckle tea infusion, contributing greatly to its antioxidant activity and stability. This study provided a new perspective for the bioactive ingredients in plant-based beverages.
Collapse
Affiliation(s)
- Yaxin Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641 China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641 China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641 China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641 China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000 China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641 China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641 China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000 China
| |
Collapse
|
5
|
Dmitrović S, Nestorović Živković J, Smailagić D, Trajković M, Banjac N, Ninković S, Stanišić M. Via Air or Rhizosphere: The Phytotoxicity of Nepeta Essential Oils and Malus Dihydrochalcones. PLANTS (BASEL, SWITZERLAND) 2025; 14:701. [PMID: 40094621 PMCID: PMC11902154 DOI: 10.3390/plants14050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Many specialized metabolites found in plants have significant potential for developing environmentally friendly weed management solutions. This review focuses on the phytotoxic effects of volatile terpenes and phenolic compounds, particularly nepetalactone, an iridoid monoterpenoid from Nepeta species, and phloretin, a dihydrochalcone predominantly found in the genus Malus. We highlight current findings on their herbicidal effects, including morphological, physiological, and biochemical responses in target plants. These results underscore their potential for developing sustainable herbicides that could control weeds with minimal environmental impact. We also discuss their soil persistence and methods to enhance their solubility, chemical stability, and bioavailability. Additionally, the possible effects on non-target organisms, such as pollinators, non-pollinating insects, and soil microbiota, are considered. However, further research and a deeper understanding of their long-term ecological impact, along with a resistance development risk assessment, is essential for the potential development of bioherbicides that could be applied in sustainable weed management practices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana Stanišić
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.N.Ž.); (D.S.); (M.T.); (N.B.); (S.N.)
| |
Collapse
|
6
|
Osete-Alcaraz L, Gómez-Plaza E, Jørgensen B, Oliva J, Cámara MA, Jurado R, Bautista-Ortín AB. The composition and structure of plant fibers affect their fining performance in wines. Food Chem 2024; 460:140657. [PMID: 39106809 DOI: 10.1016/j.foodchem.2024.140657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
In recent years, the wine industry has shifted towards plant-based fining agents for food safety reasons and consumer preferences. This study analysed the interaction of five plant fibers with red wine phenolic compounds to determinate their performance as fining agents. Chemical composition, polysaccharide profile, and physical properties were examined. Pea, cellulose, and Sauvignon Blanc pomace fibers effectively reduced tannin content while minimally affecting the concentration of anthocyanins, flavonols and wine color. Contrary to previous beliefs, the presence of pectins in fibers didn't play a crucial role in phenolic compound interaction since cellulose-rich fibers with low pectin concentration also bound tannins effectively, especially those with small particle size and high contact surface. Pea fiber, rich in cellulose and pectins, showed remarkable tannin retention while minimally affecting wine color. This research highlights the potential of plant fibers as effective fining agents in wine production and how their composition affects their performance.
Collapse
Affiliation(s)
- Lucía Osete-Alcaraz
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain
| | - Encarna Gómez-Plaza
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain.
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - José Oliva
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, 30100, Murcia, Spain
| | - Miguel Angel Cámara
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, 30100, Murcia, Spain
| | - Ricardo Jurado
- Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, Spain
| | - Ana Belén Bautista-Ortín
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
7
|
Shi X, Yang X, He S, Duan T, Liang X, Ma S, Gong J. Ultrasonic Extraction of Polysaccharides from Dendrobium officinale Leaf: Kinetics, In Vitro Activities, and Characterization. Foods 2024; 13:3737. [PMID: 39682810 DOI: 10.3390/foods13233737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
This study explored the kinetics of ultrasonic extraction of polysaccharides (DOLP) from Dendrobium officinale leaf (DOL), evaluated the in vitro bioactivity of DOL extracts and DOLP, and characterized the DOLP. A kinetic model was developed based on Fick's second law. A technique utilizing 400 W for 50 min was employed for the ultrasonic extraction of DOLP, with an optimal solid-liquid ratio established at 1:40 (g/mL). DOL extracts dried using different methods exhibited varying antioxidant activity and inhibitory effects against α-amylase and α-glucosidase. An in vitro study revealed that DOL extracts obtained through vacuum freeze drying demonstrated significantly stronger antioxidant activity, while those derived through microwave drying showed superior inhibitory effects against α-amylase and α-glucosidase compared to the other two drying methods. Furthermore, it was observed that the in vitro bioactivity of DOLP (purity: 74.07 ± 0.52%) was significantly lower than that of DOL extracts. Nevertheless, DOLP (5.0 mg/mL) demonstrated a scavenging ability reaching 64.86% of VC for DPPH radical and 67.14% of VC for ·OH radical, and the inhibition of DOLP (10 mg/mL) on α-amylase and α-glucosidase reached 58.40% and 38.28% of the acarbose, respectively. The findings revealed that DOLP are predominantly composed of mannose, glucose, galactose, and arabinose in a distinctive molar ratio of 89.00:16.33:4.78:1.
Collapse
Affiliation(s)
- Xuerong Shi
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuzhong Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shaotong He
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Duan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuzhen Ma
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jijun Gong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| |
Collapse
|
8
|
Cherif S, Leca A, Bureau S, Ben Abda J, Le Bourvellec C. Does hydration of 'Deglet Nour' date palm fruits improve their quality and help to reduce waste? Food Chem 2024; 458:140323. [PMID: 38972183 DOI: 10.1016/j.foodchem.2024.140323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
This work investigates the quality change of date palm fruits after hydration treatment which is commonly applied to enhance the hard textured 'Deglet Nour' fruits that are unacceptable for consumption. Date palm fruits were treated at 60-62 °C with saturated steam for 4 h in three different processing units (DPU). Mid Infrared Spectroscopy (MIR) giving a global spectral evaluation discriminates samples from the three DPUs and highlights date palm fruits of the first DPU regarding hydration treatment. Treatment led to a decrease of fruit firmness, skin lightness, and of sucrose and malic acid contents whereas citric acid and procyanidins contents and procyanidins 'degree of polymerization increased. Thermal treatment had no effect on glucose and fructose contents, on cell wall content and composition and on minor phenolic groups. Significant differences existed on dates from the three DPUs, discriminating dates presenting high firmness. Hydration treatment improve dates texture as expected while nutritional parameters were quite stable, confirming that is very promising and could be highly recommended to valorise fruit that are currently not commercialized. However, optimisation is needed for the very hard-type dates.
Collapse
Affiliation(s)
- Sarra Cherif
- INRAE, Avignon Université, UMR408 SQPOV, F-84000 Avignon, France; UR Agrobiodiversity (UR13AGR05), Postharvest Laboratory, Higher Agronomic Institute, IRESA-University of Sousse, 4042 Chott-Mariem, Tunisia.
| | - Alexandre Leca
- INRAE, Avignon Université, UMR408 SQPOV, F-84000 Avignon, France.
| | - Sylvie Bureau
- INRAE, Avignon Université, UMR408 SQPOV, F-84000 Avignon, France.
| | - Jameleddine Ben Abda
- UR Agrobiodiversity (UR13AGR05), Postharvest Laboratory, Higher Agronomic Institute, IRESA-University of Sousse, 4042 Chott-Mariem, Tunisia.
| | | |
Collapse
|
9
|
Li Y, Huang N, Liu Q, Sun Y, Peng K, Jiang X, Yi Y. Non-Covalent Interactions of Lotus Root Polysaccharides and Polyphenols and their Regulatory Mechanism on Macrophage Functions. Foods 2024; 13:3543. [PMID: 39593959 PMCID: PMC11592553 DOI: 10.3390/foods13223543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the interaction between polyphenols and polysaccharides in food products, their specific non-covalent interactions and effects on macrophage functions are not well understood. Therefore, the interaction and mechanism of purified lotus root polysaccharide (PLRP) with polyphenols, and the regulatory mechanisms of the PLRP-polyphenol complex on the macrophage functionals were studied. By combining ferulic acid (FA) and chlorogenic acid (CHA) with PLRP, the complexes PLRP-FA, PLRP-CHA and the physical mixtures PLRP&FA and PLRP&CHA were prepared, where their mass ratios of polyphenols to PLRP were 143.97 and 601.67 mg g-1. Nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), Ultraviolet (UV), and Transmission electron microscopy (TEM) analyses confirmed that PLRP and polyphenols may engage in non-covalent interactions via hydrogen bonds and hydrophobic interactions. We confirmed that non-covalent interactions led to high molecular weight, dense complexes. Both PLRP and its polyphenol complexes stimulated NO production by macrophages to varying degrees without exacerbating lipopolysaccharide-induced inflammatory responses. PLRP and PLRP-polyphenol complexes repaired cells with impaired antioxidant capacity, depending on doses. Those results indicated that after the combination of lotus root polysaccharide and polyphenol, the molecular weight and conformation changed significantly, which influenced the biological activity. RNA-seq analysis suggested that the regulatory mechanism of PLRP-polyphenol complex in macrophages may mainly involve oxidative phosphorylation, FoxO, TNF, IL-17, MAPK, NF-kappa B, and other signaling pathways. This study investigated the effects of polyphenol binding on the physicochemical characteristics and functional activities of polysaccharides, which provided references for the development of polysaccharide functional products and the control of nutritional quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueyu Jiang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (N.H.); (Q.L.); (Y.S.); (K.P.); (Y.Y.)
| | | |
Collapse
|
10
|
Zhou W, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. Plant leaf proanthocyanidins: from agricultural production by-products to potential bioactive molecules. Crit Rev Food Sci Nutr 2024; 64:11757-11795. [PMID: 37584238 DOI: 10.1080/10408398.2023.2244079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Jia Y, Liu Y, Wu Y, Feng C, Zhang H, Ren F, Liu H. The regulation of glucose and lipid metabolism through the interaction of dietary polyphenols and polysaccharides via the gut microbiota pathway. Food Funct 2024; 15:8200-8216. [PMID: 39039938 DOI: 10.1039/d4fo00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The interaction of polyphenols-polysaccharides-gut microbiota to promote health benefits has become a hotspot and direction for precise dietary intervention strategies and foundational research in biomedicine. Both dietary polyphenols and polysaccharides possess biological activities that regulate body health. Single components, due to their inherent structure and physicochemical properties, have a low bioavailability, thus are unable to exert their optimal effects. The compound structure formed by the interaction of polyphenols and polysaccharides can enhance their functional properties, thereby more effectively promoting health benefits and preventing diseases. This review primarily focuses on the roles played by polyphenols and polysaccharides in regulating glucose and lipid metabolism, the improvement of glucose and lipid metabolism through the gut microbial pathway by polyphenols and polysaccharides, and the mechanisms by which polyphenols and polysaccharides interact to regulate glucose and lipid metabolism. A considerable amount of preliminary research has confirmed the regulatory effects of plant polyphenols and polysaccharides on glucose and lipid metabolism. However, studies on the combined effects and mechanisms of these two components are still very limited. This review aims to provide a reference for subsequent research on their interactions and changes in functional properties.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
12
|
Đorđić M, Janošević D, Smailagić D, Banjac N, Ninković S, Stanišić M, Trajković M. Effects of Phloretin on Seedling Growth and Histochemical Distribution of Phenols, Polysaccharides and Lipids in Capsella bursa-pastoris (L.) Medik. PLANTS (BASEL, SWITZERLAND) 2024; 13:1890. [PMID: 39065417 PMCID: PMC11280091 DOI: 10.3390/plants13141890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The present study evaluates the phytotoxic effects of phloretin, a prevalent secondary metabolite of apple trees, on the broadleaf weed Capsella bursa-pastoris (L.) Medik. known for its resistant myxospermous seeds that form a long-lasting soil bank. The results indicate a significant, dose-dependent inhibitory effect of phloretin on the growth and morphological parameters of weed seedlings grown in vitro. Although the applied phloretin concentrations (250-1000 µM) were not lethal to the C. bursa-pastoris seedlings after two weeks, the metabolism of the seedlings was impaired, resulting in an accumulation of lipid droplets in the root tips and root hairs. Histochemical analysis shows deposits of phenols in the root epidermal cells, which are probably aggregates of phloretin or its metabolic derivatives. The accumulation of pectin in the cell walls of root border cells in phloretin-treated seedlings indicates an attempt to reduce the uptake of phloretin and reduce its concentration in the cells. Inhibition of shoot growth associated with chlorosis and reduced photosynthetic pigment content is a consequence of seedling exposure to phloretin. This study provides a basis for further evaluation of phloretin as a new bioherbicidal compound and for elucidating the mechanism underlying its phytotoxic activity.
Collapse
Affiliation(s)
- Milica Đorđić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Dušica Janošević
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Dijana Smailagić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Nevena Banjac
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Slavica Ninković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Mariana Stanišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Milena Trajković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| |
Collapse
|
13
|
Hensen JP, Hoening F, Bogdanovic T, Schieber A, Weber F. Pectin forms polymeric pigments by complexing anthocyanins during red winemaking and ageing. Food Res Int 2024; 188:114442. [PMID: 38823830 DOI: 10.1016/j.foodres.2024.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
The long-term stability of red wine color depends on the formation of polymeric pigments from anthocyanins. Although there is still a lot of uncertainty about the specific structure of this diverse group of pigments, there is consensus that they are reaction products of anthocyanins and other polyphenols. Interactions between anthocyanins and pectic polysaccharides have been suggested to stabilize anthocyanins. This study explores the impact of such interactions by adding pectin during red winemaking. The results demonstrate that these interactions induce the formation of additional polymeric pigments which enhance the pigment stability during fermentation and aging. While initial pigment formation is higher in wines with added pectin, a notable proportion of the complexes degrades in the later stages of fermentation. Presumably, tannins form insoluble complexes with pectin, reducing tannin concentration by more than 300 mg/L. Anthocyanin concentrations decrease by over 400 mg/L, and polymeric pigments double. Anthocyanins that form polymeric pigments with pectic polysaccharides expand the range of pigments in red wines with possible consequences for the sensory properties of the wine. These findings highlight the complex interactions between pectin, anthocyanins, and tannins, and their influence on pigment formation and wine composition during fermentation and aging.
Collapse
Affiliation(s)
- Jan-Peter Hensen
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Fiona Hoening
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Tamara Bogdanovic
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Fabian Weber
- Faculty of Organic Agricultural Sciences, Organic Food Quality, University of Kassel, Nordbahnhofstrasse 1a, 37213 Witzenhausen, Germany.
| |
Collapse
|
14
|
Gumul D, Oracz J, Litwinek D, Żyżelewicz D, Zięba T, Sabat R, Wywrocka-Gurgul A, Ziobro R. Quality- and Health-Promoting Compounds of Whole Wheat Bread with the Addition of Stale Bread, Cornmeal, and Apple Pomace. Foods 2024; 13:1767. [PMID: 38890995 PMCID: PMC11171573 DOI: 10.3390/foods13111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to evaluate the effect of extruded preparations on the bioactive and nutritional properties, vitamin B content, volatile compound profile, and quality of whole wheat bread. Extruded preparations based on stale bread (secondary raw materials) and apple pomace (byproducts) were used as bread additives. It was found that the preparations did not enrich the bread in protein but in health-promoting compounds, especially gallic acid, protocatechuic acid, caffeic acid, p-coumaric acid, rutin, quercetin, and B vitamins. Extruded preparations had a positive effect on the quality of the bread produced, such as yield and cohesiveness, and gave it a pleasant aroma. It was shown that among all the examined bread samples with added extruded preparations of stale bread, the cornmeal and apple pomace bread samples with 15% extruded preparation (containing 55% cornmeal, 30% stale bread, and 15% apple pomace) had sufficient nutritional value, the highest amounts of gallic acid, protocatechuic acid, p-coumaric acid, caffeic acid, rutin, and quercetin; medium amounts of ellagic acid; high antioxidant activity determined in vitro using four methods (by DPPH, ABTS, power (FRAP), and Fe(II) chelating assays); adequate quality; and significant amounts of vitamins, especially B1, B2, and B3. This type of extruded preparation should utilize apple pomace, which is a byproduct, and stale bread, which is a secondary waste. Such a combination is an excellent low-cost, easy, and prospective solution for the baking industry that could be applied to obtain bread with elevated nutritional value and enhanced health potential, as proven in this publication.
Collapse
Affiliation(s)
- Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland; (J.O.); (D.Ż.)
| | - Dorota Litwinek
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland; (J.O.); (D.Ż.)
| | - Tomasz Zięba
- Department of Food Storage, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Renata Sabat
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| | - Anna Wywrocka-Gurgul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| | - Rafał Ziobro
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| |
Collapse
|
15
|
Zhang Y, Zhu L, Zhao M, Jia Y, Li K, Li C. The effects of inulin on solubilizing and improving anti-obesity activity of high polymerization persimmon tannin. Int J Biol Macromol 2024; 270:132232. [PMID: 38734349 DOI: 10.1016/j.ijbiomac.2024.132232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Mengyao Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
16
|
Cheng Y, Wimalasiri PM, Tian B, Watrelot AA. Influence of Grape Flesh on the Retention and Composition of Polyphenols from Skins and Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597640 DOI: 10.1021/acs.jafc.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
This study examined the impact of grape flesh polysaccharide, protein, and amino acid contents on polyphenol retention from skins and seeds in Pinot noir (Vitis vinifera) and cold-hardy interspecific cultivars Marquette and Frontenac (Vitis spp.). After isolating grape tissues (skin, seed, and flesh), they were soaked either individually or combined with other tissues in a wine-like solution for up to 7 days. Findings revealed that flesh significantly reduces the concentration of condensed tannin, and mono- and diglucoside forms of anthocyanins in the supernatants, due to its rich content in polysaccharides and proteins. Frontenac skin and flesh tissues were the main sources of soluble proteins, amino acids, and soluble polysaccharides. Surprisingly, Marquette exhibited a higher retention of skin tannin than Pinot noir, likely due to its smaller tannin molecular mass, and a potential competitive effect with anthocyanins for the binding sites of flesh.
Collapse
Affiliation(s)
- Yiliang Cheng
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, Iowa 50011, United States
| | - Pradeep M Wimalasiri
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Bin Tian
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Aude A Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, Iowa 50011, United States
| |
Collapse
|
17
|
Suominen E, Savila S, Sillanpää M, Damlin P, Karonen M. Affinity of Tannins to Cellulose: A Chromatographic Tool for Revealing Structure-Activity Patterns. Molecules 2023; 28:5370. [PMID: 37513244 PMCID: PMC10384774 DOI: 10.3390/molecules28145370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Food, feed and beverage processing brings tannins into contact with macromolecules, such as proteins and polysaccharides, leading to different chemical and physical interactions. The interactions of tannins with proteins are well known but less is known about the affinity of tannins to polysaccharides. We used bacterial cellulose from nata de coco as a model compound to investigate how tannins and cellulose interact by adsorption measurements using UPLC-DAD. We also explored how the structure of tannins influences these interactions. The model tannins included nine individual structurally different hydrolysable tannins (HTs) and eight well-defined proanthocyanidin (PA) fractions with different monomeric units, mean degree of polymerization and both A- and B-type linkages. Tannins were found to have both strong and weak interactions with bacterial cellulose, depending on the exact structure of the tannin. For HTs, the main structural features affecting the interactions were the structural flexibility of the HT molecule and the number of free galloyl groups. For PAs, prodelphinidins were found to have a higher affinity to cellulose than procyanidins. Similarly to HTs, the presence of free galloyl groups in galloylated PAs and the flexibility of the PA molecule led to a stronger interaction. Adsorption measurements by UPLC-DAD proved to be a sensitive and rapid tool to evaluate the affinity of tannins to cellulose.
Collapse
Affiliation(s)
- Essi Suominen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Santeri Savila
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Mimosa Sillanpää
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Pia Damlin
- Materials Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
18
|
Boulet JC, Abi-Habib E, Carrillo S, Roi S, Veran F, Verbaere A, Meudec E, Rattier A, Ducasse MA, Jørgensen B, Hansen J, Gall SL, Poncet-Legrand C, Cheynier V, Doco T, Vernhet A. Focus on the relationships between the cell wall composition in the extraction of anthocyanins and tannins from grape berries. Food Chem 2023; 406:135023. [PMID: 36470080 DOI: 10.1016/j.foodchem.2022.135023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Concentrations of anthocyanins and tannins after extraction from berries in wines and from skin macerations in model solutions have been studied for two grape varieties, two maturation levels and two vintages berries. Characterization of the cell wall polysaccharides has also been performed, the classical method based on the analysis of the neutral sugars after depolymerization being completed by a comprehensive microarray polymer profiling (CoMPP). Extraction was lower in model solutions than in wines, with the same ranking: non acylated anthocyanins> tannins > p-coumaroylated anthocyanins. The polysaccharidic composition suggested a role of homogalacturonans, rhamnogalacturonans and extensins in the extraction process. A global explanation of the interactions between anthocyanins, tannins and polysaccharides is proposed.
Collapse
Affiliation(s)
- Jean-Claude Boulet
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | - Elissa Abi-Habib
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
| | - Stéphanie Carrillo
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Stéphanie Roi
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Fréderic Veran
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Arnaud Verbaere
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | - Emmanuelle Meudec
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | - Anais Rattier
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | | | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Jeanett Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Sophie Le Gall
- INRAE, UR BIA, 44316 Nantes, France; INRAE, PROBE Research Infrastructure, BIBS Biopolymers Analysis Facility, 44316 Nantes, France.
| | - Céline Poncet-Legrand
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Véronique Cheynier
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | - Thierry Doco
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Aude Vernhet
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| |
Collapse
|
19
|
Selection of Enzymatic Treatments for Upcycling Lentil Hulls into Ingredients Rich in Oligosaccharides and Free Phenolics. Molecules 2022; 27:molecules27238458. [PMID: 36500548 PMCID: PMC9738424 DOI: 10.3390/molecules27238458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the comprehensive chemical characterization of red lentil hulls obtained from the industrial production of football and split lentils was described. The lentil hulls were rich in dietary fiber (78.43 g/100 g dry weight with an insoluble to soluble fiber ratio of 4:1) and polyphenols (49.3 mg GAE/g dry weight, of which 55% was bound phenolics), which revealed the suitability of this lentil by-product as a source of bioactive compounds with recognized antioxidant and prebiotic properties. The release of oligosaccharides and phenolic compounds was accomplished by enzymatic hydrolysis, microwave treatment and a combination of both technologies. The key role played by the selection of a suitable enzymatic preparation was highlighted to maximize the yield of bioactive compounds and the functional properties of the lentil hull hydrolysates. Out of seven commercial preparations, the one with the most potential for use in a commercial context was Pectinex® Ultra Tropical, which produced the highest yields of oligosaccharides (14 g/100 g lentil hull weight) and free phenolics (45.5 mg GAE/100 g lentil hull weight) and delivered a four-fold increase in terms of the original antioxidant activity. Finally, this enzyme was selected to analyze the effect of a microwave-assisted extraction pretreatment on the yield of enzymatic hydrolysis and the content of free phenolic compounds and oligosaccharides. The integrated microwave and enzymatic hydrolysis method, although it increased the solubilization yield of the lentil hulls (from 25% to 34%), it slightly decreased the content of oligosaccharides and proanthocyanidins and reduced the antioxidant activity. Therefore, the enzymatic hydrolysis treatment alone was more suitable for producing a lentil hull hydrolysate enriched in potential prebiotics and antioxidant compounds.
Collapse
|
20
|
Grape Pulp Fiber as Possible Fining Agents for Red Wine. Biomolecules 2022; 12:biom12101519. [PMID: 36291731 PMCID: PMC9599290 DOI: 10.3390/biom12101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
One of the biggest problems with the use of traditional fining agents is that some of them present allergenic characteristics or are not suitable for vegan consumers due to their animal origin. An alternative to these traditional proteinaceous agents could be cell walls from grape pulp. This material could be used to modify the final phenolic concentration of a wine due to its affinity for phenolic compounds. In this study, the ability of freeze-dried grape pulp fiber, rich in pulp cell walls, to act as a fining agent was analyzed in wines from three different varieties: Cabernet Sauvignon, Syrah, and Monastrell. After the use of this material, the wine chromatic characteristics and total tannin concentration were analyzed by spectrophotometric and chromatographic techniques. In addition, the wines were contaminated with ochratoxin A and histamine to check whether this material could also be a tool for removing these wine contaminants. The pulp fiber presented a high capacity to retain phenolic compounds, especially tannins; however, there were differences depending on the studied wine. The largest reduction in tannin concentration after fining was observed when this material was used in Cabernet Sauvignon wines (23%), whereas for Monastrell wines the reduction was lower (18.3%) and even lower for Syrah wines (14.3%). This fining agent also reduced the anthocyanin concentration of the three red wines, although to a lesser extent than the reduction observed for tannins. A really interesting result was that the addition of this fining agent reduced the concentration of ochratoxin A by 50% in all the studied wines.
Collapse
|
21
|
Kopjar M, Ćorković I, Buljeta I, Šimunović J, Pichler A. Fortification of Pectin/Blackberry Hydrogels with Apple Fibers: Effect on Phenolics, Antioxidant Activity and Inhibition of α-Glucosidase. Antioxidants (Basel) 2022; 11:antiox11081459. [PMID: 35892661 PMCID: PMC9332755 DOI: 10.3390/antiox11081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to prepare hydrogels based on pectin and blackberry juice and additionally to fortify those hydrogels with apple fiber. For that purpose, two types of pectin (low methoxylated and high methoxylated) were used, and fortification was conducted with the addition of 10% of apple fiber. The hydrogels were evaluated for phenolic compounds, antioxidant activity and inhibition of α-glucosidase. In addition, the stability of these parameters after 8 months of storage was evaluated. Pectin type and addition of apple fiber had an impact on investigated parameters. Low methoxylated pectin hydrogels had a higher concentration of anthocyanins than high methoxylated pectin hydrogels, while the addition of apple fibers caused a decrease in anthocyanin content. However, fortified hydrogels had higher antioxidant activity due to the presence of phenolics from apple fibers. The results showed that anthocyanins were more favorable in inhibiting α-glucosidase because samples with higher anthocyanins concentration had lower IC50 values. Obtained hydrogels can be used as intermediate products or ingredients (like fruit fillings or spreads) for the improvement or development of novel food products to increase their fiber content and antioxidant potential.
Collapse
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (I.B.); (A.P.)
- Correspondence: ; Tel.: +385-3122-4309
| | - Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (I.B.); (A.P.)
| | - Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (I.B.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA;
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (I.B.); (A.P.)
| |
Collapse
|
22
|
Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides. Polymers (Basel) 2022; 14:polym14112179. [PMID: 35683852 PMCID: PMC9182803 DOI: 10.3390/polym14112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to determine the effect of disaccharides on the encapsulation of the phenolics and volatiles of blackberry juice with the use of apple fiber. For this purpose, apple fiber/blackberry microparticles were prepared as the control, as well as microparticles additionally containing disaccharides, i.e., sucrose or trehalose. Fiber:disaccharide ratios were 1:0.5, 1:1, and 1:2. Formulated microparticles were characterized for total phenolics, proanthocyanidins, individual phenolics, antioxidant activity, flavor profiles, and color parameters. Both applied disaccharides affected the encapsulation of phenolics and volatiles by the apple fibers. Control microparticles had a higher content of phenolics than microparticles with disaccharides. Comparing disaccharides, the microparticles with trehalose had a higher content of phenolics than the ones containing sucrose. The amount of proanthocyanidins in the control microparticles was 47.81 mg PB2/100 g; in trehalose, the microparticles ranged from 39.88 to 42.99 mg PB2/100 g, and in sucrose, the microparticles ranged from 12.98 to 26.42 mg PB2/100 g, depending on the fiber:disaccharide ratio. Cyanidin-3-glucoside was the dominant anthocyanin. Its amount in the control microparticles was 151.97 mg/100 g, while in the trehalose microparticles, this ranged from 111.97 to 142.56 mg /100 g and in sucrose microparticles, from 100.28 to 138.74 mg /100 g. On the other hand, microparticles with disaccharides had a higher content of volatiles than the control microparticles. Trehalose microparticles had a higher content of volatiles than sucrose ones. These results show that the formulation of microparticles, i.e., the selection of carriers, had an important role in the final quality of the encapsulates.
Collapse
|
23
|
Apple Fibers as Carriers of Blackberry Juice Polyphenols: Development of Natural Functional Food Additives. Molecules 2022; 27:molecules27093029. [PMID: 35566379 PMCID: PMC9101031 DOI: 10.3390/molecules27093029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/11/2022] Open
Abstract
Blackberry polyphenols possess various health-promoting properties. Since they are very sensitive to environmental conditions such as the presence of light, oxygen and high temperatures, the application of such compounds is restricted. Fibers are recognized as efficient carriers of polyphenols and are often used in polyphenols encapsulation. In the present study, the ability of apple fiber to adsorb blackberry juice polyphenols was examined. Freeze-dried apple fiber/blackberry juice complexes were prepared with different amounts of fibers (1%, 2%, 4%, 6%, 8% and 10%) and a constant amount of blackberry juice. Polyphenol profile, antioxidant activity, inhibition of the α-amylase, color parameters, as well as the IR spectra, of the obtained complexes were assessed. The results showed a negative effect of higher amounts of fiber (more than 2%) on the adsorption of polyphenols and the antioxidant activity of complexes. With the proper formulation, apple fibers can serve as polyphenol carriers, and thus the application as novel food additives can be considered.
Collapse
|
24
|
Guo Q, Xiao X, Lu L, Ai L, Xu M, Liu Y, Goff HD. Polyphenol-Polysaccharide Complex: Preparation, Characterization and Potential Utilization in Food and Health. Annu Rev Food Sci Technol 2022; 13:59-87. [PMID: 35041793 DOI: 10.1146/annurev-food-052720-010354] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides and polyphenols coexist in many plant-based food products. Polyphenol-polysaccharide interactions may affect the physicochemical, functional, and physiological properties, such as digestibility, bioavailability, and stability, of plant-based foods. In this review, the interactions (physically or covalently linked) between the selected polysaccharides and polyphenols are summarized. The preparation and structural characterization of the polyphenol-polysaccharide conjugates, their structural-interaction relationships, and the effects of the interactions on functional and physiological properties of the polyphenol and polysaccharide molecules are reviewed. Moreover, potential applications of polyphenol-polysaccharide conjugates are discussed. This review aids in a comprehensive understanding of the synthetic strategy, beneficial bioactivity, and potential application of polyphenol-polysaccharide complexes. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Xingyue Xiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China;
| | - Meigui Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
25
|
The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021; 13:nu13124495. [PMID: 34960047 PMCID: PMC8709276 DOI: 10.3390/nu13124495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic metabolic diseases of the 21st century. Nevertheless, its prevalence might be attenuated by taking advantage of bioactive compounds commonly found in fruits and vegetables. This work is focused on the recovery of polyphenols and polysaccharide–polyphenol conjugates from grape pomace for T2DM management and prevention. Bioactives were extracted by solid–liquid extraction and by pressurized hot water extraction (PHWE). Polyphenolic fraction recovered by PHWE showed the highest value for total phenolic content (427 μg GAE.mg−1), mainly anthocyanins and proanthocyanidins, and higher antioxidant activity compared to the fraction recovered by solid–liquid extraction. Polysaccharide–polyphenol conjugates comprehended pectic polysaccharides to which approximately 108 μg GAE of phenolic compounds (per mg fraction) were estimated to be bound. Polyphenols and polysaccharide–polyphenol conjugates exhibited distinct antidiabetic effects, depending on the extraction methodologies employed. Extracts were particularly relevant in the inhibition of a-glucosidase activity, with free polyphenols showing an IC50 of 0.47 μg.mL−1 while conjugates showed an IC50 of 2.7, 4.0 and 5.2 μg.mL−1 (solid–liquid extraction, PHWE at 95 and 120 °C, respectively). Antiglycation effect was more pronounced for free polyphenols recovered by PHWE, while the attenuation of glucose uptake by Caco-2 monolayers was more efficient for conjugates obtained by PHWE. The antidiabetic effect of grape pomace bioactives opens new opportunities for the exploitation of these agri-food wastes in food nutrition, the next step towards reaching a circular economy in grape products.
Collapse
|
26
|
Liu X, Renard CM, Bureau S, Le Bourvellec C. Interactions between heterogeneous cell walls and two procyanidins: Insights from the effects of chemical composition and physical structure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Dridi W, Bordenave N. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydr Polym 2021; 274:118670. [PMID: 34702486 DOI: 10.1016/j.carbpol.2021.118670] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/21/2023]
Abstract
Non-covalent interactions between polysaccharides and phenolics affect the physical properties of polysaccharide solutions. These interactions may in turn be influenced by polysaccharide-polysaccharide interactions. To test this hypothesis, we studied the influence of polysaccharide concentration (with guar, β-glucans, and xanthan) on the variations of rheological and water-binding properties upon addition of phenolics compounds (vanillin, caffeic acid, gallic acid, and epigallocatechin gallate). Addition of phenolics led to increased flow behavior index and decreased flow consistency index, with maximum effects at polysaccharide concentrations ranging between 0.6 × C* and 1.4 × C*, where C* is the critical overlap concentration of each polysaccharide. Water mobility was generally not significantly influenced by the addition of phenolics. The results showed that the ability of phenolic compounds to induce aggregation of polysaccharides in solution was strongly influenced by polysaccharide concentration around C* and therefore by polysaccharide-polysaccharide interactions.
Collapse
Affiliation(s)
- Wafa Dridi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada; School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Canada.
| |
Collapse
|
28
|
Siemińska-Kuczer A, Szymańska-Chargot M, Zdunek A. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chem 2021; 373:131487. [PMID: 34741970 DOI: 10.1016/j.foodchem.2021.131487] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
Polyphenols include flavonoids, phenolic acids, tannins and lignans which are known to have antioxidant, UV protection and antimicrobial properties. Among them the most commonly investigated are flavonoids and phenolic acids, which, due to their plant origin, may interact with the plant cell wall (PCW) components, specifically with its polysaccharides. Knowledge concerning the nature of the interactions between these components may be used in the production of functional food or in the development of food packaging materials with additional properties. The content of polyphenols in such products is responsible for their colour and taste, and may also act as a natural preservative. On the other hand, the PCW components may have protective role of polyphenols which has impact on their release in the human digestive system. Therefore, this review is an attempt to summarize the current state of knowledge that emerged after 2017 concerning the interaction of PCW components with polyphenols, with a particular focus on hemicellulose and pectin.
Collapse
Affiliation(s)
- Anna Siemińska-Kuczer
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
29
|
Kara M, Assouguem A, kamaly OMA, Benmessaoud S, Imtara H, Mechchate H, Hano C, Zerhouni AR, Bahhou J. The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples. Molecules 2021; 26:5437. [PMID: 34576910 PMCID: PMC8471607 DOI: 10.3390/molecules26185437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Apple vinegar is a natural product widely used in food and traditional medicine as it contains many bioactive compounds. The apple variety and production methods are two factors that play a major role in determining the quality of vinegar. Therefore, this study aims to determine the quality of apple vinegar samples from different varieties (Red Delicious, Gala, Golden Delicious, and Starking Delicious) prepared by three methods using small apple pieces, apple juice, and crushed apple, through determining the physicochemical properties and antibacterial activity of these samples. The antibacterial activity was studied against five pathogenic bacteria: Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli (ATB: 57), Escherichia coli (ATB: 97), and Pseudomonas aeruginosa, using two methods, disk diffusion and microdilution, for determining the minimum inhibitory concentrations and the minimum bactericidal concentrations. The results of this study showed that the lowest pH value was 3.6 for Stark Delicious, obtained by liquid fermentation, and the highest acetic acid values were 4.7 and 4% for the vinegar of Red Delicious and Golden Delicious, prepared by solid fermentation, respectively. The results of the antibacterial activity showed considerable activity of apple vinegar on the tested strains. Generally, the Staphylococcus aureus strain appears less sensitive and Pseudomonas aeruginosa seems to be very sensitive against all samples, while the other strains have distinct sensitivities depending on the variety studied and the method used. A higher antibacterial activity was found in vinegar obtained by the apple pieces method and the Red Delicious variety, with a low MIC and MBC recorded, at 1.95 and 3.90 µL/mL, respectively. This study has shown that the choice of both apple variety and production method is therefore an essential step in determining and aiming for the desired quality of apple vinegar.
Collapse
Affiliation(s)
- Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco; (S.B.); (A.R.Z.); (J.B.)
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202 Imouzzer Street, Fez 30000, Morocco;
| | - Omkulthom Mohamed Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Safaâ Benmessaoud
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco; (S.B.); (A.R.Z.); (J.B.)
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, P.O. Box 240, Jenin 44862, Palestine
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
| | - Abdou Rachid Zerhouni
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco; (S.B.); (A.R.Z.); (J.B.)
| | - Jamila Bahhou
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco; (S.B.); (A.R.Z.); (J.B.)
| |
Collapse
|
30
|
Li SY, Duan CQ, Han ZH. Grape polysaccharides: compositional changes in grapes and wines, possible effects on wine organoleptic properties, and practical control during winemaking. Crit Rev Food Sci Nutr 2021; 63:1119-1142. [PMID: 34342521 DOI: 10.1080/10408398.2021.1960476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polysaccharides present in grapes interact with wine sensory-active compounds (polyphenols and volatile compounds) via different mechanisms and can affect wine organoleptic qualities such as astringency, color and aroma. Studies on the role that grape polysaccharides play in wines are reviewed in this paper. First, the composition of grape polysaccharides and their changes during grape ripening, winemaking and aging are introduced. Second, different interaction mechanisms of grape polysaccharides and wine sensory-active compounds (flavanols, anthocyanins and volatiles) are introduced, and the possible effects on wine astringency, color and aroma caused by these interactions are illustrated. Finally, the control of the grape polysaccharide content in practice is discussed, including classical winemaking methods (applying different maceration enzymes, temperature control, co-fermentation, blending), modern vinification technologies (pulsed electric field, ultrasound treatment), and the development of new grape polysaccharide products.
Collapse
Affiliation(s)
- Si-Yu Li
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China.,Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Zhen-Hai Han
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Buljeta I, Pichler A, Šimunović J, Kopjar M. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules 2021; 26:molecules26154400. [PMID: 34361554 PMCID: PMC8347997 DOI: 10.3390/molecules26154400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/24/2023] Open
Abstract
The objective of this study was to investigate the use of citrus fiber as a carrier of blackberry juice polyphenols. For that purpose, freeze-dried complexes with blackberry juice and different amounts of citrus fiber (1%, 2% and 4%) were prepared. Complexes were evaluated spectrophotometrically for total polyphenols, proanthocyanidins and antioxidant activity. Analyses of individual polyphenols were performed using high-performance liquid chromatography. IR spectra were recorded to confirm encapsulation. All analyses were performed after preparation and after eight months of storage, in order to examine the stability of formed complexes. The obtained results indicated that increasing the amount of fiber led to a decrease in the concentration of polyphenols and the antioxidant activity of complexes. Cyanidin 3-glucoside was the prevalent anthocyanin in complexes (138.32–246.45 mg/100 g), while cyanidin 3-dioxalylglucoside was present at lower concentrations (22.19–31.45 mg/100 g). The other identified and quantified polyphenols were hesperidin (from citrus fiber), ellagic acid and quercetin (1317.59–1571.65 mg/100 g, 31.94–50.11 mg/100 g and 20.11–33.77 mg/100 g, respectively). Degradation of polyphenols occurred during storage. Results obtained in this study confirmed that citrus fiber could be used for the formulation of novel bioactive additives. Such additives could enhance the antioxidant potential of products to which they are added, such as baked goods, dairy, or fruit products.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
- Correspondence:
| |
Collapse
|
32
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
33
|
Song T, Xiong Z, Shi T, Yuan L, Gao R. Effect of glutamic acid on the preparation and characterization of Pickering emulsions stabilized by zein. Food Chem 2021; 366:130598. [PMID: 34293547 DOI: 10.1016/j.foodchem.2021.130598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/04/2022]
Abstract
In this study, glutamic acid and zein were utilized to prepare colloidal nanoparticles as stabilizers for Pickering emulsions. The effect of the ratio of glutamic acid to zein on the stability, zeta potential, particle size, morphology, and structure of colloidal nanoparticles was studied. The results showed that zein and glutamic acid combined in the form of noncovalent bonds, which changed the characteristics of the zein. In addition, colloidal particles aggregation was induced by glutamic acid, which altered the distribution of droplets in the emulsion, and increased the adsorption of proteins on the surface of the oil droplets, as reflected by the analysis of the size, microstructure, rheological behaviours, and driving force of the Pickering emulsion. Hydrophobic interactions and electrostatic interactions were the main driving forces for the formation of colloidal particles, which was determined by driving force analysis and the change of the zeta potential.
Collapse
Affiliation(s)
- Teng Song
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; College of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
34
|
Chirug L, Eran Nagar E, Okun Z, Shpigelman A. Effect of flavonoid structure and pH on iron-mediated pectin interaction. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
SILVA JS, FERREIRA NBS, ASQUIERI ER, DAMIANI C, ASQUIERI EMDAR. Chemical monitoring of baru (dipteryx alata vog.) pulp fermented beverage. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.14420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
36
|
Reviews on mechanisms of in vitro antioxidant, antibacterial and anticancer activities of water-soluble plant polysaccharides. Int J Biol Macromol 2021; 183:2262-2271. [PMID: 34062158 DOI: 10.1016/j.ijbiomac.2021.05.181] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Degenerative diseases such as cancer and cardiovascular diseases, and antimicrobial resistance are becoming prominent health problems needing utmost public health attention. Curative interventions such as the use of pharmaceutical drugs and alternative plant medicines are increasingly being explored. Plant polysaccharides have gained attention for their promising bioactivities such as antioxidant, antimicrobial and anticancer activities. Bioactive plant polysaccharides are also being preferred for their relatively few side effects compared to conventional pharmaceuticals. The elucidation of the bioactive potential of plant polysaccharides in disease treatment entails an understanding of the factors that determine their biofunctional properties using functional and mechanistic assays. This review summarizes the literature on the composition, structural, functional, and mechanistic determinations of the antioxidant, anticancer and antimicrobial activities of plant polysaccharides. The outcome of this review highlights the leading trends in the elucidation of the antioxidant, anticancer and antimicrobial activities of plant polysaccharides and underscores the promising health benefits of plant polysaccharides.
Collapse
|
37
|
Diez-Sánchez E, Quiles A, Hernando I. Interactions between Blackcurrant Polyphenols and Food Macronutrients in Model Systems: In Vitro Digestion Studies. Foods 2021; 10:foods10040847. [PMID: 33924602 PMCID: PMC8070145 DOI: 10.3390/foods10040847] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Blackcurrant pomace, rich in fiber and polyphenols, can be used as added-value ingredient for food formulation. However, the bounding of polyphenols to pomace and the interactions that take place with food nutrients modify polyphenol bioaccessibility. This work studied the interactions between polyphenols and the main macronutrients in foods, and the changes that occurred during in vitro digestion, using model systems. Model systems were formulated with (i) water, (ii) wheat starch, (iii) olive oil, (iv) whey protein, and (v) a model combining all the ingredients. Polyphenols were added from two sources: as pomace and as a polyphenolic pomace extract. Interactions between polyphenols and macronutrients were studied using light microscopy; total phenolic content (TPC) and antioxidant capacity (AC) were determined before and after the in vitro digestion process. Lastly, the bioaccessibility of the samples was calculated. Polyphenols incorporated into the model systems as pomace increased their bioaccessibility if compared to polyphenols added as extract. For single-nutrient model systems formulated with pomace, the bioaccessibility was higher than when the system contained all the nutrients. Of all the components studied, the greatest effect on bioaccessibility was observed for proteins.
Collapse
|
38
|
Liu X, Renard CM, Rolland-Sabaté A, Le Bourvellec C. Exploring interactions between pectins and procyanidins: Structure-function relationships. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Osete-Alcaraz A, Gómez-Plaza E, Martínez-Pérez P, Weiller F, Schückel J, Willats WG, Moore JP, Ros-García JM, Bautista-Ortín AB. The Influence of Hydrolytic Enzymes on Tannin Adsorption-Desorption onto Grape Cell Walls in a Wine-Like Matrix. Molecules 2021; 26:molecules26030770. [PMID: 33540867 PMCID: PMC7867368 DOI: 10.3390/molecules26030770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluates the capacity of four hydrolytic enzymes to limit the interactions between grape cell-walls and tannins and/or to favor tannin desorption. Adsorption and desorption tests were conducted by mixing a commercial seed tannin with purified skin cell-walls from Syrah grapes, in the presence or absence of hydrolytic enzymes, in a model-wine solution. The effects of the enzymes were evaluated by measuring the tannins in solution by High Performance Liquid Chromatography (HPLC) and the changes in the cell wall polysaccharide network by Comprehensive Microarray Polymer Profiling (COMPP) while the polysaccharides liberated from cell walls were analyzed by Size Exclusion Chromatography (SEC). The results showed that the enzymes limited the interaction between tannins and cell walls, especially cellulase, pectinase and xylanase, an effect associated with the cell wall structural modifications caused by the enzymes, which reduced their capacity to bind tannins. With regards to the tannin desorption process, enzymes did not play a significant role in liberating bound tannins. Those enzymes that showed the highest effect in limiting the adsorption of tannins and in disorganizing the cell wall structure, cellulase and pectinase, did not lead to a desorption of bound tannins, although they still showed a capacity of affecting cell wall structure. The results indicate that enzymes are not able to access those polysaccharides where tannins are bound, thus, they are not a useful tool for desorbing tannins from cell walls. The practical importance implications of these findings are discussed in the manuscript.
Collapse
Affiliation(s)
- Andrea Osete-Alcaraz
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
| | - Encarna Gómez-Plaza
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
- Correspondence:
| | - Pilar Martínez-Pérez
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
| | - Florent Weiller
- Department of Viticulture and Oenology, Faculty of AgriSciences, South African Grape and Wine Research Institute, Stellenbosch University, Matieland 7602, South Africa; (F.W.); (J.P.M.)
| | - Julia Schückel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001 Copenhagen, Denmark;
- Glycospot R&D, Thorvaldsensvej 40, B102, DK-1871 Frederiksberg, Denmark
| | - William G.T. Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle-upon-Tyne NE1 4LB, UK;
| | - John P. Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, South African Grape and Wine Research Institute, Stellenbosch University, Matieland 7602, South Africa; (F.W.); (J.P.M.)
| | - José M. Ros-García
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
| | - Ana B. Bautista-Ortín
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
| |
Collapse
|
40
|
Thitz P, Hagerman AE, Randriamanana TR, Virjamo V, Kosonen M, Lännenpää M, Nyman T, Mehtätalo L, Kontunen‐Soppela S, Julkunen‐Tiitto R. Genetic modification of the flavonoid pathway alters growth and reveals flexible responses to enhanced UVB - Role of foliar condensed tannins. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:1-15. [PMID: 37283848 PMCID: PMC10168092 DOI: 10.1002/pei3.10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 06/08/2023]
Abstract
Accumulation of certain phenolics is a well-known response of plants to enhanced UVB radiation (280-315 nm), but few experiments have compared the relative importance of different phenolic groups for UVB resilience. To study how an altered phenolic profile affects the responses and resilience of silver birch (Betula pendula) to enhanced UVB, we used RNA interference (RNAi) targeting dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS), or anthocyanidin reductase (ANR) to change the accumulation of phenolics. The unmodified control line and RNAi-modified plants were grown for 51 days under ambient or +32% enhanced UVB dose in a greenhouse. RNAi greatly affected phenolic profile and plant growth. There were no interactive effects of RNAi and UVB on growth or photosynthesis, which indicates that the RNAi and unmodified control plants were equally resilient. UVB enhancement led to an accumulation of foliar flavonoids and condensed tannins, and an increase in the density of stem glands and glandular trichomes on upper leaf surfaces in both the control and RNAi-modified plants. Our results do not indicate a photoprotective role for condensed tannins. However, decreased growth of high-flavonoid low-tannin DFRi and ANRi plants implies that the balance of flavonoids and condensed tannins might be important for normal plant growth.
Collapse
Affiliation(s)
- Paula Thitz
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Ann E. Hagerman
- Department of Chemistry and BiochemistryMiami UniversityOxfordOHUSA
| | - Tendry R. Randriamanana
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Virpi Virjamo
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Present address:
School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Minna Kosonen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Present address:
Natural Resources Institute FinlandMikkeliFinland
| | - Mika Lännenpää
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Present address:
Biocarelia Research LaboratoryJuurikkaFinland
| | - Tommi Nyman
- Department of Ecosystems in the Barents RegionNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Lauri Mehtätalo
- School of ComputingUniversity of Eastern FinlandJoensuuFinland
| | - Sari Kontunen‐Soppela
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Riitta Julkunen‐Tiitto
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| |
Collapse
|
41
|
Cherif S, Le Bourvellec C, Bureau S, Benabda J. Effect of storage conditions on ‘Deglet Nour’ date palm fruit organoleptic and nutritional quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Formulation and Stability of Cellulose-Based Delivery Systems of Raspberry Phenolics. Processes (Basel) 2021. [DOI: 10.3390/pr9010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Encapsulation of bioactives is a tool to prepare their suitable delivery systems and ensure their stability. For this purpose, cellulose was selected as carrier of raspberry juice phenolics and freeze-dried cellulose/raspberry encapsulates (C/R_Es) were formulated. Influence of cellulose amount (2.5%, 5%, 7.5% and 10%) and time (15 or 60 min) on the complexation of cellulose and raspberry juice was investigated. Obtained C/R_Es were evaluated for total phenolics, anthocyanins, antioxidant activity, inhibition of α-amylase and color. Additionally, encapsulation was confirmed by FTIR. Stability of C/R_Es was examined after 12 months of storage at room temperature. Increasing the amount of cellulose during formulation of C/R_E from 2.5% to 10%, resulted in the decrease of content of total phenolics and anthocyanins. Additionally, encapsulates formulated by 15 min of complexation had a higher amount of investigated compounds. This tendency was retained after storage. The highest antioxidant activities were determined for C/R_E with 2.5% of cellulose and the lowest for those with 10% of cellulose, regardless of the methods used for its evaluation. After storage of 12 months, antioxidant activity slightly increased. Encapsulates with 2.5% of cellulose had the highest and those with 10% of cellulose the lowest capability for inhibition of α-amylase. The amount of cellulose also had an impact on color of C/R_Es. Results of this study suggest that cellulose could be a good encapsulation polymer for delivering raspberry bioactives, especially when cellulose was used in lower percentages for formulation of encapsulates.
Collapse
|
43
|
Netzel G, Mikkelsen D, Flanagan BM, Netzel ME, Gidley MJ, Williams BA. Metabolism of Black Carrot Polyphenols during In Vitro Fermentation is Not Affected by Cellulose or Cell Wall Association. Foods 2020; 9:E1911. [PMID: 33371245 PMCID: PMC7766557 DOI: 10.3390/foods9121911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022] Open
Abstract
Fruit and vegetable polyphenols are associated with health benefits, and those not absorbed could be fermented by the gastro-intestinal tract microbiota. Many fermentation studies focus on "pure" polyphenols, rather than those associated with plant cell walls (PCW). Black carrots (BlkC), are an ideal model plant food as their polyphenols bind to PCW with minimal release after gastro-intestinal digestion. BlkC were fractionated into three components-supernatant, pellet after centrifugation, and whole puree. Bacterial cellulose (BCell) was soaked in supernatant (BCell&S) as a model substrate. All substrates were fermented in vitro with a pig faecal inoculum. Gas kinetics, short chain fatty acids, and ammonium production, and changes in anthocyanins and phenolic acids were compared. This study showed that metabolism of BlkC polyphenols during in vitro fermentation was not affected by cellulose/cell wall association. In addition, BCell&S is an appropriate model to represent BlkC fermentation, suggesting the potential to examine fermentability of PCW-associated polyphenols in other fruits/vegetables.
Collapse
Affiliation(s)
- Gabriele Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| | - Deirdre Mikkelsen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
- School of Agriculture and Food Sciences, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Bernadine M. Flanagan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| | - Michael E. Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| | - Michael J. Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| | - Barbara A. Williams
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| |
Collapse
|
44
|
Liu X, Le Bourvellec C, Renard CMGC. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr Rev Food Sci Food Saf 2020; 19:3574-3617. [PMID: 33337054 DOI: 10.1111/1541-4337.12632] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France
| | | | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.,INRAE, TRANSFORM, F-44000, Nantes, France
| |
Collapse
|
45
|
Polyphenols of Traditional Apple Varieties in Interaction with Barley β-Glucan: A Study of the Adsorption Process. Foods 2020; 9:foods9091278. [PMID: 32933005 PMCID: PMC7556014 DOI: 10.3390/foods9091278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Apple polyphenols have been studied for various beneficial bioactivities. Especially interesting are traditional, old varieties of apples for which some initial studies have suggested significant bioactivities, but they are still not completely understood. Polyphenol bioactivities can be affected by interactions with dietary fibers such as β-glucans. The aim of this study was to investigate for the first time interactions between individual polyphenols from traditional, old apple varieties (“Božićnica” and “Batulenka”) and β-glucans by studying the adsorption process. Polyphenols were extracted from the peel and flesh of traditional apples by using an ultrasonic bath and characterized with high-performance liquid chromatography. The amounts of adsorbed (qe) and un-adsorbed (ce) polyphenols were modeled with adsorption isotherms (Langmuir, Dubinin–Radushkevich, and Hill) by using improved non-linear fitting in a novel R algorithm, developed specifically for the modeling of adsorption isotherms. Polyphenols adsorbed onto β-glucan from 9 to 203 (peel, “Božićnica”), 1 to 484 (peel, “Batulenka”), 5 to 160 (flesh, “Božićnica”), and 19 to 28 mg g−1 (flesh, “Batulenka”). The adsorption was concentration dependent (polyphenols present in higher amount adsorbed in higher amounts). Physical sorption can be suggested. Polyphenols from traditional apples adsorb onto β-glucan and should be further studied.
Collapse
|
46
|
Brahem M, Bornard I, Renard CMGC, Le Bourvellec C. Multiscale Localization of Procyanidins in Ripe and Overripe Perry Pears by Light and Transmission Electron Microscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8900-8906. [PMID: 32706965 DOI: 10.1021/acs.jafc.0c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Histochemical staining with 4-dimethylaminocinnamaldehyde (DMACA), light microscopy, and transmission electron microscopy (TEM) were applied to characterize procyanidin localization at ripe and overripe stages in perry pear flesh (cv. 'De Cloche'). Pear flesh contained stone cell clusters surrounded by very large parenchyma cells. DMACA staining showed procyanidins mainly located in parenchyma cells from the fruit mesocarp. Under light microscopy and TEM, procyanidins appeared in the vacuole of parenchyma cells as uniformly stained granules, probably tannosomes. They were differently dispersed in ripe and overripe perry pears, as the granules remained free inside the vacuole in ripe pears and mostly attached to the tonoplast in overripe pears.
Collapse
Affiliation(s)
- Marwa Brahem
- UMR408 SQPOV, INRAE, Avignon Université, F-84000 Avignon, France
| | | | | | | |
Collapse
|
47
|
Al Daccache M, Koubaa M, Maroun RG, Salameh D, Louka N, Vorobiev E. Impact of the Physicochemical Composition and Microbial Diversity in Apple Juice Fermentation Process: A Review. Molecules 2020; 25:molecules25163698. [PMID: 32823772 PMCID: PMC7464816 DOI: 10.3390/molecules25163698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Fermented apple beverages are produced all over the world with diverse characteristics associated with each country. Despite the diversifications, cider producers are confronted with similar issues and risks. The nature of the raw material, also known as the fermentation medium, plays a key role in fermentation. A well-defined composition of apples is, therefore, required to produce cider with good quality. In addition, ferment and its metabolism are important factors in the fermentation process. The producers of cider and other alcoholic beverages are looking in general for novel yeast strains or for the use of native strains to produce "authentic" and diversified beverages that are distinct from each other, and that attract more and more consumers. Research articles on cider production are infrequent compared to wine production, especially on the impact of the chemical composition and microbial diversity of apples on fermentation. Even though the processing of fermented beverages is close in terms of microbial interactions and production, the study of the specific properties of apples and the production challenges of cider production is advantageous and meaningful for cider producers. This review summarizes the current knowledge on apple composition and the impact of the must composition on fermentation and yeast growth. In addition, the microbial diversity of cider, activities, and its influence on fermentation are reviewed.
Collapse
Affiliation(s)
- Marina Al Daccache
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France; (M.A.D.); (E.V.)
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France
- Correspondence: ; Tel.: +33-3442-38841
| | - Richard G. Maroun
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Dominique Salameh
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Nicolas Louka
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France; (M.A.D.); (E.V.)
| |
Collapse
|
48
|
Kaur R, Kaur K, Wagh RV, Kaur A, Aggarwal P. Red bell pepper (Capsicum annuum L.): Optimization of drying conditions and preparation of functional bread. J Food Sci 2020; 85:2340-2349. [PMID: 32645217 DOI: 10.1111/1750-3841.15317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022]
Abstract
The aim of this study was to optimize the drying conditions (pretreatments and drying temperatures) of red bell pepper to obtain red bell pepper powder (RBP) with maximum bioactive retention and assess its potential use as a functional ingredient in bread. The RBP pretreated (blanching + dipping in ascorbic and citric acid solution) and dried at 60 °C retained the highest bioactive compounds. Wheat flour blends were prepared with RBP at 0%, 2%, 4%, 6%, 8%, and 10% level of incorporation and among hydration properties, water absorption increased with increasing levels. The prepared breads were assayed for physical, nutritional, bioactive, and sensory characteristics. Bread supplementation with RBP improves its color, mineral, fiber, and bioactive properties. However, the texture of bread becomes hard with the increased level of RBP due to a decrease in specific volume. The significant increment was recorded for bioactive compounds, such as total phenols, antioxidant activity, flavonoids, and carotenoids as the level of powder increased. Bread enriched with 6% RBP showed highest sensory scores (8.45) and index of acceptability (87.83%) as compared to other breads. Thus, RBP acts as a valuable supplement for developing bread with improved nutritional and bioactive constituents. PRACTICAL APPLICATION: This study describes the effect of different pretreatments and drying temperatures for processing of RBP as a functional ingredient in bread, being a staple food around the world. RBP powder is a novel ingredient that improved the nutritional, bioactive, and appearance of bread. Hence, it will be helpful in the utilization of perishable crops like bell pepper and will demonstrate its commercial viability to improve the nutritive value of bakery products.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Food Science and Technology, Punjab Agriculture University, Ludhiana, 141001, India
| | - Kamaljit Kaur
- Department of Food Science and Technology, Punjab Agriculture University, Ludhiana, 141001, India
| | - Rajesh V Wagh
- Department of Livestock Products Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Amarjeet Kaur
- Department of Food Science and Technology, Punjab Agriculture University, Ludhiana, 141001, India
| | - Poonam Aggarwal
- Department of Food Science and Technology, Punjab Agriculture University, Ludhiana, 141001, India
| |
Collapse
|
49
|
Adsorption between Quercetin Derivatives and β-Glucan Studied with a Novel Approach to Modeling Adsorption Isotherms. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interactions between polyphenols and fibers are important for polyphenol bioactivities, and have been studied in vitro with adsorption process and isotherms. However, the theoretical interpretations of adsorption potentially can be affected by the method of isotherm modeling. The aim was to study the interactions between β-glucan and quercetin derivatives (quercetin-3-glucoside, quercetin-3-galactoside, quercetin-3-rhamnoside) by studying adsorption, and to potentially improve the modeling of adsorption isotherms. Quercetin derivatives were determined by using spectrophotometric method. Experimental results were modeled with Langmuir, Dubinin-Radushkevich, and Hill isotherms using non-linear regression, linear regression, and improved non-linear regression. For improved non-linear regression, code in the R programming language was developed. All quercetin derivatives adsorbed onto the surface of β-glucan. Improved non-linear regression gave somewhat lower errors and may be the most appropriate for adsorption interpretation. According to isotherms obtained with improved regression, it may be suggested that adsorption is higher for rhamnoside and glucoside of quercetin than for quercetin-3-galactoside which agrees with experimental results. Adsorption could be a physical process. The spatial arrangement of hydroxyl (OH) groups on the glycoside part of quercetin could affect the adsorption. In conclusion, a novel approach using improved non-linear regression has been shown to be a useful, novel tool for adsorption interpretation.
Collapse
|
50
|
Phan ADT, Williams BA, Netzel G, Mikkelsen D, D'Arcy BR, Gidley MJ. Independent fermentation and metabolism of dietary polyphenols associated with a plant cell wall model. Food Funct 2020; 11:2218-2230. [DOI: 10.1039/c9fo02987g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The metabolic pathways of polyphenol degradation are not influenced by the presence of plant cell walls during in vitro fermentation, but co-fermentation of cell walls may lead to faster microbial metabolism of polyphenols.
Collapse
Affiliation(s)
- A. D. T. Phan
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - B. A. Williams
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - G. Netzel
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - D. Mikkelsen
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - B. R. D'Arcy
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - M. J. Gidley
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|