1
|
Luo J, Yu H, Lu B, Wang D, Deng X. Superhydrophobic Biological Fluid-Repellent Surfaces: Mechanisms and Applications. SMALL METHODS 2022; 6:e2201106. [PMID: 36287096 DOI: 10.1002/smtd.202201106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Superhydrophobic biological fluid-repellent surfaces (SBFRSs) have attracted great attention in the treatment of blood and urine-related diseases because of their unique wettability and compatibility, which creates a new path for the development of medical apparatus and instruments, and are expected to create advances in various fields. Here, this review provides an up-to-date summary of research progress on the repellent mechanism and application of SBFRSs. The underlying physical and chemical principles for designing superhydrophobic surfaces are first introduced. Then, the dialectical influences of solid-liquid interactions between superhydrophobic surfaces and biological fluids on the wettability and compatibility are emphatically expounded. Subsequently, attention is drawn to the recent applications of SBFRSs in biomedical fields, such as surgical medical apparatus, implant materials, extracorporeal circulation devices, and biological fluid detection. Finally, the outlook and challenges in terms of employing SBFRSs are also discussed. This review is expected to provide a comprehensive guidance for the preparation of SBFRSs with compatibility and long-term superhydrophobic stability that is closely related to clinical applications.
Collapse
Affiliation(s)
- Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Huali Yu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Binyang Lu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| |
Collapse
|
2
|
Douglass M, Garren M, Devine R, Mondal A, Handa H. Bio-inspired hemocompatible surface modifications for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2022; 130:100997. [PMID: 36660552 PMCID: PMC9844968 DOI: 10.1016/j.pmatsci.2022.100997] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When blood first encounters the artificial surface of a medical device, a complex series of biochemical reactions is triggered, potentially resulting in clinical complications such as embolism/occlusion, inflammation, or device failure. Preventing thrombus formation on the surface of blood-contacting devices is crucial for maintaining device functionality and patient safety. As the number of patients reliant on blood-contacting devices continues to grow, minimizing the risk associated with these devices is vital towards lowering healthcare-associated morbidity and mortality. The current standard clinical practice primarily requires the systemic administration of anticoagulants such as heparin, which can result in serious complications such as post-operative bleeding and heparin-induced thrombocytopenia (HIT). Due to these complications, the administration of antithrombotic agents remains one of the leading causes of clinical drug-related deaths. To reduce the side effects spurred by systemic anticoagulation, researchers have been inspired by the hemocompatibility exhibited by natural phenomena, and thus have begun developing medical-grade surfaces which aim to exhibit total hemocompatibility via biomimicry. This review paper aims to address different bio-inspired surface modifications that increase hemocompatibility, discuss the limitations of each method, and explore the future direction for hemocompatible surface research.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Zizhou R, Wang X, Houshyar S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS OMEGA 2022; 7:22125-22148. [PMID: 35811906 PMCID: PMC9260943 DOI: 10.1021/acsomega.2c01740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Small-diameter artificial vascular grafts (SDAVG) are used to bypass blood flow in arterial occlusive diseases such as coronary heart or peripheral arterial disease. However, SDAVGs are plagued by restenosis after a short while due to thrombosis and the thickening of the neointimal wall known as intimal hyperplasia (IH). The specific causes of IH have not yet been deduced; however, thrombosis formation due to bioincompatibility as well as a mismatch between the biomechanical properties of the SDAVG and the native artery has been attributed to its initiation. The main challenges that have been faced in fabricating SDAVGs are facilitating rapid re-endothelialization of the luminal surface of the SDAVG and replicating the complex viscoelastic behavior of the arteries. Recent strategies to combat IH formation have been mostly based on imitating the natural structure and function of the native artery (biomimicry). Thus, most recently, developed grafts contain a multilayered structure with a designated function for each layer. This paper reviews the current polymeric, biomimetic SDAVGs in preventing the formation of IH. The materials used in fabrication, challenges, and strategies employed to tackle IH are summarized and discussed, and we focus on the multilayered structure of current SDAVGs. Additionally, the future aspects in this area are pointed out for researchers to consider in their endeavor.
Collapse
Affiliation(s)
- Rumbidzai Zizhou
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Xin Wang
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Shadi Houshyar
- School
of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
4
|
Zhu T, Gu H, Zhang H, Wang H, Xia H, Mo X, Wu J. Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomater 2021; 119:211-224. [PMID: 33181359 DOI: 10.1016/j.actbio.2020.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Rapid endothelialization of small-diameter vascular grafts remains a significant challenge in clinical practice. In addition, compliance mismatch causes intimal hyperplasia and finally leads to graft failure. To achieve compliance match and rapid endothelialization, we synthesized low-initial-modulus poly(ester-urethane)urea (PEUU) elastomer and prepared it into electrospun tubular grafts and then functionalized the grafts with poly(ethylene glycol) (PEG) and heparin via covalent grafting. The PEG- and heparin-functionalized PEUU (PEUU@PEG-Hep) graft had comparable mechanical properties with the native blood vessel. In vitro data demonstrated that the grafts are of good cytocompatibility and blood compatibility. Covalent grafting of PEG and heparin significantly promoted the adhesion, spreading, and proliferation of human umbilical vein endothelial cells (HUVECs) and upregulated the expression of vascular endothelial cell-related genes, as well as increased the capability of grafts in preventing platelet deposition. In vivo assessments indicated good biocompatibility of the PEUU@PEG-Hep graft as it did not induce severe immune responses. Replacement of resected carotid artery with the PEUU@PEG-Hep graft in a rabbit model showed that the graft was capable of rapid endothelialization, initiated vascular remodeling, and maintained patency. This study demonstrates the PEUU@PEG-Hep vascular graft with compliance match and efficacious antithrombosis might find opportunities for bioactive blood vessel substitutes.
Collapse
|
5
|
Fan H, Guo Z. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci 2020; 8:1502-1535. [PMID: 31994566 DOI: 10.1039/c9bm01729a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface wettability plays an important role in regulating biomolecule adhesion behaviors. The biomolecule adhesion behaviors of superwettable surfaces have become an important topic as an important part of the interactions between materials and organisms. In addition to general research on the moderate wettability of surfaces, the studies of biomolecule adhesion behaviors extend to extreme wettability ranges such as superhydrophobic, superhydrophilic and slippery surfaces and attract both fundamental and practical interest. In this review, we summarize the recent studies on biomolecule adhesion behaviors on superwettable surfaces, especially superhydrophobic, superhydrophilic and slippery surfaces. The first part will focus on the influence of extreme wettability on cell adhesion behaviors. The second part will concentrate on the adhesion behaviors of biomacromolecules on superwettable surfaces including proteins and nucleic acids. Finally, the influences of wettability on small molecule adhesion behaviors on material surfaces have also been investigated. The mechanism of superwettable surfaces and their influences on biomolecule adhesion behaviors have been studied and highlighted.
Collapse
Affiliation(s)
- Haifeng Fan
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
6
|
Vijayan VM, Tucker BS, Baker PA, Vohra YK, Thomas V. Non-equilibrium hybrid organic plasma processing for superhydrophobic PTFE surface towards potential bio-interface applications. Colloids Surf B Biointerfaces 2019; 183:110463. [PMID: 31493629 DOI: 10.1016/j.colsurfb.2019.110463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023]
Abstract
Superhydrophobic surfaces have gained increased attention due to the high water-repellency and self-cleaning capabilities of these surfaces. In the present study, we explored a novel hybrid method of fabricating superhydrophobic poly(tetrafluoroethylene) (PTFE) surfaces by combining the physical etching capability of oxygen plasma with the plasma-induced polymerization of a organic monomer methyl methacrylate (MMA). This novel hybrid combination of oxygen-MMA plasma has resulted in the generation of superhydrophobic PTFE surfaces with contact angle of 154°. We hypothesized that the generation of superhydrophobicity may be attributed to the generation of fluorinated poly(methyl methacrylate) (PMMA) moieties formed by the combined effects of physical etching causing de-fluorination of PTFE and the subsequent plasma polymerization of MMA. The plasma treated PTFE surfaces were then systematically characterized via XPS, FTIR, XRD, DSC and SEM analyses. The results have clearly shown a synergistic effect of the oxygen/MMA combination in comparison with either the oxygen plasma alone or MMA vapors alone. Furthermore, the reported new hybrid combination of Oxygen-MMA plasma has been demonstrated to achieve superhydrophobicity at lower power and short time scales than previously reported methods in the literature. Hence the reported novel hybrid strategy of fabricating superhydrophobic PTFE surfaces could have futuristic potential towards biointerface applications.
Collapse
Affiliation(s)
- Vineeth M Vijayan
- Center for Nanoscale Materials and Biointergration, College of Arts and Sciences, University of Alabama at Birmingham, 1300 University Blvd. CH 386 Birmingham, AL 35294, United States; Polymers & Healthcare Materials/ Devices, Department of Material Science and Engineering, University of Alabama at Birmingham, 1150 10th Avenue SouthBirmingham, AL 35294, United States
| | - Bernabe S Tucker
- Polymers & Healthcare Materials/ Devices, Department of Material Science and Engineering, University of Alabama at Birmingham, 1150 10th Avenue SouthBirmingham, AL 35294, United States
| | - Paul A Baker
- Center for Nanoscale Materials and Biointergration, College of Arts and Sciences, University of Alabama at Birmingham, 1300 University Blvd. CH 386 Birmingham, AL 35294, United States
| | - Yogesh K Vohra
- Center for Nanoscale Materials and Biointergration, College of Arts and Sciences, University of Alabama at Birmingham, 1300 University Blvd. CH 386 Birmingham, AL 35294, United States
| | - Vinoy Thomas
- Center for Nanoscale Materials and Biointergration, College of Arts and Sciences, University of Alabama at Birmingham, 1300 University Blvd. CH 386 Birmingham, AL 35294, United States; Polymers & Healthcare Materials/ Devices, Department of Material Science and Engineering, University of Alabama at Birmingham, 1150 10th Avenue SouthBirmingham, AL 35294, United States.
| |
Collapse
|
7
|
Affiliation(s)
- Esmaeil Salimi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
8
|
Morán MC, Ruano G, Cirisano F, Ferrari M. Mammalian cell viability on hydrophobic and superhydrophobic fabrics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:241-247. [PMID: 30889696 DOI: 10.1016/j.msec.2019.01.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/28/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022]
Abstract
Surface properties like hydrophobicity and morphology of the substrate are essential for cell proliferation affecting its growth, survival and also for its communication with other cells on fabrics. The combination of low surface energy and a specific surface morphology (micro/nano-roughness) leads to significantly less wettable surfaces, known as superhydrophobic characterized by high contact angle above 150° and a very small hysteresis. Such high water repellent coatings feature small area available to be exploited in many applications where interactions with aqueous environment are strongly to be avoided. In this work, the authors have investigated the influence of coating polyester fabric at different degree of hydrophobicity by mixed organic-inorganic coating with moderated to highly water repellence. Depending on the coating composition and structure, the hydrophobicity of the fabric can be finely modulated by an easy-to-prepare method applicable to commercial, low cost fabric substrates providing advanced performance. In vitro experiments have been performed in order to establish the influence of surface modification on adhesion of representative model mammalian cell lines such as 3T3 fibroblasts, HaCaT keratinocytes and HeLa epithelial carcinoma cells. The obtained results suggested that, in addition to the chemistry and morphology of the coating, the characteristics of the substrate are important parameters on the final cell viabilities.
Collapse
Affiliation(s)
- M Carmen Morán
- Departament de Bioquímica i Fisiologia, Secció de Fisiologia - Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia - IN(2)UB, Universitat de Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - Guillem Ruano
- Departament de Bioquímica i Fisiologia, Secció de Fisiologia - Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Francesca Cirisano
- CNR-ICMATE Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, via De Marini, 6, 16149 Genova, Italy
| | - Michele Ferrari
- CNR-ICMATE Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, via De Marini, 6, 16149 Genova, Italy.
| |
Collapse
|
9
|
Milionis A, Krishnan KG, Loth E, Lawrence M. Dynamic wetting of human blood and plasma on various surfaces. Colloids Surf B Biointerfaces 2018; 166:218-223. [DOI: 10.1016/j.colsurfb.2018.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/24/2018] [Accepted: 03/19/2018] [Indexed: 12/23/2022]
|
10
|
Riga EK, Vöhringer M, Widyaya VT, Lienkamp K. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications. Macromol Rapid Commun 2017; 38:10.1002/marc.201700216. [PMID: 28846821 PMCID: PMC7611510 DOI: 10.1002/marc.201700216] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/28/2017] [Indexed: 12/22/2022]
Abstract
Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers.
Collapse
Affiliation(s)
- E. K. Riga
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - M. Vöhringer
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - V. T. Widyaya
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - K. Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
11
|
Meng J, Yang G, Liu L, Song Y, Jiang L, Wang S. Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9031-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Falde EJ, Yohe ST, Colson YL, Grinstaff MW. Superhydrophobic materials for biomedical applications. Biomaterials 2016; 104:87-103. [PMID: 27449946 PMCID: PMC5136454 DOI: 10.1016/j.biomaterials.2016.06.050] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022]
Abstract
Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air layer at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors' future perspectives on the utility of superhydrophobic biomaterials for medical applications.
Collapse
Affiliation(s)
- Eric J Falde
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Stefan T Yohe
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
13
|
Lima AC, Mano JF. Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine (Lond) 2015; 10:271-97. [DOI: 10.2217/nnm.14.175] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The properties of surfaces define the acceptance and integration of biomaterials in vivo, as well as the material's efficiency when used at research or manufacturing levels. The presence of micro/nano-topographical structures and low surface energies could bring several advantages when highly repellent surfaces are employed in the biomedical field. Biomimetic superhydrophobic surfaces have been explored for diverse applications: as an intrinsic characteristic of biomaterials to be implanted; as materials that exhibit special interactions with biological entities; or to be used in ex vivo applications. This article aims to focus on the main motivations and requirements in the biomedical field that pushed for the utilization of superhydrophobic surfaces as suitable alternatives, as well as the great evolution of applications that have emerged in the last few years.
Collapse
Affiliation(s)
- Ana Catarina Lima
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Ave Park, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Ave Park, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Behary N, Lecouturier D, Perwuelz A, Dhulster P. Elucidating membrane surface properties for preventing fouling of bioreactor membranes by surfactin. J Appl Polym Sci 2014. [DOI: 10.1002/app.41622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nemeshwaree Behary
- ENSAIT-GEMTEX: ENSAIT; GEMTEX Roubaix France
- University Lille Nord de France, USTL, F-59655; Villeneuve d'Ascq Cedex France
| | - Didier Lecouturier
- University Lille Nord de France, USTL, F-59655; Villeneuve d'Ascq Cedex France
- ProBioGEM, Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien; Polytech'Lille France
| | - Anne Perwuelz
- ENSAIT-GEMTEX: ENSAIT; GEMTEX Roubaix France
- University Lille Nord de France, USTL, F-59655; Villeneuve d'Ascq Cedex France
| | - Pascal Dhulster
- University Lille Nord de France, USTL, F-59655; Villeneuve d'Ascq Cedex France
- ProBioGEM, Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien; Polytech'Lille France
| |
Collapse
|
15
|
A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol 2014; 32:1134-40. [PMID: 25306244 DOI: 10.1038/nbt.3020] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 08/13/2014] [Indexed: 02/06/2023]
Abstract
Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We apply a bioinspired, omniphobic coating to tubing and catheters and show that it completely repels blood and suppresses biofilm formation. The coating is a covalently tethered, flexible molecular layer of perfluorocarbon, which holds a thin liquid film of medical-grade perfluorocarbon on the surface. This coating prevents fibrin attachment, reduces platelet adhesion and activation, suppresses biofilm formation and is stable under blood flow in vitro. Surface-coated medical-grade tubing and catheters, assembled into arteriovenous shunts and implanted in pigs, remain patent for at least 8 h without anticoagulation. This surface-coating technology could reduce the use of anticoagulants in patients and help to prevent thrombotic occlusion and biofouling of medical devices.
Collapse
|
16
|
Ahmed F, Dutta NK, Zannettino A, Vandyke K, Choudhury NR. Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications. Biomacromolecules 2014; 15:1276-87. [PMID: 24564790 DOI: 10.1021/bm401825c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this investigation was to understand and engineer the interactions between endothelial cells and the electrospun (ES) polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofiber surfaces and evaluate their potential for endothelialization. Elastomeric PVDF-HFP samples were electrospun to evaluate their potential use as small diameter artificial vascular graft scaffold (SDAVG) and compared with solvent cast (SC) PVDF-HFP films. We examined the consequences of fibrinogen adsorption onto the ES and SC samples for endothelialisation. Bone marrow derived endothelial cells (BMEC) of human origin were incubated with the test and control samples and their attachment, proliferation, and viability were examined. The nature of interaction of fibrinogen with SC and ES samples was investigated in detail using ELISA, XPS, and FTIR techniques. The pristine SC and ES PVDF-HFP samples displayed hydrophobic and ultrahydrophobic behavior and accordingly, exhibited minimal BMEC growth. Fibrinogen adsorbed SC samples did not significantly enhance endothelial cell binding or proliferation. In contrast, the fibrinogen adsorbed electrospun surfaces showed a clear ability to modulate endothelial cell behavior. This system also represents an ideal model system that enables us to understand the natural interaction between cells and their extracellular environment. The research reported shows potential of ES surfaces for artificial vascular graft applications.
Collapse
Affiliation(s)
- Furqan Ahmed
- Ian Wark Research Institute, University of South Australia , Mawson Lakes Campus, South Australia, Australia
| | | | | | | | | |
Collapse
|
17
|
Abstract
The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.
Collapse
Affiliation(s)
- Huan Zhu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | | | | |
Collapse
|
18
|
Abstract
Autogenous vein is the conduit of choice in the surgical creation of bypasses of small-to-medium-caliber vessels in patients with peripheral occlusive arterial disease and will remain so for the near future. The success rate of bypasses using conduits of diameters greater than 6 mm has been excellent, whereas the majority of bypasses using smaller conduits fail within 5 years. In addition, due to a steep increase in rates of diabetes and decreasing cardiovascular mortality rates, increasing challenges are presented by this population. These facts have motivated much of the research in the cardiovascular arena over the past four decades, with improved techniques and new materials. Strategies to improve outcomes include the use of alternative materials including autologous, nonautologous and prosthetic grafts, utilizing different methods for their harvesting and preservation; tissue engineering, using either polymer- or biological-based scaffolds for cell seeding; endovascular methodologies; and gene therapy. This report presents an overview of the several options currently available in the management of patients with peripheral arterial occlusive disease, as well as the ongoing research directed towards the creation of an artificial engineered vessel, discussing experimental work in which endothelial cells have been seeded on different scaffolds and finally the potential application of gene therapy in the field of vascular reconstruction.
Collapse
Affiliation(s)
- Luis Leon
- Department of Surgery, Hines VA Hospital, IL 60141, USA.
| | | |
Collapse
|
19
|
Abstract
Fouling of surfaces is often problematic in microfluidic devices, particularly when using protein or -enzymatic solutions. Various coating methods have been investigated to reduce the tendency for protein molecules to adsorb, mostly relying on hydrophobic surface chemistry or the antifouling ability of -polyethylene glycol. Here we present the potential use of superhydrophobic surfaces to not only reduce the amount of surface contamination but also to induce self-cleaning under flow conditions. The methodology is presented in order to prepare superhydrophobic surface coatings having micro- and nanoscale feature dimensions, as well as a step-by-step guide to quantify adsorbed protein down to nanogram levels. The fabrication of these surfaces as coatings via silica sol-gel and copper nano-hair growth is presented, which can be applied within microfluidic devices manufactured from various materials.
Collapse
Affiliation(s)
- N J Shirtcliffe
- Biomimetic Materials, Hochschule Rhein-Waal, Rhine-Waal University of Applied Sciences, Kleve, Germany
| | | |
Collapse
|
20
|
Neto AI, Meredith HJ, Jenkins CL, Wilker JJ, Mano JF. Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Adv 2013. [DOI: 10.1039/c3ra40715b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Ding Y, Leng Y, Huang N, Yang P, Lu X, Ge X, Ren F, Wang K, Lei L, Guo X. Effects of microtopographic patterns on platelet adhesion and activation on titanium oxide surfaces. J Biomed Mater Res A 2012; 101:622-32. [DOI: 10.1002/jbm.a.34361] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 11/11/2022]
|
22
|
Truong VK, Webb HK, Fadeeva E, Chichkov BN, Wu AHF, Lamb R, Wang JY, Crawford RJ, Ivanova EP. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium. BIOFOULING 2012; 28:539-50. [PMID: 22686938 DOI: 10.1080/08927014.2012.694426] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Superhydrophobic titanium surfaces fabricated by femtosecond laser ablation to mimic the structure of lotus leaves were assessed for their ability to retain coccoid bacteria. Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923, S. epidermidis ATCC 14990T and Planococcus maritimus KMM 3738 were retained by the surface, to varying degrees. However, each strain was found to preferentially attach to the crevices located between the microscale surface features. The upper regions of the microscale features remained essentially cell-free. It was hypothesised that air entrapped by the topographical features inhibited contact between the cells and the titanium substratum. Synchrotron SAXS revealed that even after immersion for 50 min, nano-sized air bubbles covered 45% of the titanium surface. After 1 h the number of cells of S. aureus CIP 65.8T attached to the lotus-like titanium increased to 1.27×10(5) mm(-2), coinciding with the replacement of trapped air by the incubation medium.
Collapse
Affiliation(s)
- V K Truong
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria, 3122, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wörz A, Berchtold B, Moosmann K, Prucker O, Rühe J. Protein-resistant polymer surfaces. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30820g] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Abstract
The interest in highly water-repellent surfaces has grown in recent years due to the desire for self-cleaning surfaces. A super-hydrophobic surface is one that achieves a water contact angle of 150 degrees or greater. This article explores the different approaches used to construct super-hydrophobic surfaces and identifies the key properties of each surface that contribute to its hydrophobicity. The models used to describe surface interaction with water are considered, with attention directed to the methods of contact angle analysis. A summary describing the different routes to hydrophobicity is also given.
Collapse
Affiliation(s)
- Colin R Crick
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | | |
Collapse
|
25
|
Ishizaki T, Saito N, Takai O. Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8147-54. [PMID: 20131757 DOI: 10.1021/la904447c] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A micropatterned superhydrophobic/superhydrophilic surface was successfully fabricated by plasma CVD and VUV irradiation. Physicochemical properties of the superhydrophobic, superhydrophilic, and superhydrophobic/superhydrophilic surfaces were investigated. The roughness structures on the superhydrophilic surface remained intact compared to those of the superhydrophobic surface. The micropatterned superhydrophobic/superhydrophilic surface was used as a scaffold of cell culture. On the micropatterned surface, the cells attached to the superhydrophilic regions in a highly selective manner, forming circular microarrays of the cells corresponding to the pattern. On the micropatterned surface with pattern distances of 200 microm between superhydrophilic regions, the cells adhered on the superhydrophilic regions and partly extended to the neighboring cells. In contrast, when the pattern distances between the superhydrophilic regions were more than 400 microm, the cells did not extend to the neighboring cells. Cell adhesion behaviors on superhydrophobic and superhydrophilic surfaces were also examined. The cells adhered and proliferated on both superhydrophobic and superhydrophilic surfaces. However, on the superhydrophobic surface, constant contact to facilitate cell division and proliferation was required. On the other hand, the cells easily adhered and proliferated on the superhydrophilic surface immediately after seeding. These differences in cell adhesion behavior induced site-selective cell adhesion on the superhydrophilic regions. Furthermore, protein adsorption behavior that plays an important role in cell adhesion on flat hydrophobic and hydrophilic surface was also examined. The amounts of the protein adsorption on the flat hydrophilic surface were much greater than those on the flat hydrophobic surface.
Collapse
Affiliation(s)
- Takahiro Ishizaki
- National Institute of Advanced Industrial Science and Technology, 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya 463-8560, Japan.
| | | | | |
Collapse
|
26
|
Xu W, Zhou F, Ouyang C, Ye W, Yao M, Xu B. Mechanical properties of small-diameter polyurethane vascular grafts reinforced by weft-knitted tubular fabric. J Biomed Mater Res A 2010; 92:1-8. [PMID: 19165779 DOI: 10.1002/jbm.a.32333] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyester filament yarns of different Deniers were knitted into tubular fabrics with different densities and thicknesses on a specially designed weft-knitting machine. The developed tubular fabric was used to reinforce polyurethane vascular graft and thus a kind of composite vascular graft was fabricated with a small inner diameter of 4 mm. Tensile properties of the reinforced composite vascular grafts were compared with the control tubular fabric and the pure PU vascular grafts. Elasticity and strength of the reinforced vascular grafts were improved compared with the weft-knitted tubular fabrics. Strength of the reinforced composite vascular grafts was almost 5-10 times of the strength of the pure PU vascular grafts. As the PU content increased in the reinforced composite vascular grafts, the wall thickness of the vascular graft and its strength increased, but the initial modulus of the reinforced composite vascular grafts remained similar to that of the weft-knitted tubular fabric, and the PU content showed little influence on the initial modulus of the reinforced composite vascular grafts. Microporous structure can also be fabricated in the wall of the reinforced composite vascular grafts.
Collapse
Affiliation(s)
- Weilin Xu
- Hubei New Textile and Its Application Key Laboratory, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Waters MS, El-Naggar MY, Hsu L, Sturm CA, Luttge A, Udwadia FE, Cvitkovitch DG, Goodman SD, Nealson KH. Simultaneous interferometric measurement of corrosive or demineralizing bacteria and their mineral interfaces. Appl Environ Microbiol 2009; 75:1445-9. [PMID: 19124590 PMCID: PMC2648148 DOI: 10.1128/aem.02039-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 12/26/2008] [Indexed: 11/20/2022] Open
Abstract
Here, we report simultaneous surface profile measurements of several bacterial species involved in microbially influenced corrosion and their solid-surface interfaces by using vertical scanning interferometry. The capacity to nondestructively quantify microscale topographic changes beneath a single bacterium without its removal offers a unique opportunity to examine in vivo microbe-surface interactions.
Collapse
Affiliation(s)
- M S Waters
- University of Southern California, Department of Molecular and Computational Biology, 1050 Childs Way MCB 201B, Los Angeles, California 90089-2910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Doble M, Makadia N, Pavithran S, Kumar RS. Analysis of explanted ePTFE cardiovascular grafts (modified BT shunt). Biomed Mater 2008; 3:034118. [PMID: 18708703 DOI: 10.1088/1748-6041/3/3/034118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Structural, chemical, mechanical and surface changes were studied in expanded polytetrafluroethylene vascular grafts explanted from children undergoing planned surgical management of congenital heart disease. These grafts were implanted when recipients were aged 7 days to 8 years (median--48 weeks) and they had been in circulation for a period of 10-52 months (median--74 weeks). While no chemical changes were observed in the shunt, on average the tensile strength had decreased by 50%, total elongation by 61% and crystallinity by 3%. No salt deposits were observed on the surface of the graft. Soluble and insoluble proteins were bound to the polymer surface, which had made the surface hydrophilic. The external surface roughness had increased by 254.5 and the internal surface roughness by 2.6 times the initial value. The fine polymer structure had become fused and clumped. The fusing of strands on the polymer surface became more pronounced with longer duration of implantation. In one instance of previously documented graft stenosis, the heat capacity was found to be more than that of the unimplanted sample, indicating an increase in crystallinity. A longer period of study with a larger sample size would likely shed more light on the relation between physico-chemical changes and graft stenosis.
Collapse
Affiliation(s)
- Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology, Chennai, India.
| | | | | | | |
Collapse
|
29
|
Koc Y, de Mello AJ, McHale G, Newton MI, Roach P, Shirtcliffe NJ. Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. LAB ON A CHIP 2008; 8:582-586. [PMID: 18369513 DOI: 10.1039/b716509a] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid.
Collapse
Affiliation(s)
- Y Koc
- Imperial College London, South Kensington, London, UKSW7 2AZ
| | | | | | | | | | | |
Collapse
|
30
|
Zhang X, Shi F, Niu J, Jiang Y, Wang Z. Superhydrophobic surfaces: from structural control to functional application. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b711226b] [Citation(s) in RCA: 1410] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Li XM, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 2007; 36:1350-68. [PMID: 17619692 DOI: 10.1039/b602486f] [Citation(s) in RCA: 902] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superhydrophobic surfaces have drawn a lot of interest both in academia and in industry because of the self-cleaning properties. This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces. The preparation approaches are reviewed according to categorized approaches such as bottom-up, top-down, and combination approaches. The advantages and limitations of each strategy are summarized and compared. Progress in theoretical modeling of surface design and wettability behavior focuses on the transition state of superhydrophobic surfaces and the role of the roughness factor. Finally, the problems/obstacles related to applicability of superhydrophobic surfaces in real life are addressed. This review should be of interest to students and scientists interested specifically in superhydrophobic surfaces but also to scientists and industries focused in material chemistry in general.
Collapse
Affiliation(s)
- Xue-Mei Li
- Laboratory of Supramolecular Chemistry and Technology group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands
| | | | | |
Collapse
|