1
|
Mahmoudi N, Roque M, Paiva Dos Santos B, Oliveira H, Siadous R, Rey S, Garanger E, Lecommandoux S, Catros S, Garbay B, Amédée Vilamitjana J. An Elastin-Derived Composite Matrix for Enhanced Vascularized and Innervated Bone Tissue Reconstruction: From Material Development to Preclinical Evaluation. Adv Healthc Mater 2024; 13:e2303765. [PMID: 38651610 DOI: 10.1002/adhm.202303765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Despite progress in bone tissue engineering, reconstruction of large bone defects remains an important clinical challenge. Here, a biomaterial designed to recruit bone cells, endothelial cells, and neuronal fibers within the same matrix is developed, enabling bone tissue regeneration. The bioactive matrix is based on modified elastin-like polypeptides (ELPs) grafted with laminin-derived adhesion peptides IKVAV and YIGSR, and the SNA15 peptide for retention of hydroxyapatite (HA) particles. The composite matrix shows suitable porosity, interconnectivity, biocompatibility for endothelial cells, and the ability to support neurites outgrowth by sensory neurons. Subcutaneous implantation leads to the formation of osteoid tissue, characterized by the presence of bone cells, vascular networks, and neuronal structures, while minimizing inflammation. Using a rat femoral condyle defect model, longitudinal micro-CT analysis is performed, which demonstrates a significant increase in the volume of mineralized tissue when using the ELP-based matrix compared to empty defects and a commercially available control (Collapat). Furthermore, visible blood vessel networks and nerve fibers are observed within the lesions after a period of two weeks. By incorporating multiple key components that support cell growth, mineralization, and tissue integration, this ELP-based composite matrix provides a holistic and versatile solution to enhance bone tissue regeneration.
Collapse
Affiliation(s)
- Nadia Mahmoudi
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Micaela Roque
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Bruno Paiva Dos Santos
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Hugo Oliveira
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Robin Siadous
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Sylvie Rey
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | | | | | - Sylvain Catros
- CHU Bordeaux, Dentistry and Oral Health Department, Bordeaux, 33076, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR, Pessac, 5629, France
| | | |
Collapse
|
2
|
Antibacterial Thin Films Deposited from Propane-Butane Mixture in Atmospheric Pressure Discharge. Int J Mol Sci 2023; 24:ijms24021706. [PMID: 36675219 PMCID: PMC9864540 DOI: 10.3390/ijms24021706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antibacterial coatings on biomedical instruments are of great interest because they can suppress bacterial colonization on these instruments. In this study, antibacterial polymeric thin coatings were deposited on teflon substrates using atmospheric pressure plasma polymerization from a propane-butane mixture. The plasma polymerization was performed by means of surface dielectric barrier discharge burning in nitrogen at atmospheric pressure. The chemical composition of plasma polymerized propane-butane films was studied by energy-dispersive X-ray spectroscopy (EDX) and FTIR. The film surface properties were studied by SEM and by surface energy measurement. The EDX analysis showed that the films consisted of carbon, nitrogen and oxygen from ambient air. The FTIR analysis confirmed, in particular, the presence of alkyl, nitrile, acetylene, imide and amine groups. The deposited films were hydrophilic with a water contact angle in the range of 13-23°. The thin film deposited samples were highly active against both S. aureus and E. coli strains in general. On the other hand, the films were cytocompatible, reaching more than 80% of the cell viability threshold compared to reference polystyrene tissue.
Collapse
|
3
|
Narayanan KB, Han SS. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering. Enzyme Microb Technol 2022; 155:109990. [PMID: 35030384 DOI: 10.1016/j.enzmictec.2022.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
The fabrication of novel biomaterial scaffolds with improved biological interactions and mechanical properties is an important aspect of tissue engineering. The three-dimensional (3D) protein/peptide-based polymeric scaffolds are promising in vitro biomaterials to replicate the in vivo microenvironment mimicking the extracellular matrix (ECM) for cell differentiation and subsequent tissue formation. Among different strategies in the fabrication of scaffolds, bioorthogonal enzymatic reactions for rapid in situ zero-length cross-linking are advantageous. Peptide ligases as a novel toolbox have the potentiality to enzymatically cross-link natural/synthetic protein/peptide-based polymeric chains for a wide range of biomedical applications. Although natural peptide ligases, such as sortases and butelase 1 are known cysteine proteases with ligase activity, some serine proteases, such as trypsin and subtilisin, are protein engineered to form trypsiligase and subtiligase, respectively, which exhibited efficient ligase activity by linking proteins/peptides with a great variety of molecules. Peptide ligase activity by these engineered proteases is more efficient than the hydrolysis of peptide bonds (peptidase activity). Peptide esters form acyl-enzyme intermediate with serine/cysteine residues of these proteases, with subsequent aminolysis forming covalent peptide bond with N-terminal residue of another polymeric chain. In addition, peptide ligases have the potential to conjugate with cell-adhesive ECM proteins or motifs and growth factors to (bio)polymeric networks to enhance cell attachment, growth, and differentiation. Here, we review the potential and limitations of natural and engineered peptide ligases as an enzyme toolbox with a focus on sortases (classes A-D), butelase 1, trypsiligase, and subtilisin variants, and the mechanisms for their zero-length cross-linking of (bio)polymeric scaffolds for various tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
4
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
5
|
Hahn D, Sonntag JM, Lück S, Maitz MF, Freudenberg U, Jordan R, Werner C. Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels-Expanding the Physicochemical Parameter Space of Biohybrid Materials. Adv Healthc Mater 2021; 10:e2101327. [PMID: 34541827 PMCID: PMC11481032 DOI: 10.1002/adhm.202101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics.
Collapse
Affiliation(s)
- Dominik Hahn
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Jannick M. Sonntag
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Steffen Lück
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Rainer Jordan
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Fetscherstr. 10501307DresdenGermany
| |
Collapse
|
6
|
Wei H, Chen Z, Hu Y, Cao W, Ma X, Zhang C, Gao X, Qian X, Zhao Y, Chai R. Topographically Conductive Butterfly Wing Substrates for Directed Spiral Ganglion Neuron Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102062. [PMID: 34411420 DOI: 10.1002/smll.202102062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Spiral ganglion neuron (SGN) degeneration can lead to severe hearing loss, and the directional regeneration of SGNs has shown great potential for improving the efficacy of auditory therapy. Here, a novel 3D conductive microstructure with surface topologies is presented by integrating superaligned carbon-nanotube sheets (SA-CNTs) onto Morpho Menelaus butterfly wings for SGN culture. The parallel groove-like topological structures of M. Menelaus wings induce the cultured cells to grow along the direction of its ridges. The excellent conductivity of SA-CNTs significantly improves the efficiency of cellular information conduction. When integrating the SA-CNTs with M. Menelaus wings, the SA-CNTs are aligned in parallel with the M. Menelaus ridges, which further strengthens the consistency of the surface topography in the composite substrate. The SA-CNTs integrated onto butterfly wings provide powerful physical signals and regulate the behavior of SGNs, including cell survival, adhesion, neurite outgrowth, and synapse formation. These features indicate the possibility of directed regeneration after auditory nerve injury.
Collapse
Affiliation(s)
- Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - XiaoFeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
| |
Collapse
|
7
|
Interaction of micropatterned topographical and biochemical cues to direct neurite growth from spiral ganglion neurons. Hear Res 2021; 409:108315. [PMID: 34343850 DOI: 10.1016/j.heares.2021.108315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Functional outcomes with neural prosthetic devices, such as cochlear implants, are limited in part due to physical separation between the stimulating elements and the neurons they stimulate. One strategy to close this gap aims to precisely guide neurite regeneration to position the neurites in closer proximity to electrode arrays. Here, we explore the ability of micropatterned biochemical and topographic guidance cues, singly and in combination, to direct the growth of spiral ganglion neuron (SGN) neurites, the neurons targeted by cochlear implants. Photopolymerization of methacrylate monomers was used to form unidirectional topographical features of ridges and grooves in addition to multidirectional patterns with 90o angle turns. Microcontact printing was also used to create similar uni- and multi-directional patterns of peptides on polymer surfaces. Biochemical cues included peptides that facilitate (laminin, LN) or repel (EphA4-Fc) neurite growth. On flat surfaces, SGN neurites preferentially grew on LN-coated stripes and avoided EphA4-Fc-coated stripes. LN or EphA4-Fc was selectively adsorbed onto the ridges or grooves to test the neurite response to a combination of topographical and biochemical cues. Coating the ridges with EphA4-Fc and grooves with LN lead to enhanced SGN alignment to topographical patterns. Conversely, EphA4-Fc coating on the grooves or LN coating on the ridges tended to disrupt alignment to topographical patterns. SGN neurites respond to combinations of topographical and biochemical cues and surface patterning that leverages both cues enhance guided neurite growth.
Collapse
|
8
|
Miura Y, Kojima Y, Seto H, Hoshino Y. Bio-inert Properties of TEG Modified Dendrimer Interface. ANAL SCI 2021; 37:519-523. [PMID: 33310990 DOI: 10.2116/analsci.20p388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bioinert interfaces that prevent adhesion of proteins and cells are important for biomaterial applications. In order to design a bioinert interface, the immobilization of an appropriate functional group and the control of molecular density is required. Dendrimer was modified with triethylene glycol (TEG) to display a dense brush structure. TEG with different density and terminal groups were immobilized with a dendrimer template and thiol terminated molecules. The inhibitory effect on protein and bacteria binding was investigated. The physical property of the interface was measured by QCM-admittance to clarify the factor of the bioinert property.
Collapse
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Kyushu University
| | - Yuki Kojima
- Department of Chemical Engineering, Kyushu University
| | - Hirokazu Seto
- Department of Chemical Engineering, Kyushu University
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University
| |
Collapse
|
9
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Swar S, Máková V, Stibor I. The Covalent Tethering of Poly(ethylene glycol) to Nylon 6 Surface via N, N'-Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight against Pathogenic Bacteria. Polymers (Basel) 2020; 12:E2181. [PMID: 32987744 PMCID: PMC7598665 DOI: 10.3390/polym12102181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Different forms of unmodified and modified Poly(ethylene glycols) (PEGs) are widely used as antifouling and antibacterial agents for biomedical industries and Nylon 6 is one of the polymers used for biomedical textiles. Our recent study focused on an efficient approach to PEG immobilization on a reduced Nylon 6 surface via N,N'-disuccinimidyl carbonate (DSC) conjugation. The conversion of amide functional groups to secondary amines on the Nylon 6 polymer surface was achieved by the reducing agent borane-tetrahydrofuran (BH3-THF) complex, before binding the PEG. Various techniques, including water contact angle and free surface energy measurements, atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, were used to confirm the desired surface immobilization. Our findings indicated that PEG may be efficiently tethered to the Nylon 6 surface via DSC, having an enormous future potential for antifouling biomedical materials. The bacterial adhesion performances against S. aureus and P. aeruginosa were examined. In vitro cytocompatibility was successfully tested on pure, reduced, and PEG immobilized samples.
Collapse
Affiliation(s)
| | - Veronika Máková
- Department of Nanochemistry, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117 Liberec 1, Czech Republic; (S.S.); (I.S.)
| | | |
Collapse
|
11
|
Ishihara K, Ito M, Fukazawa K, Inoue Y. Interface of Phospholipid Polymer Grafting Layers to Analyze Functions of Immobilized Oligopeptides Involved in Cell Adhesion. ACS Biomater Sci Eng 2020; 6:3984-3993. [PMID: 33463330 DOI: 10.1021/acsbiomaterials.0c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to design a material surface for use in the analysis of the behavior of biomolecules at the interface of direct cell contact. A superhydrophilic surface was prepared with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), which was grafted onto a substrate with controlled polymer chain density. An arginine-glycine-aspartic acid (RGD) peptide was immobilized at the surface of the polymer graft surface (PMPC-RGD surface). Initial adhesion of the cells to this substrate was observed. The PMPC-RGD surface could enable cell adhesion only through RGD peptide-integrin interactions. The density and movability of the RGD peptide at the terminal of the graft PMPC chain and the orientation of the RGD peptide affected the density of adherent cells. Thus, the PMPC graft surface may be a good candidate for a new platform with the ability to immobilize biomolecules to a defined position and enable accurate analysis of their effects on cells.
Collapse
|
12
|
Ki SH, Lee S, Kim D, Song SJ, Hong SP, Cho S, Kang SM, Choi JS, Cho WK. Antibacterial Film Formation through Iron(III) Complexation and Oxidation-Induced Cross-Linking of OEG-DOPA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14465-14472. [PMID: 31612722 DOI: 10.1021/acs.langmuir.9b02572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Catechols are prone to oxidative polymerization as well as complex formation with metal ions. These two features of catechols have played an important role in the construction of functional films on various surfaces. For example, marine antifouling films and antibacterial films were successfully prepared by oxidative polymerization and metal complexation of catechol-containing molecules, respectively. However, the effect of simultaneous metal complexation and oxidative polymerization on functional film formation has not yet been fully investigated. Herein, as a derivative of 3-(3,4-dihydroxyphenyl)-l-alanine (DOPA), we synthesized an ethylene glycol-derivatized DOPA (OEG-DOPA) and formed OEG-DOPA thin films based on (1) oxidative polymerization and (2) the complexation between catechol groups of OEG-DOPA and iron(III) (FeIII) ions. Either or both approaches were used for the film formation. OEG-DOPA film formation was characterized by ellipsometry, contact angle goniometry, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Among the conditions used, the formation of a uniform film was only achieved with the dual cross-linking system of FeIII complexation and oxidation-induced covalent bond formation. Compared to the uncoated substrate and other OEG-DOPA films prepared under different conditions, the uniform OEG-DOPA film strongly inhibited bacterial adhesion, showing excellent antibacterial capability. We think that our surface-coating strategy can be applied to medical devices, tools, and implants where bacterial adhesion and biofilm formation should be prevented. This work can also serve as a basis for the construction of functional thin films for other catechol-functionalized materials.
Collapse
Affiliation(s)
| | | | | | | | - Seok-Pyo Hong
- HC Lab , 235 Creation Hall, 193 Munji-ro, Yuseong-gu , Daejeon 34051 , Korea
| | | | - Sung Min Kang
- Department of Chemistry , Chungbuk National University , 1 Chungdae-ro, Seowon-gu , Cheongju 28644 , Chungbuk , Korea
| | | | | |
Collapse
|
13
|
Kurtz IS, Sui S, Hao X, Huang M, Perry SL, Schiffman JD. Bacteria-Resistant, Transparent, Free-Standing Films Prepared from Complex Coacervates. ACS APPLIED BIO MATERIALS 2019; 2:3926-3933. [PMID: 31579306 PMCID: PMC6774644 DOI: 10.1021/acsabm.9b00502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the fabrication, properties, and bacteria-resistance of polyelectrolyte complex (PEC) coatings and free-standing films. Poly(4-styrenesulfonic acid), poly(diallyldimethyl-ammonium chloride), and salt were spin-coated into PEC films. After thermal annealing in a humid environment, highly transparent, mechanically strong, and chemically robust films were formed. Notably, we demonstrate that PEC coatings significantly reduce the attachment of Escherichia coli K12 without killing the micro-organisms. We suggest that forming bacteria-resistant surface coatings from commercially available polymers holds the potential for use across a wide range of applications including high-touch surfaces in medical settings.
Collapse
Affiliation(s)
| | | | | | - Mengfei Huang
- Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Maitz MF, Martins MCL, Grabow N, Matschegewski C, Huang N, Chaikof EL, Barbosa MA, Werner C, Sperling C. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater 2019; 94:33-43. [PMID: 31226481 DOI: 10.1016/j.actbio.2019.06.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022]
Abstract
Biomedical devices in the blood flow disturb the fine-tuned balance of pro- and anti-coagulant factors in blood and vessel wall. Numerous technologies have been suggested to reduce coagulant and inflammatory responses of the body towards the device material, ranging from camouflage effects to permanent activity and further to a responsive interaction with the host systems. However, not all types of modification are suitable for all types of medical products. This review has a focus on application-oriented considerations of hemocompatible surface fittings. Thus, passive versus bioactive modifications are discussed along with the control of protein adsorption, stability of the immobilization, and the type of bioactive substance, biological or synthetic. Further considerations are related to the target system, whether enzymes or cells should be addressed in arterial or venous system, or whether the blood vessel wall is addressed. Recent developments like feedback controlled or self-renewing systems for drug release or addressing cellular regulation pathways of blood platelets and endothelial cells are paradigms for a generation of blood contacting devices, which are hemocompatible by cooperation with the host system. STATEMENT OF SIGNIFICANCE: This paper is part 4 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany; Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Niels Grabow
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany
| | - Claudia Matschegewski
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany; Institute for ImplantTechnology and Biomaterials (IIB) e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, United States; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Mário A Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| |
Collapse
|
15
|
Kaneko T, Ando S, Furuta K, Oiwa K, Shintaku H, Kotera H, Yokokawa R. Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars. NANOSCALE 2019; 11:9879-9887. [PMID: 30888373 DOI: 10.1039/c9nr01324e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Motor proteins function in in vivo ensembles to achieve cargo transport, flagellum motion, and mitotic cell division. Although the cooperativity of multiple motors is indispensable for physiological function, reconstituting the arrangement of motors in vitro is challenging, so detailed analysis of the functions of motor ensembles has not yet been achieved. Here, we developed an assay platform to study the motility of microtubules driven by a defined number of kinesin motors spaced in a definite manner. Gold (Au) nano-pillar arrays were fabricated on a silicon/silicon dioxide (Si/SiO2) substrate with spacings of 100 nm to 500 nm. The thiol-polyethylene glycol (PEG)-biotin self-assembled monolayer (SAM) and silane-PEG-CH3 SAM were then selectively formed on the pillars and SiO2 surface, respectively. This allowed for both immobilization of kinesin molecules on Au nano-pillars in a precise manner and repulsion of kinesins from the SiO2 surface. Using arrayed kinesin motors, we report that motor number and spacing do not influence the motility of microtubules driven by kinesin-1 motors. This assay platform is applicable to all kinds of biotinylated motors, allows the study of the effects of motor number and spacing, and is expected to reveal novel behaviors of motor proteins.
Collapse
Affiliation(s)
- Taikopaul Kaneko
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Suguru Ando
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
16
|
Kuroki H, Gruzd A, Tokarev I, Patsahan T, Ilnytskyi J, Hinrichs K, Minko S. Biofouling-Resistant Porous Membranes with a Precisely Adjustable Pore Diameter via 3D Polymer Grafting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18268-18275. [PMID: 31033277 DOI: 10.1021/acsami.9b06679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A facile route to biofouling-resistant porous thin-film membranes that can be fine-tuned for specific needs in diverse bioseparation, mass flow control, sensors, and drug delivery applications is reported. The proposed approach is based on combining two distinct macromolecular systems-a cross-linked poly(2-vinyl pyridine) network and a 3D-grafted polyethylene oxide (PEO) layer-in one robust porous material whose porosity can be adjusted within a wide range, covering the macroporous and mesoporous size regimes. Notably, this reconfigurable material maintains its antifouling properties throughout the entire range of pore size configurations because of a dense surface carpet of PEO chains with self-healing properties that are immobilized both onto the surface and inside the polymer network through what was termed 3D grafting. Experimental results are supplemented by computer simulations of a coarse-grained model of a porous membrane that shows qualitatively similar pore swelling behavior.
Collapse
Affiliation(s)
- Hidenori Kuroki
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
- Laboratory for Chemistry and Life Science , Tokyo Institute of Technology , R1-17, 4259 Nagatsuta , Midori-ku, Yokohama , Kanagawa 226-8503 , Japan
| | - Alexey Gruzd
- Nanostructured Materials Lab , University of Georgia , Athens , Georgia 30602 , United States
| | - Igor Tokarev
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Taras Patsahan
- Department of Computer Simulations of Many-Particle Systems , Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine , Lviv 79011 , Ukraine
| | - Jaroslav Ilnytskyi
- Department of Computer Simulations of Many-Particle Systems , Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine , Lviv 79011 , Ukraine
| | - Karsten Hinrichs
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 12489 Berlin , Germany
| | - Sergiy Minko
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
- Nanostructured Materials Lab , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
17
|
Selective PEGylation of Parylene-C/SiO 2 Substrates for Improved Astrocyte Cell Patterning. Sci Rep 2018; 8:2754. [PMID: 29426929 PMCID: PMC5807449 DOI: 10.1038/s41598-018-21135-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 11/23/2022] Open
Abstract
Controlling the spatial distribution of glia and neurons in in vitro culture offers the opportunity to study how cellular interactions contribute to large scale network behaviour. A recently developed approach to cell-patterning uses differential adsorption of animal-serum protein on parylene-C and SiO2 surfaces to enable patterning of neurons and glia. Serum, however, is typically poorly defined and generates reproducibility challenges. Alternative activation methods are highly desirable to enable patterning without relying on animal serum. We take advantage of the innate contrasting surface chemistries of parylene-C and SiO2 to enable selective bonding of polyethylene glycol SiO2 surfaces, i.e. PEGylation, rendering them almost completely repulsive to cell adhesion. As the reagents used in the PEGylation protocol are chemically defined, the reproducibility and batch-to-batch variability complications associated with the used of animal serum are avoided. We report that PEGylated parylene-C/SiO2 substrates achieve a contrast in astrocyte density of 65:1 whereas the standard serum-immersion protocol results in a contrast of 5.6:1. Furthermore, single-cell isolation was significantly improved on PEGylated substrates when astrocytes were grown on close-proximity parylene-C nodes, whereas isolation was limited on serum-activated substrates due tolerance for cell adhesion on serum-adsorbed SiO2 surfaces.
Collapse
|
18
|
Biehl P, Von der Lühe M, Dutz S, Schacher FH. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers (Basel) 2018; 10:E91. [PMID: 30966126 PMCID: PMC6414908 DOI: 10.3390/polym10010091] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/04/2023] Open
Abstract
Throughout the last decades, magnetic nanoparticles (MNP) have gained tremendous interest in different fields of applications like biomedicine (e.g., magnetic resonance imaging (MRI), drug delivery, hyperthermia), but also more technical applications (e.g., catalysis, waste water treatment) have been pursued. Different surfactants and polymers are extensively used for surface coating of MNP to passivate the surface and avoid or decrease agglomeration, decrease or modulate biomolecule absorption, and in most cases increase dispersion stability. For this purpose, electrostatic or steric repulsion can be exploited and, in that regard, surface charge is the most important (hybrid) particle property. Therefore, polyelectrolytes are of great interest for nanoparticle coating, as they are able to stabilize the particles in dispersion by electrostatic repulsion due to their high charge densities. In this review article, we focus on polyzwitterions as a subclass of polyelectrolytes and their use as coating materials for MNP. In the context of biomedical applications, polyzwitterions are widely used as they exhibit antifouling properties and thus can lead to minimized protein adsorption and also long circulation times.
Collapse
Affiliation(s)
- Philip Biehl
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Moritz Von der Lühe
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| | - Felix H Schacher
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
19
|
Trachsel L, Broguiere N, Rosenboom JG, Zenobi-Wong M, Benetti EM. Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture. J Mater Chem B 2018; 6:7568-7572. [DOI: 10.1039/c8tb02382d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cellularized poly(2-alkyl-2-oxazoline) hydrogels fabricated by sortase-mediated crosslinking feature tunable mechanical properties and enable extremely high cell viability.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Nicolas Broguiere
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Jan-Georg Rosenboom
- Institute of Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Zürich
- Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Edmondo M. Benetti
- Polymer Surfaces Group
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- Zürich
| |
Collapse
|
20
|
Weydert S, Zürcher S, Tanner S, Zhang N, Ritter R, Peter T, Aebersold MJ, Thompson-Steckel G, Forró C, Rottmar M, Stauffer F, Valassina IA, Morgese G, Benetti EM, Tosatti S, Vörös J. Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8594-8605. [PMID: 28792773 DOI: 10.1021/acs.langmuir.7b01437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering and analyzing elementary circuitry in vitro. Building well-defined neural networks is the ultimate goal. Antifouling coatings are often used to control neurite outgrowth. Because erroneous connectivity alters the entire topology and functionality of minicircuits, the requirements are demanding. Current state-of-the-art coating solutions such as widely used poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) fail to prevent primary neurons from making undesired connections in long-term cultures. In this study, a new copolymer with greatly enhanced antifouling properties is developed, characterized, and evaluated for its reliability, stability, and versatility. To this end, the following components are grafted to a poly(acrylamide) (PAcrAm) backbone: hexaneamine, to support spontaneous electrostatic adsorption in buffered aqueous solutions, and propyldimethylethoxysilane, to increase the durability via covalent bonding to hydroxylated culture surfaces and antifouling polymer poly(2-methyl-2-oxazoline) (PMOXA). In an assay for neural connectivity control, the new copolymer's ability to effectively prevent unwanted neurite outgrowth is compared to the gold standard, PLL-g-PEG. Additionally, its versatility is evaluated on polystyrene, glass, and poly(dimethylsiloxane) using primary hippocampal and cortical rat neurons as well as C2C12 myoblasts, and human fibroblasts. PAcrAm-g-(PMOXA, NH2, Si) consistently outperforms PLL-g-PEG with all tested culture surfaces and cell types, and it is the first surface coating which reliably prevents arranged nodes of primary neurons from forming undesired connections over the long term. Whereas the presented work focuses on the proof of concept for the new antifouling coating to successfully and sustainably prevent unwanted connectivity, it is an important milestone for in vitro neuroscience, enabling follow-up studies to engineer neurologically relevant networks. Furthermore, because PAcrAm-g-(PMOXA, NH2, Si) can be quickly applied and used with various surfaces and cell types, it is an attractive extension to the toolbox for in vitro biology and biomedical engineering.
Collapse
Affiliation(s)
- Serge Weydert
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Stefanie Tanner
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Ning Zhang
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 210096 Nanjing, China
| | - Rebecca Ritter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Thomas Peter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen, Switzerland
| | - Flurin Stauffer
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Giulia Morgese
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | | | - János Vörös
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Francolini I, Vuotto C, Piozzi A, Donelli G. Antifouling and antimicrobial biomaterials: an overview. APMIS 2017; 125:392-417. [PMID: 28407425 DOI: 10.1111/apm.12675] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/14/2017] [Indexed: 12/12/2022]
Abstract
The use of implantable medical devices is a common and indispensable part of medical care for both diagnostic and therapeutic purposes. However, as side effect, the implant of medical devices quite often leads to the occurrence of difficult-to-treat infections, as a consequence of the colonization of their abiotic surfaces by biofilm-growing microorganisms increasingly resistant to antimicrobial therapies. A promising strategy to combat device-related infections is based on anti-infective biomaterials that either repel microbes, so they cannot attach to the device surfaces, or kill them in the surrounding areas. In general, such biomaterials are characterized by antifouling coatings, exhibiting low adhesion or even repellent properties towards microorganisms, or antimicrobial coatings, able to kill microbes approaching the surface. In this light, the present overview will address the development in the last two decades of antifouling and antimicrobial biomaterials designed to potentially limit the initial stages of microbial adhesion, as well as the microbial growth and biofilm formation on medical device surfaces.
Collapse
Affiliation(s)
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome
| | | | | |
Collapse
|
22
|
Kuliasha CA, Finlay JA, Franco SC, Clare AS, Stafslien SJ, Brennan AB. Marine anti-biofouling efficacy of amphiphilic poly(coacrylate) grafted PDMSe: effect of graft molecular weight. BIOFOULING 2017; 33:252-267. [PMID: 28270054 DOI: 10.1080/08927014.2017.1288807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
There is currently strong motivation due to ecological concerns to develop effective anti-biofouling coatings that are environmentally benign, durable, and stable for use by the maritime industry. The antifouling (AF) and fouling-release (FR) efficacy of amphiphilic, charged copolymers composed of ~52% acrylamide, ~34% acrylic acid, and ~14% methyl acrylate grafted to poly(dimethyl siloxane) (PDMSe) surfaces were tested against zoospores of the green alga Ulva linza and the diatom Navicula incerta. The biofouling response to molecular weight variation was analyzed for grafts ranging from ~100 to 1,400 kg mol-1, The amphiphilic coatings showed a marked improvement in the FR response, with a 55% increase in the percentage removal of diatoms and increased AF efficacy, with 92% reduction in initial attachment density of zoospores, compared to PDMSe controls. However, graft molecular weight, in the range tested, was statistically insignificant. Grafting copolymers to PDMSe embossed with the Sharklet™ microtopography did not produce enhanced AF efficacy.
Collapse
Affiliation(s)
- Cary A Kuliasha
- a Department of Materials Science and Engineering , University of Florida , Gainesville , FL , USA
| | - John A Finlay
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Sofia C Franco
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Anthony S Clare
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Shane J Stafslien
- c Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Anthony B Brennan
- a Department of Materials Science and Engineering , University of Florida , Gainesville , FL , USA
| |
Collapse
|
23
|
Mahmoudi N, Reed L, Moix A, Alshammari N, Hestekin J, Servoss SL. PEG-mimetic peptoid reduces protein fouling of polysulfone hollow fibers. Colloids Surf B Biointerfaces 2017; 149:23-29. [DOI: 10.1016/j.colsurfb.2016.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 01/15/2023]
|
24
|
Covalent Immobilization of Enoxacin onto Titanium Implant Surfaces for Inhibiting Multiple Bacterial Species Infection and In Vivo Methicillin-Resistant Staphylococcus aureus Infection Prophylaxis. Antimicrob Agents Chemother 2016; 61:AAC.01766-16. [PMID: 27799220 DOI: 10.1128/aac.01766-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022] Open
Abstract
Infection is one of the most important causes of titanium implant failure in vivo A developing prophylactic method involves the immobilization of antibiotics, especially vancomycin, onto the surface of the titanium implant. However, these methods have a limited effect in curbing multiple bacterial infections due to antibiotic specificity. In the current study, enoxacin was covalently bound to an amine-functionalized Ti surface by use of a polyethylene glycol (PEG) spacer, and the bactericidal effectiveness was investigated in vitro and in vivo The titanium surface was amine functionalized with 3-aminopropyltriethoxysilane (APTES), through which PEG spacer molecules were covalently immobilized onto the titanium, and then the enoxacin was covalently bound to the PEG, which was confirmed by X-ray photoelectron spectrometry (XPS). A spread plate assay, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to characterize the antimicrobial activity. For the in vivo study, Ti implants were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and implanted into the femoral medullary cavity of rats. The degree of infection was assessed by radiography, micro-computed tomography, and determination of the counts of adherent bacteria 3 weeks after surgery. Our data demonstrate that the enoxacin-modified PEGylated Ti surface effectively prevented bacterial colonization without compromising cell viability, adhesion, or proliferation in vitro Furthermore, it prevented MRSA infection of the Ti implants in vivo Taken together, our results demonstrate that the use of enoxacin-modified Ti is a potential approach to the alleviation of infections of Ti implants by multiple bacterial species.
Collapse
|
25
|
Ataman NC, Klok HA. Degrafting of Poly(poly(ethylene glycol) methacrylate) Brushes from Planar and Spherical Silicon Substrates. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01445] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nariye Cavusoglu Ataman
- Institut des Matériaux
et Institut des Sciences et Ingénierie Chimiques, Laboratoire
des Polyméres, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux
et Institut des Sciences et Ingénierie Chimiques, Laboratoire
des Polyméres, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Friis JE, Brøns K, Salmi Z, Shimizu K, Subbiahdoss G, Holm AH, Santos O, Pedersen SU, Meyer RL, Daasbjerg K, Iruthayaraj J. Hydrophilic Polymer Brush Layers on Stainless Steel Using Multilayered ATRP Initiator Layer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30616-30627. [PMID: 27792314 DOI: 10.1021/acsami.6b10466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin polymer coatings (in tens of nanometers to a micron thick) are desired on industrial surfaces such as stainless steel. In this thickness range coatings are difficult to produce using conventional methods. In this context, surface-initiated controlled polymerization method can offer a promising tool to produce thin polymer coatings via bottom-up approach. Furthermore, the industrial surfaces are chemically heterogeneous and exhibit surface features in the form of grain boundaries and grain surfaces. Therefore, the thin coatings must be equally effective on both the grain surfaces and the grain boundary regions. This study illustrates a novel "periodic rejuvenation of surface initiation" process using surface-initiated ATRP technique to amplify the graft density of poly(oligoethylene glycol)methacrylate (POEGMA) brush layers on stainless steel 316L surface. The optimized conditions demonstrate a controlled, macroscopically homogeneous, and stable POEGMA brush layer covering both the grain surface and the grain boundary region. Various relevant parameters-surface cleaning methods, controllability of thickness, graft density, homogeneity and stability-were studied using techniques such as ellipsometer, X-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive X-ray, surface zeta potential, and infrared reflection-adsorption spectroscopy.
Collapse
Affiliation(s)
- Jakob Ege Friis
- Department of Biological and Chemical Engineering, Aarhus University , Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Kaare Brøns
- Department of Biological and Chemical Engineering, Aarhus University , Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Zakaria Salmi
- Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kyoko Shimizu
- SACHEM Japan GK 5-6-27 Mizuhai, Higashi Osaka 578-0921, Japan
| | - Guruprakash Subbiahdoss
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Allan Hjarbæk Holm
- Grundfos Holding A/S , Poul Due Jensens Vej 7, DK-8850 Bjerringbro, Denmark
| | - Olga Santos
- Materials and Chemistry Center, Alfa Laval Lund AB , P.O. Box 74, SE-22100 Lund, Sweden
| | - Steen Uttrup Pedersen
- Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Rikke Louise Meyer
- Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
- Applied Physical Chemistry, KTH Royal Institute of Technology , SE-10044 Stockholm, Sweden
- Carbon Dioxide Activation Center , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Joseph Iruthayaraj
- Department of Biological and Chemical Engineering, Aarhus University , Hangøvej 2, DK-8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
- Carbon Dioxide Activation Center , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Laradji AM, McNitt CD, Yadavalli NS, Popik VV, Minko S. Robust, Solvent-Free, Catalyst-Free Click Chemistry for the Generation of Highly Stable Densely Grafted Poly(ethylene glycol) Polymer Brushes by the Grafting To Method and Their Properties. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01573] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Amine M. Laradji
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Christopher D. McNitt
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Nataraja S. Yadavalli
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Vladimir V. Popik
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Reviakine I, Jung F, Braune S, Brash JL, Latour R, Gorbet M, van Oeveren W. Stirred, shaken, or stagnant: What goes on at the blood-biomaterial interface. Blood Rev 2016; 31:11-21. [PMID: 27478147 DOI: 10.1016/j.blre.2016.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/15/2023]
Abstract
There is a widely recognized need to improve the performance of vascular implants and external medical devices that come into contact with blood by reducing adverse reactions they cause, such as thrombosis and inflammation. These reactions lead to major adverse cardiovascular events such as heart attacks and strokes. Currently, they are managed therapeutically. This need remains unmet by the biomaterials research community. Recognized stagnation of the blood-biomaterial interface research translates into waning interest from clinicians, funding agencies, and practitioners of adjacent fields. The purpose of this contribution is to stir things up. It follows the 2014 BloodSurf meeting (74th International IUVSTA Workshop on Blood-Biomaterial Interactions), offers reflections on the situation in the field, and a three-pronged strategy integrating different perspectives on the biological mechanisms underlying blood-biomaterial interactions. The success of this strategy depends on reengaging clinicians and on the renewed cooperation of the funding agencies to support long-term efforts.
Collapse
Affiliation(s)
- Ilya Reviakine
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - John L Brash
- Department of Chemical Engineering, School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Robert Latour
- Rhodes Engineering Research Center, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Maud Gorbet
- Department of Systems Design Engineering, Biomedical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Wim van Oeveren
- HaemoScan, Stavangerweg 23-23, 9723JC Groningen, The Netherlands
| |
Collapse
|
29
|
Huang J, He T, He X, Xu J, Zuo B, Wang X. Fabrication of V-shaped brushes consisting of two highly incompatible arms of PEG and fluorinated PMMA and their protein-resistance performance. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin Huang
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Tingting He
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xumiao He
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Jianquan Xu
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Biao Zuo
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xinping Wang
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
30
|
Cavallaro AA, Macgregor-Ramiasa MN, Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6354-62. [PMID: 26901823 DOI: 10.1021/acsami.6b00330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Infections caused by the bacterial colonization of medical devices are a substantial problem to patients and healthcare. Biopassive polyoxazoline coatings are attracting attention in the biomedical field as one of the potential solutions to this problem. Here, we present an original and swift way to produce plasma-deposited oxazoline-based films for antifouling applications. The films developed via the plasma deposition of 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline have tunable thickness and surface properties. Diverse film chemistries were achieved by tuning and optimizing the deposition conditions. Human-derived fibroblasts were used to confirm the biocompatibility of oxazoline derived coatings. The capacity of the coatings to resist biofilm attachment was studied as a function of deposition power and mode (i.e., continuous wave or pulsed) and precursor flow rates for both 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline. After careful tuning of the deposition parameters films having the capacity to resist biofilm formation by more than 90% were achieved. The substrate-independent and customizable properties of the new generation of plasma deposited oxazoline thin films developed in this work make them attractive candidates for the coating of medical devices and other applications where bacteria surface colonization and biofilm formation is an issue.
Collapse
Affiliation(s)
- Alex A Cavallaro
- Future Industries Institute, University of South Australia , Mawson Lakes 5095, South Australia Australia
| | | | - Krasimir Vasilev
- School of Engineering, University of South Australia , Mawson Lakes 5095, South Australia Australia
| |
Collapse
|
31
|
Lilge I, Schönherr H. Control of Cell Attachment and Spreading on Poly(acrylamide) Brushes with Varied Grafting Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:838-847. [PMID: 26771447 DOI: 10.1021/acs.langmuir.5b04168] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To achieve spatial control of fibroblast cell attachment and spreading on a biocompatible polymer coating, the effect of poly(acrylamide) (PAAm) brushes with varied grafting density was investigated. The synthesis of the brushes was performed by surface-initiated atom transfer radical polymerization (SI-ATRP). Gold substrates were modified with binary self-assembled monolayers (SAMs) of an initiator and 16-mercaptohexadecanoic acid (MHDA) as an "inert" thiol to initiate the ATRP of AAm. By using different mixtures for the binary SAMs, a series of polymer brushes with varied grafting densities were prepared. The fractional coverage of surface bound initiator was determined by grazing incidence Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and contact angle measurements. A linear relationship between the Br/S ratio determined by XPS and ToF-SIMS versus the fraction of initiator on the surface determined by water contact angle measurements was observed. The varied initiation concentration on the gold substrates yielded PAAm brushes with different thicknesses, indicating a transition from mushroom to brush regimes with increasing grafting density. Thereby we achieved exquisite control of the degree of cell adhesion. Cell attachment experiments with NIH 3T3 fibroblast cells revealed cell spreading on PAAm brushes with low grafting densities (initiator fractional coverage <0.2) as well as a complete passivation by polymer brushes with higher grafting densities.
Collapse
Affiliation(s)
- Inga Lilge
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| |
Collapse
|
32
|
Franca E, Jao PF, Fang SP, Alagapan S, Pan L, Yoon JH, Yoon YK, Wheeler BC. Scale of Carbon Nanomaterials Affects Neural Outgrowth and Adhesion. IEEE Trans Nanobioscience 2016; 15:11-8. [PMID: 26829799 PMCID: PMC4791169 DOI: 10.1109/tnb.2016.2519505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carbon nanomaterials have become increasingly popular microelectrode materials for neuroscience applications. Here we study how the scale of carbon nanotubes and carbon nanofibers affect neural viability, outgrowth, and adhesion. Carbon nanotubes were deposited on glass coverslips via a layer-by-layer method with polyethylenimine (PEI). Carbonized nanofibers were fabricated by electrospinning SU-8 and pyrolyzing the nanofiber depositions. Additional substrates tested were carbonized and SU-8 thin films and SU-8 nanofibers. Surfaces were O2-plasma treated, coated with varying concentrations of PEI, seeded with E18 rat cortical cells, and examined at 3, 4, and 7 days in vitro (DIV). Neural adhesion was examined at 4 DIV utilizing a parallel plate flow chamber. At 3 DIV, neural viability was lower on the nanofiber and thin film depositions treated with higher PEI concentrations which corresponded with significantly higher zeta potentials (surface charge); this significance was drastically higher on the nanofibers suggesting that the nanostructure may collect more PEI molecules, causing increased toxicity. At 7 DIV, significantly higher neurite outgrowth was observed on SU-8 nanofiber substrates with nanofibers a significant fraction of a neuron's size. No differences were detected for carbonized nanofibers or carbon nanotubes. Both carbonized and SU-8 nanofibers had significantly higher cellular adhesion post-flow in comparison to controls whereas the carbon nanotubes were statistically similar to control substrates. These data suggest a neural cell preference for larger-scale nanomaterials with specific surface treatments. These characteristics could be taken advantage of in the future design and fabrication of neural microelectrodes.
Collapse
|
33
|
Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials 2015; 71:132-144. [DOI: 10.1016/j.biomaterials.2015.08.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 01/26/2023]
|
34
|
Yang L, Yaseen M, Zhao X, Coffey P, Pan F, Wang Y, Xu H, Webster J, Lu JR. Gelatin modified ultrathin silk fibroin films for enhanced proliferation of cells. ACTA ACUST UNITED AC 2015; 10:025003. [PMID: 25784671 DOI: 10.1088/1748-6041/10/2/025003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Silk fibroin (SF) films were modified with gelatin (G) to explore if such SF/G films could enhance the surface biocompatibility of silk as cell growth biomaterials. Ultrathin films were coated from aqueous SF solutions pre-mixed with different amounts of G. It was found that the SF/G blended films after methanol treatment were highly stable in physiological conditions. The incorporation of G smoothed the surface morphology of the SF/G films formed. Surface-exposed RGD sequences were successfully identified on the SF/G films through specific recognition of an integrin-mimicking peptide (bearing the sequence of CWDDGWLC). Cell culture experiments with 3T3 fibroblasts demonstrated that SF/G films with 1.2-20% (w/w) G gave clear improvement in promoting cell attachment and proliferation over pure SF films. Films containing 10-20% (w/w) of G showed cell attachment and growth even superior to the pure G films. The differences as observed from this study suggest that due to the lack of mechanical strength associated with its high solubility, G could not work alone as a cell growth scaffold. The enhanced cellular responses from the blended SF/G films must result from improvement in film stability arising from SF and in cytocompatibility arising from G. The results thus indicate the potential of the SF/G blends in tissue engineering and biomedical engineering where physical and biological properties could be manipulated via mixing either as bulk biomaterials or for coating purposes.
Collapse
Affiliation(s)
- Luyuan Yang
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Manchester M13 9PL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen Y, Cao W, Zhou J, Pidhatika B, Xiong B, Huang L, Tian Q, Shu Y, Wen W, Hsing IM, Wu H. Poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA): a bioactive copolymer for specific targeting to folate receptor-positive cancer cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2919-2930. [PMID: 25581478 DOI: 10.1021/am508399w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we present the preparation, characterization and application of a novel bioactive copolymer poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA), which has a specific interaction with folate receptor (FR)-positive cancer cells. Glass surface immobilized with PLL-g-PMOXA-c-FA was demonstrated to be adhesive to FR-positive cancer cells (HeLa, JEG-3) while nonadhesive to FR-negative ones (MCF-7, HepG2) in 3 h. The specific interaction between conjugated FA on the substrate and FRs on the cells could hardly be inhibited unless a high concentration (5 mM) of free FA was used due to the multivalent nature of it. The FA functionality ratio of the copolymer on the substrate had a significant influence on the adhesion of HeLa cells, and our experiments revealed that the affinity of the substrate to the cells declined dramatically with the decrease of functionality ratio. This was believed to be caused by the polydispersity of PMOXA tethers, as supported by GPC and ToF-SIMS data. As a proof of concept in the application of our material, we demonstrated successful recovery of HeLa cells from mixture with MCF-7 (1:100) on the copolymer-coated glass, and our results showed that both high sensitivity (95.6 ± 13.3%) and specificity (24.3 ± 8.6%) were achieved.
Collapse
Affiliation(s)
- Yin Chen
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang L, Chen X, Cao X, Xu J, Zuo B, Zhang L, Wang X, Yang J, Yao Y. Fabrication of polymer brush surfaces with highly-ordered perfluoroalkyl side groups at the brush end and their antibiofouling properties. J Mater Chem B 2015; 3:4388-4400. [DOI: 10.1039/c5tb00210a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein-resistant performance was enhanced greatly by constructing a polymer brush surface with perfectly close-packed perfluoroalkyl groups.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiang Chen
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xinyu Cao
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jianquan Xu
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Biao Zuo
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Li Zhang
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xinping Wang
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Juping Yang
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yanqing Yao
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
37
|
Zheng X, Zhang C, Bai L, Liu S, Tan L, Wang Y. Antifouling property of monothiol-terminated bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymer on gold surfaces. J Mater Chem B 2015; 3:1921-1930. [DOI: 10.1039/c4tb01766h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of well-controlled bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymers were grafted to gold surfaces through an in situ aminolysis reaction to reduce protein adsorption and platelet adhesion.
Collapse
Affiliation(s)
- Xiajun Zheng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Chong Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Longchao Bai
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| |
Collapse
|
38
|
Li Y, Sheiko SS. Molecular Mechanochemistry: Engineering and Implications of Inherently Strained Architectures. Top Curr Chem (Cham) 2015; 369:1-36. [PMID: 25805145 DOI: 10.1007/128_2015_627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mechanical activation of chemical bonds is usually achieved by applying external forces. However, nearly all molecules exhibit inherent strain of their chemical bonds and angles as a result of constraints imposed by covalent bonding and interactions with the surrounding environment. Particularly strong deformation of bonds and angles is observed in hyperbranched macromolecules caused by steric repulsion of densely grafted polymer branches. In addition to the tension amplification, macromolecular architecture allows for accurate control of strain distribution, which enables focusing of the internal mechanical tension to specific chemical bonds and angles. As such, chemically identical bonds in self-strained macromolecules become physically distinct because the difference in bond tension leads to the corresponding difference in the electronic structure and chemical reactivity of individual bonds within the same macromolecule. In this review, we outline different approaches to the design of strained macromolecules along with physical principles of tension management, including generation, amplification, and focusing of mechanical tension at specific chemical bonds.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3290, USA.
| |
Collapse
|
39
|
Comparative assessment of the stability of nonfouling poly(2-methyl-2-oxazoline) and poly(ethylene glycol) surface films: Anin vitrocell culture study. Biointerphases 2014; 9:031003. [DOI: 10.1116/1.4878461] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Fairbanks BD, Thissen H, Maurdev G, Pasic P, White JF, Meagher L. Inhibition of Protein and Cell Attachment on Materials Generated from N-(2-Hydroxypropyl) Acrylamide. Biomacromolecules 2014; 15:3259-66. [DOI: 10.1021/bm500654q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Helmut Thissen
- CSIRO Manufacturing Flagship, Bayview Avenue, Clayton 3169 VIC, Australia
| | - George Maurdev
- CSIRO Manufacturing Flagship, Bayview Avenue, Clayton 3169 VIC, Australia
| | - Paul Pasic
- CSIRO Manufacturing Flagship, Bayview Avenue, Clayton 3169 VIC, Australia
| | - Jacinta F. White
- CSIRO Manufacturing Flagship, Bayview Avenue, Clayton 3169 VIC, Australia
| | - Laurence Meagher
- CSIRO Manufacturing Flagship, Bayview Avenue, Clayton 3169 VIC, Australia
| |
Collapse
|
41
|
Li W, Liu Q, Liu L. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1730-42. [DOI: 10.1080/09205063.2014.948332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Tuft BW, Xu L, White SP, Seline AE, Erwood AM, Hansen MR, Guymon CA. Neural pathfinding on uni- and multidirectional photopolymerized micropatterns. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11265-76. [PMID: 24911660 PMCID: PMC4215840 DOI: 10.1021/am501622a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 05/22/2023]
Abstract
Overcoming signal resolution barriers of neural prostheses, such as the commercially available cochlear impant (CI) or the developing retinal implant, will likely require spatial control of regenerative neural elements. To rationally design materials that direct nerve growth, it is first necessary to determine pathfinding behavior of de novo neurite growth from prosthesis-relevant cells such as spiral ganglion neurons (SGNs) in the inner ear. Accordingly, in this work, repeating 90° turns were fabricated as multidirectional micropatterns to determine SGN neurite turning capability and pathfinding. Unidirectional micropatterns and unpatterned substrates are used as comparisons. Spiral ganglion Schwann cell alignment (SGSC) is also examined on each surface type. Micropatterns are fabricated using the spatial reaction control inherent to photopolymerization with photomasks that have either parallel line spacing gratings for unidirectional patterns or repeating 90° angle steps for multidirectional patterns. Feature depth is controlled by modulating UV exposure time by shuttering the light source at given time increments. Substrate topography is characterized by white light interferometry and scanning electron microscopy (SEM). Both pattern types exhibit features that are 25 μm in width and 7.4 ± 0.7 μm in depth. SGN neurites orient randomly on unpatterned photopolymer controls, align and consistently track unidirectional patterns, and are substantially influenced by, but do not consistently track, multidirectional turning cues. Neurite lengths are 20% shorter on multidirectional substrates compared to unidirectional patterns while neurite branching and microfeature crossing events are significantly higher. For both pattern types, the majority of the neurite length is located in depressed surface features. Developing methods to understand neural pathfinding and to guide de novo neurite growth to specific stimulatory elements will enable design of innovative biomaterials that improve functional outcomes of devices that interface with the nervous system.
Collapse
Affiliation(s)
- Bradley W. Tuft
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
| | - Linjing Xu
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Scott P. White
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
| | - Alison E. Seline
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Andrew M. Erwood
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Marlan R. Hansen
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - C. Allan Guymon
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
- Tel.:(319)335-5015
| |
Collapse
|
43
|
Hadjesfandiari N, Yu K, Mei Y, Kizhakkedathu JN. Polymer brush-based approaches for the development of infection-resistant surfaces. J Mater Chem B 2014; 2:4968-4978. [DOI: 10.1039/c4tb00550c] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Liu Q, Li W, Wang H, Liu L. A facile method of using sulfobetaine-containing copolymers for biofouling resistance. J Appl Polym Sci 2014. [DOI: 10.1002/app.40789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qingsheng Liu
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Wenchen Li
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Hua Wang
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Lingyun Liu
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| |
Collapse
|
45
|
Su CT, Yuan RH, Chen YC, Lin TJ, Chien HW, Hsieh CC, Tsai WB, Chang CH, Chen HY. A facile approach toward protein-resistant biointerfaces based on photodefinable poly-p-xylylene coating. Colloids Surf B Biointerfaces 2014; 116:727-33. [DOI: 10.1016/j.colsurfb.2013.11.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 11/30/2022]
|
46
|
Peled A, Pevzner A, Peretz Soroka H, Patolsky F. Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors. J Nanobiotechnology 2014; 12:7. [PMID: 24606762 PMCID: PMC3975481 DOI: 10.1186/1477-3155-12-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/03/2014] [Indexed: 11/29/2022] Open
Abstract
Background The detection of biological and chemical species is of key importance to numerous areas of medical and life sciences. Therefore, a great interest exists in developing new, rapid, miniature, biocompatible and highly sensitive sensors, capable to operate under physiological conditions and displaying long-term stabilities (e.g. in-body implantable sensors). Silicon nanostructures, nanowires and nanotubes, have been extensively explored as building blocks for the creation of improved electrical biosensing devices, by virtue of their remarkably high surface-to-volume ratios, and have shown exceptional sensitivity for the real time label-free detection of molecular species adsorbed on their surfaces, down to the sensitivity of single molecules. Yet, till this date, almost no rigorous studies have been performed on the temporal morphological stability of these nanostructures, and their resulting electrical devices, under physiological conditions (e.g. serum, blood), as well as on the chemical stability of the molecular recognition over-layers covering these structures. Results Here, we present systematic time-resolved results on the morphological stability of bare Si nanowire building blocks, as well on the chemical stability of siloxane-based molecular over-layers, under physiological conditions. Furthermore, in order to overcome the observed short-term morpho-chemical instabilities, we present on the chemical passivation of the Si nanostructures by thin metal oxide nanoshells, in the range of 3–10 nm. The thickness of the metal oxide layer influences on the resulting electrical sensitivity of the fabricated FETs (field effect transistors), with an optimum thickness of 3–4 nm. Conclusions The core-shell structures display remarkable long-term morphological stability, preventing both, the chemical hydrolytic dissolution of the silicon under-structure and the concomitant loss of the siloxane-based chemical over-layers, for periods of at least several months. Electrical devices constructed from these nanostructures display excellent electrical characteristics and detection sensitivities, with exceptionally high morphological and functional stabilities. These results pave the road for the creation of long-term implantable biosensing devices in general, and nanodevices in particular.
Collapse
Affiliation(s)
| | | | | | - Fernando Patolsky
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
47
|
Hardelauf H, Waide S, Sisnaiske J, Jacob P, Hausherr V, Schöbel N, Janasek D, van Thriel C, West J. Micropatterning neuronal networks. Analyst 2014; 139:3256-64. [DOI: 10.1039/c4an00608a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and effective method for patterning primary neuronal networks and circuits.
Collapse
Affiliation(s)
- Heike Hardelauf
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
| | - Sarah Waide
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
| | - Julia Sisnaiske
- Leibniz Research Centre for Working Environment and Human Factors – IfADo
- 44139 Dortmund, Germany
| | - Peter Jacob
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
| | - Vanessa Hausherr
- Leibniz Research Centre for Working Environment and Human Factors – IfADo
- 44139 Dortmund, Germany
| | - Nicole Schöbel
- Leibniz Research Centre for Working Environment and Human Factors – IfADo
- 44139 Dortmund, Germany
| | - Dirk Janasek
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors – IfADo
- 44139 Dortmund, Germany
| | - Jonathan West
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
- Institute for Life Sciences
- University of Southampton
- , UK
| |
Collapse
|
48
|
Wu Q, Qi Q, Zhao C, Liu C, Fan L, Zhang W, Shi J, Guo D. A hybrid proteolytic and antibacterial bifunctional film based on amphiphilic carbonaceous conjugates of trypsin and vancomycin. J Mater Chem B 2014; 2:1681-1688. [DOI: 10.1039/c3tb21641a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Rasi Ghaemi S, Harding FJ, Delalat B, Gronthos S, Voelcker NH. Exploring the mesenchymal stem cell niche using high throughput screening. Biomaterials 2013; 34:7601-15. [DOI: 10.1016/j.biomaterials.2013.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022]
|
50
|
Platzman I, Muth CA, Lee-Thedieck C, Pallarola D, Atanasova R, Louban I, Altrock E, Spatz JP. Surface Properties of Nanostructured Bio-Active Interfaces: Impacts of Surface Stiffness and Topography on Cell-Surface Interactions. RSC Adv 2013; 3:13293-13303. [PMID: 33791090 PMCID: PMC8009309 DOI: 10.1039/c3ra41579a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Due to their ability to confer key functions of the native extracellular matrix (ECM) poly(ethylene glycol) (PEG)-based and PEG-modified materials have been extensively used as biocompatible and biofunctionalized substrate systems to study the influence of environmental parameters on cell adhesion in vitro. Given wide-ranging recent evidence that ECM compliance influences a variety of cell functions, the detailed determination and characterization of the specific PEG surface characteristics including topography, stiffness and chemistry is required. Here, we studied two frequently used bio-active interfaces - PEG-based and PEG-modified surfaces - to elucidate the differences between the physical surface properties, which cells can sense and respond to. For this purpose, two sets of surfaces were synthesized: the first set consisted of nanopatterned glass surfaces containing cRGD-functionalized gold nanoparticles surrounded by a passivated PEG-silane layer and the second set consisted of PEG-diacrylate (PEG-DA) hydrogels decorated with cRGD-functionalized gold nanoparticlesAlthough the two sets of nanostructured materials compared here were highly similar in terms of density and geometrical distribution of the presented bio-ligands as well as in terms of mechanical bulk properties, the topography and mechanical properties of the surfaces were found to be substantially different and are described in detail. In comparison to very stiff and ultrasmooth surface properties of the PEG-passivated glasses, the mechanical properties of PEG-DA surfaces in the biologically relevant stiffness range, together with the increased surface roughness at micro- and nanoscale levels have the potential to affect cell behavior. This potential was verified by studying the adhesive behavior of hematopoietic KG-1a and rat embryonic fibroblast (REF52) cells on both surfaces.
Collapse
Affiliation(s)
- Ilia Platzman
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, Stuttgart 70569, Germany & Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| | - Christine Anna Muth
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, Stuttgart 70569, Germany & Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| | - Cornelia Lee-Thedieck
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, Stuttgart 70569, Germany & Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Diego Pallarola
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, Stuttgart 70569, Germany & Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| | - Ralitsa Atanasova
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, Stuttgart 70569, Germany & Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| | - Ilia Louban
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, Stuttgart 70569, Germany & Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| | - Eva Altrock
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, Stuttgart 70569, Germany & Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, Stuttgart 70569, Germany & Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|