1
|
Zhang X, Chen Y, Zhou S, Liu Y, Zhu S, Jia X, Lu Z, Zhang Y, Zhang W, Ye Z, Cai B, Kong L, Liu F. RNA Coating Promotes Peri-Implant Osseointegration. ACS Biomater Sci Eng 2024; 10:7030-7042. [PMID: 38943625 DOI: 10.1021/acsbiomaterials.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
In addition to transmitting and carrying genetic information, RNA plays an important abiotic role in the world of nanomaterials. RNA is a natural polyanionic biomacromolecule, and its ability to promote osteogenesis by binding with other inorganic materials as an osteogenic induction agent was discovered only recently. However, whether it can promote osseointegration on implants has not been reported. Here, we investigated the effect of the RNA-containing coating materials on peri-implant osseointegration. Total RNA extracted from rat muscle tissue was used as an osteogenic induction agent, and hyaluronic acid (HA) was used to maintain its negative charge. In simulated body fluids (SBF), in vitro studies demonstrated that the resulting material encouraged calcium salt deposition. Cytological experiments showed that the RNA-containing coating induced greater cell adhesion and osteogenic differentiation in comparison to the control. The results of animal experiments showed that the RNA-containing coating had osteoinductive and bone conduction activities, which are beneficial for bone formation and osseointegration. Therefore, the RNA-containing coatings are useful for the surface modification of titanium implants to promote osseointegration.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yicheng Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Shanluo Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ya Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Simin Zhu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xuelian Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zihan Lu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yufan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenhui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, S.A.R., China
| | - Bolei Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
2
|
Yang Q, Zheng W, Zhao Y, Shi Y, Wang Y, Sun H, Xu X. Advancing dentin remineralization: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches. Dent Mater 2024; 40:1282-1295. [PMID: 38871525 DOI: 10.1016/j.dental.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.
Collapse
Affiliation(s)
- Qingyi Yang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Wenqian Zheng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yuping Zhao
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yaru Shi
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xiaowei Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Despotović I, Petrović Ž, Katić J, Mikić D. Alendronate as Bioactive Coating on Titanium Surfaces: An Investigation of CaP-Alendronate Interactions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2703. [PMID: 38893965 PMCID: PMC11173899 DOI: 10.3390/ma17112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
The surface modification of dental implants plays an important role in establishing a successful interaction of the implant with the surrounding tissue, as the bioactivity and osseointegration properties are strongly dependent on the physicochemical properties of the implant surface. A surface coating with bioactive molecules that stimulate the formation of a mineral calcium phosphate (CaP) layer has a positive effect on the bone bonding process, as biomineralization is crucial for improving the osseointegration process and rapid bone ingrowth. In this work, the spontaneous deposition of calcium phosphate on the titanium surface covered with chemically stable and covalently bound alendronate molecules was investigated using an integrated experimental and theoretical approach. The initial nucleation of CaP was investigated using quantum chemical calculations at the density functional theory (DFT) level. Negative Gibbs free energies show a spontaneous nucleation of CaP on the biomolecule-covered titanium oxide surface. The deposition of calcium and phosphate ions on the alendronate-modified titanium oxide surface is governed by Ca2+-phosphonate (-PO3H) interactions and supported by hydrogen bonding between the phosphate group of CaP and the amino group of the alendronate molecule. The morphological and structural properties of CaP deposit were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. This integrated experimental-theoretical study highlights the spontaneous formation of CaP on the alendronate-coated titanium surface, confirming the bioactivity ability of the alendronate coating. The results provide valuable guidance for the promising forthcoming advancements in the development of biomaterials and surface modification of dental implants.
Collapse
Affiliation(s)
- Ines Despotović
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia
| | - Željka Petrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia
| | - Jozefina Katić
- Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia; (J.K.); (D.M.)
| | - Dajana Mikić
- Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia; (J.K.); (D.M.)
| |
Collapse
|
4
|
Bourg S, Rakotozandriny K, Lucas IT, Letavernier E, Bonhomme C, Babonneau F, Abou-Hassan A. Confining calcium oxalate crystal growth in a carbonated apatite-coated microfluidic channel to better understand the role of Randall's plaque in kidney stone formation. LAB ON A CHIP 2024; 24:2017-2024. [PMID: 38407354 DOI: 10.1039/d3lc01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous in vivo observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite. Using multi-scale characterization techniques including scanning electron and Raman microscopy, we showed the successful formation of carbonated hydroxyapatite as found in Randall's plaque. This was possible due to a new two-step flow seed-mediated growth strategy which allowed us to coat the channel with carbonated hydroxyapatite. Precipitation of calcium oxalates under laminar flow from supersaturated solutions of oxalate and calcium ions showed that the formation of crystals is a substrate and time dependent complex process where diffusion of oxalate ions to the surface of carbonated hydroxyapatite and the solubility of the latter are among the most important steps for the formation of calcium oxalate crystals. Indeed when an oxalate solution was flushed for 24 h, dissolution of the apatite layer and formation of calcium carbonate calcite crystals occurred which seems to promote calcium oxalate crystal formation. Such a growth route has never been observed in vivo in the context of kidney stones. Under our experimental conditions, our results do not show any direct promoting role of carbonated hydroxyapatite in the formation of calcium oxalate crystals, consolidating therefore the important role that macromolecules can play in the process of nucleation and growth of calcium oxalate crystals on Randall's plaque.
Collapse
Affiliation(s)
- Samantha Bourg
- Laboratoire Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, UMR 8234, Campus Jussieu, 4 place Jussieu, F-75005 Paris, France.
| | - Karol Rakotozandriny
- Laboratoire Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, UMR 8234, Campus Jussieu, 4 place Jussieu, F-75005 Paris, France.
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), CNRS, Sorbonne Université, UMR 7574, Campus Jussieu, 4 place Jussieu, F-75005 Paris, France
| | - Ivan T Lucas
- Laboratoire Interfaces et Systèmes Electrochimiques (LISE), CNRS, Sorbonne Université, UMR 8235, Campus Jussieu, 4 place Jussieu, F-75005 Paris, France
| | - Emmanuel Letavernier
- AP-HP, Hôpital Tenon, Explorations Fonctionnelles Multidisciplinaires et Laboratoire des Lithiases, F-75020 Paris, France
| | - Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), CNRS, Sorbonne Université, UMR 7574, Campus Jussieu, 4 place Jussieu, F-75005 Paris, France
| | - Florence Babonneau
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), CNRS, Sorbonne Université, UMR 7574, Campus Jussieu, 4 place Jussieu, F-75005 Paris, France
| | - Ali Abou-Hassan
- Laboratoire Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, UMR 8234, Campus Jussieu, 4 place Jussieu, F-75005 Paris, France.
- Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
5
|
Wang Y, Tang S, Ding N, Zhang Z. Biological properties of hydroxyapatite coatings on titanium dioxide nanotube surfaces using negative pressure method. J Biomed Mater Res B Appl Biomater 2023; 111:1365-1373. [PMID: 36826780 DOI: 10.1002/jbm.b.35240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Titanium (Ti) exhibits superior biocompatibility and mechanical properties but is bioinert, while hydroxyapatite (HA) possesses excellent osteogenesis and is widely used for the modification of Ti surface coatings. However, the synthesis of homogeneous and stable HA on metallic materials is still a major challenge. In this study, porous titanium dioxide nanotube arrays were prepared on Ti surface by anodic oxidation, loaded with calcium and phosphorus precursors by negative pressure immersion, and HA coating was formed by in situ crystallization of calcium and phosphorus on the surface by hydrothermal heating. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and bonding strength were conducted to confirm the surface characteristics of each group. The cell proliferation, mineralization degree, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on samples were calculated and compared in vitro experiments. Cylindrical samples were implanted into rat femurs to evaluate biocompatibility and osteogenesis in vivo. The results showed that HA crystals successfully synthesized in TiO2 nanotubes, enhancing the bonding strength of HA coating and Ti substrate under negative pressure. Moreover, HA coating on Ti substrate remarkably enhanced cell proliferation and osteogenic differentiation activity in vitro, and improved new bone formation as well as osseointegration in vivo.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Shuang Tang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Ning Ding
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
López-Valverde N, Aragoneses J, López-Valverde A, Rodríguez C, Aragoneses JM. Role of BMP-7 on biological parameters osseointegration of dental implants: Preliminary results of a preclinical study. Front Bioeng Biotechnol 2023; 11:1153631. [PMID: 36926685 PMCID: PMC10011441 DOI: 10.3389/fbioe.2023.1153631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The aim of this work was to analyze and compare the effect of bone morphogenetic protein-7 on biological parameters related to implant osseointegration in an experimental animal model. Sixteen dental implants were placed in the tibias of four randomly selected minipigs for the following dental implant surface treatments: Group A: conventional treatment of the dental implant surface by SLA (n = 8) and Group B: treatment of the dental implant surface with carboxyethylphosphonic acid and bone morphogenetic protein-7 (n = 8). The animals were sacrificed one month after dental implants placement and a histomorphometric study was performed for the evaluation of bone-to-implant contact, corrected bone-to-implant contact, new bone formation, interthread bone density and peri-implant density using Student's t-test and the non-parametric Mann-Whitney test. The histomorphometric parameters bone-to-implant contact and corrected bone-to-implant contact showed statistically significant differences between the study groups; 34.00% ± 9.92% and 50.02% ± 10.94%, respectively (p = 0.004) for SLA and 43.08% ± 10.76% and 63.30% ± 11.30%, respectively (p = 0.003) for BMP-7. The parameters new bone formation, interthread bone density and peri-implant density did not show statistically significant differences between the study groups (p = 0.951, p = 0.967 and p = 0.894, respectively). Dental implant surfaces treated with carboxyethylphosphonic acid and BMP-7 improve the biological response of dental implants to osseointegration.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Javier Aragoneses
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | | |
Collapse
|
7
|
Mao R, Du D, Zhu X, Li W. Velvet antler polypeptide combined with calcium phosphate coating to protect peripheral nerve cells from oxidative stress. J Mol Histol 2022; 53:915-923. [PMID: 36036305 DOI: 10.1007/s10735-022-10099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Functionalizing biomaterial substrates with biological signals shows promise in regulating cell behaviors through mimicking cellular microenvironment. Calcium phosphate (CaP) coating is an excellent carrier for immobilizing biological molecules due to its non-toxicity, good biocompatibility, biodegradability, and favorable affinity to plenty of molecules. In this study, we reported the adhesion, the viability and proliferation behaviors after oxidative stress injury of Schwann cells RSC96 on CaP immobilized with the Velvet Antler Peptide (VAP) isolated from velvet antler through coprecipitation process in modified Dulbecco's phosphate-buffered saline (DPBS) containing VAP. This approach provided well retention of functional molecules up to 28 days, and supported the adhesion and proliferation of RSC96 after oxidative stress injury without cytotoxicity. The simple and reproducible method of coprecipitation suggests that CaP is an ideal carrier to functionalize materials with biological molecules for peripheral nerve repair-related applications.
Collapse
Affiliation(s)
- Renqun Mao
- Department of Hand-Foot Microsurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People's Republic of China
| | - Dalian Du
- Department of Gynaecology, Shenzhen Nanshan District Maternal and Chlid Health Care Hospital, Shenzhen, 518000, People's Republic of China
| | - Xiaodi Zhu
- Department of Hand-Foot Microsurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People's Republic of China
| | - Wenqing Li
- Department of Hand-Foot Microsurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People's Republic of China.
| |
Collapse
|
8
|
Effectiveness of Biofunctionalization of Titanium Surfaces with Phosphonic Acid. Biomedicines 2021; 9:biomedicines9111663. [PMID: 34829894 PMCID: PMC8615956 DOI: 10.3390/biomedicines9111663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Surface functionalization of dental implant surfaces has been a developing field in biomaterial research. This study aimed to obtain self-assembled monolayers (SAMs) using carboxyethylphosphonic acid on the surface of titanium (Ti) screws, and assessed the surface characteristics, biomechanical, and cellular behavior on the obtained specimens. This study had three groups, i.e., a control (untreated screws), a test group treated with phosphonic acid, and a third group with treated acid and bone morphogenetic protein (BMP-2) for in vitro analysis of cell lines. The assessed parameters included surface wettability, surface characteristics using scanning electron microscopy (SEM), protein immobilization, and cellular behavior of fibroblasts and mesenchymal stem cells of adipose tissue (MSCat cells). For surface wettability, a Welch test was performed to compare the contact angles between control (67 ± 1.83) and test (18.84 ± 0.72) groups, and a difference was observed in the mean measurements, but was not statistically significant. The SEM analysis showed significant surface roughness on the test screws and the cellular behavior of fibroblasts, and MSCat cells were significantly improved in this group, with fibroblasts having a polygonal shape with numerous vesicles and MSCat cells stable and uniformly coating the test Ti surface. Surface biofunctionalization of Ti surfaces with phosphonic acid showed promising results in this study, but remains to be clinically validated for its applications.
Collapse
|
9
|
Lehnfeld J, Dukashin Y, Mark J, White GD, Wu S, Katzur V, Müller R, Ruhl S. Saliva and Serum Protein Adsorption on Chemically Modified Silica Surfaces. J Dent Res 2021; 100:1047-1054. [PMID: 34157899 PMCID: PMC8381597 DOI: 10.1177/00220345211022273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biomaterials, once inserted in the oral cavity, become immediately covered by a layer of adsorbed proteins that consists mostly of salivary proteins but also of plasma proteins if the biomaterial is placed close to the gingival margin or if it becomes implanted into tissue and bone. It is often this protein layer, rather than the pristine biomaterial surface, that is subsequently encountered by colonizing bacteria or attaching tissue cells. Thus, to study this important initial protein adsorption from human saliva and serum and how it might be influenced through chemical modification of the biomaterial surface, we have measured the amount of protein adsorbed and analyzed the composition of the adsorbed protein layer using gel electrophoresis and western blotting. Here, we have developed an in vitro model system based on silica surfaces, chemically modified with 7 silane-based self-assembled monolayers that span a broad range of physicochemical properties, from hydrophilic to hydrophobic surfaces (water contact angles from 15° to 115°), low to high surface free energy (12 to 57 mN/m), and negative to positive surface charge (zeta potentials from –120 to +40 mV at physiologic pH). We found that the chemical surface functionalities exerted a substantial effect on the total amounts of proteins adsorbed; however, no linear correlation of the adsorbed amounts with the physicochemical surface parameters was observed. Only the adsorption behavior of a few singular protein components, from which physicochemical data are available, seems to follow physicochemical expectations. Examples are albumin in serum and lysozyme in saliva; in both, adsorption was favored on countercharged surfaces. We conclude from these findings that in complex biofluids such as saliva and serum, adsorption behavior is dominated by the overall protein-binding capacity of the surface rather than by specific physicochemical interactions of single protein entities with the surface.
Collapse
Affiliation(s)
- J Lehnfeld
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - Y Dukashin
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - J Mark
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - G D White
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - S Wu
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - V Katzur
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - R Müller
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - S Ruhl
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
10
|
Esbah Tabaei PS, Asadian M, Ghobeira R, Cools P, Thukkaram M, Derakhshandeh PG, Abednatanzi S, Van Der Voort P, Verbeken K, Vercruysse C, Declercq H, Morent R, De Geyter N. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. Carbohydr Polym 2021; 253:117211. [DOI: 10.1016/j.carbpol.2020.117211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
|
11
|
Gruening M, Neuber S, Nestler P, Lehnfeld J, Dubs M, Fricke K, Schnabelrauch M, Helm CA, Müller R, Staehlke S, Nebe JB. Enhancement of Intracellular Calcium Ion Mobilization by Moderately but Not Highly Positive Material Surface Charges. Front Bioeng Biotechnol 2020; 8:1016. [PMID: 33015006 PMCID: PMC7505933 DOI: 10.3389/fbioe.2020.01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between −90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (−90 to −3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials’ zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery.
Collapse
Affiliation(s)
- Martina Gruening
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Sven Neuber
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Peter Nestler
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Jutta Lehnfeld
- Colloid and Interface Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - Manuela Dubs
- Department of Biomaterials, INNOVENT e.V., Jena, Germany
| | - Katja Fricke
- Leibniz Institute for Plasma Science and Technology e.V. (INP), Greifswald, Germany
| | | | - Christiane A Helm
- Soft Matter and Biophysics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - Rainer Müller
- Colloid and Interface Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - Susanne Staehlke
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - J Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany.,Department Science and Technology of Life, Light and Matter, Faculty of Interdisciplinary, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Okafor E, Obada DO, Dodoo-Arhin D. Ensemble learning prediction of transmittance at different wavenumbers in natural hydroxyapatite. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Lehnfeld J, Gruening M, Kronseder M, Mueller R. Comparison of Protein-Repellent Behavior of Linear versus Dendrimer-Structured Surface-Immobilized Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5880-5890. [PMID: 32366096 DOI: 10.1021/acs.langmuir.0c00625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For many biomedical applications, material surfaces should not only prevent unspecific protein adsorption and bacterial attachment as in many other applications in the food, health, or marine industry, but they should also promote the adhesion of tissue cells. In order to take a first step toward the challenging development of protein and bacteria-repelling and cell-adhesion-promoting materials, polyamine and poly(amido amine) surface coatings with terminal amine groups and varying structure (dendrimer, oligomer, polymer) were immobilized on model surfaces via silane chemistry. Physicochemical analysis showed that all modifications are hydrophilic (contact angles <60°) and possess similar surface free energies (SFEs, ∼46-54 mN/m), whereas their amine group densities and zeta potentials at physiological conditions (pH 7.4) varied greatly (-50 to +75 mV). In protein adsorption experiments with single proteins (human serum albumin (HSA) and lysozyme) as well as complex physiological fluids (fetal bovine serum (FBS) and human saliva), the amounts of adsorbed protein were found to correlate strongly with the zeta potential of the surface coatings. Both modifications based on linear polymers exhibited good protein repellency toward all proteins examined and are thus promising for testing in cell adhesion studies.
Collapse
Affiliation(s)
| | - Martina Gruening
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | | | | |
Collapse
|
14
|
Škugor Rončević I, Vladislavić N, Buzuk M, Buljac M. Electrodeposition of hydroxyapatite coating on Mg alloy modified with organic acid self-assembled monolayers. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819895980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium phosphate coatings are used in orthopedics due to their excellent bioactivity, which improves the bonding between the metal implant and the bone. The use of self-assembling monolayers of long-chain organic acids can induce calcium phosphate growth. In this article, the self-assembling monolayers of stearic acid and octadecylphosphonic acid formed on the Mg alloy surface were additionally modified with electrodeposited hydroxyapatite coating to increase the bioactivity and biocompatibility of the Mg alloy in a physiological solution. Hydroxyapatite coating was prepared by a two-step reaction: hydrogen phosphate formed by electrodeposition at constant potential was converted into hydroxyapatite coating through an acid–base reaction. The results obtained by voltammetry and electrochemical impedance spectroscopy have shown a beneficial effect of organic acid self-assembling monolayer and especially of organic acid self-assembling monolayer modification by hydroxyapatite electrodeposition on the corrosion properties of Mg alloy in physiological solution. Fourier transform infrared spectroscopy and scanning electron microscopy were used to verify the existence of the organic acid SAM|HAp film on the Mg alloy surface and their morphology.
Collapse
Affiliation(s)
- Ivana Škugor Rončević
- Faculty of Chemistry and Technology, Department of General and Inorganic Chemistry, University of Split, Split, Croatia
| | - Nives Vladislavić
- Faculty of Chemistry and Technology, Department of General and Inorganic Chemistry, University of Split, Split, Croatia
| | - Marijo Buzuk
- Faculty of Chemistry and Technology, Department of General and Inorganic Chemistry, University of Split, Split, Croatia
| | - Maša Buljac
- Faculty of Chemistry and Technology, Department of Environmental Chemistry, University of Split, Split, Croatia
| |
Collapse
|
15
|
Milleret V, Lienemann PS, Gasser A, Bauer S, Ehrbar M, Wennerberg A. Rational design and in vitro characterization of novel dental implant and abutment surfaces for balancing clinical and biological needs. Clin Implant Dent Relat Res 2019; 21 Suppl 1:15-24. [DOI: 10.1111/cid.12736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Vincent Milleret
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Philipp S. Lienemann
- Product Development Regeneratives & BiologicsNobel Biocare AG Kloten Switzerland
| | - Angelines Gasser
- Product Development Regeneratives & BiologicsNobel Biocare AG Kloten Switzerland
| | - Sebastian Bauer
- Material Research and Surface TechnologiesNobel Biocare AG Kloten Switzerland
| | - Martin Ehrbar
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Ann Wennerberg
- Department of Prosthodontics, Institute of Odontology, Sahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
| |
Collapse
|
16
|
Siow KS, Britcher L, Kumar S, Griesser HJ. QCM-D and XPS study of protein adsorption on plasma polymers with sulfonate and phosphonate surface groups. Colloids Surf B Biointerfaces 2019; 173:447-453. [DOI: 10.1016/j.colsurfb.2018.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
17
|
Rasheed T, Bilal M, Zhao Y, Raza A, Shah SZH, Iqbal HMN. Physiochemical characteristics and bone/cartilage tissue engineering potentialities of protein-based macromolecules - A review. Int J Biol Macromol 2019; 121:13-22. [PMID: 30291929 DOI: 10.1016/j.ijbiomac.2018.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Protein-based macromolecules such as keratin, silk fibroin, collagen, gelatin, and fibrin have emerged as potential candidate materials with unique structural and functional characteristics. Despite many advantages, the development of tissue-engineered constructs that can match the biological context of real tissue matrix remains a challenge in tissue engineering (TE). The tissue-engineered constructs should also support vascularization. Protein-based macromolecules, in pristine or combine form, provide a promising platform to engineer constructs with unique design and functionalities which are highly essential for an appropriate stimulation and differentiation of cells in a specific TE approach. However, much work remains to be undertaken with particular reference to in-depth interactions between constructed cues and target host tissues. Thus, modern advancements are emphasizing to understand critiques and functionalization of protein-based macromolecule that organize not only cellular activities but also tissue regenerations. In this review, numerous physicochemical, functional, and structural characteristics of protein-based macromolecules such as keratin, silk fibroin, collagen, gelatin, and fibrin are discussed. This review also presents the hope vs. hype phenomenon for tissue engineering. Later part of the review focuses on different requisite characteristics and their role in TE. The discussion presented here could prove highly useful for the construction of scaffolds with requisite features.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
18
|
Chen J, Zhu Y, Xiong M, Hu G, Zhan J, Li T, Wang L, Wang Y. Antimicrobial Titanium Surface via Click-Immobilization of Peptide and Its in Vitro/Vivo Activity. ACS Biomater Sci Eng 2018; 5:1034-1044. [PMID: 33405794 DOI: 10.1021/acsbiomaterials.8b01046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of antimicrobial peptides (AMPs)-functionalized titanium implants is an efficient method for preventing bacterial infection. However, the attachment of AMPs to the surface of titanium implants remains a challenge. In this study, a "clickable" titanium surface was developed by using a silane coupling agent with an alkynyl group. The antimicrobial titanium implant was then constructed through the reaction between the "clickable" surface and azido-AMPs (PEG-HHC36:N3-PEG12-KRWWKWWRR) via click chemistry of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Such an antimicrobial titanium implant, with an AMP density of 897.4 ± 67.3 ng/cm2 (2.5 ± 0.2 molecules per nm2) on the surface, exhibited good and stable antimicrobial activity, inhibited 90.2% of Staphylococcus aureus and 88.1% of Escherichia coli after 2.5 h of incubation, and even inhibited 69.5% of Staphylococcus aureus after 4 days of degradation. The CCK-8 assay indicated that the antimicrobial titanium implant exhibited negligible cytotoxicity to mouse bone mesenchymal stem cells. In vivo assay illustrated that this implant could kill 78.8% of Staphylococcus aureus after 7 days. This method has great potential for the preparation of antimicrobial titanium implants and the prevention of infections in the clinic.
Collapse
Affiliation(s)
- Junjian Chen
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Wushan Road, Tianhe, Guangzhou 510641, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Yuchen Zhu
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Menghua Xiong
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Guansong Hu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Jiezhao Zhan
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Tianjie Li
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Wushan Road, Tianhe, Guangzhou 510641, China
| | - Lin Wang
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Wushan Road, Tianhe, Guangzhou 510641, China
| | - Yingjun Wang
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Wushan Road, Tianhe, Guangzhou 510641, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| |
Collapse
|
19
|
Park J, Yang KD, Kim NY, Jung KW, Le VD, Lim HJ, An J, Jin K, Kim YH, Nam KT, Moon D. Quantitative Analysis of Calcium Phosphate Nanocluster Growth Using Time-of-Flight Medium-Energy-Ion-Scattering Spectroscopy. ACS CENTRAL SCIENCE 2018; 4:1253-1260. [PMID: 30276260 PMCID: PMC6161037 DOI: 10.1021/acscentsci.8b00436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 06/08/2023]
Abstract
One of the remaining challenges in material chemistry is to unveil the quantitative compositional/structural information and thermodynamic nature of inorganic materials especially in the initial nucleation and growth step. In this report, we adopted newly developed time-of-flight medium-energy-ion-scattering (TOF-MEIS) spectroscopy to address this challenge and explored heterogeneously grown nanometer-sized calcium phosphate as a model system. With TOF-MEIS, we discovered the existence of calcium-rich nanoclusters (Ca/P ∼ 3) in the presence of the non-collagenous-protein-mimicking passivating ligands. Over the reaction, these clusters progressively changed their compositional ratio toward that of a bulk phase (Ca/P ∼ 1.67) with a concurrent increase in their size to ∼2 nm. First-principles studies suggested that the calcium-rich nanoclusters can be stabilized through specific interactions between the ligands and clusters, emphasizing the important role of template on guiding the chemical and thermodynamic nature of inorganic materials at the nanoscale.
Collapse
Affiliation(s)
- Jimin Park
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 151-744, Republic of Korea
- Center
for Biomaterials, Korea Institute of Science
& Technology, 5,
14 Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Dong Yang
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 151-744, Republic of Korea
| | - Na-Young Kim
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kang-Won Jung
- Department
of New Biology, DGIST, Dalseong, Daegu 711-873, Republic of Korea
| | - Viet-Duc Le
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Hee-Jin Lim
- Department
of New Biology, DGIST, Dalseong, Daegu 711-873, Republic of Korea
| | - Junghyun An
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 151-744, Republic of Korea
| | - Kyoungsuk Jin
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 151-744, Republic of Korea
| | - Yong-Hyun Kim
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Ki Tae Nam
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 151-744, Republic of Korea
| | - DaeWon Moon
- Department
of New Biology, DGIST, Dalseong, Daegu 711-873, Republic of Korea
| |
Collapse
|
20
|
Hasan A, Pattanayek SK, Pandey LM. Effect of Functional Groups of Self-Assembled Monolayers on Protein Adsorption and Initial Cell Adhesion. ACS Biomater Sci Eng 2018; 4:3224-3233. [PMID: 33435065 DOI: 10.1021/acsbiomaterials.8b00795] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Surface modification plays a vital role in regulating protein adsorption and subsequently cell adhesion. In the present work, we prepared nanoscaled modified surfaces using silanization and characterized them using Fourier-transform infrared spectroscopy (FTIR), water contact angle (WCA), and atomic force microscopy (AFM). Five different (amine, octyl, mixed, hybrid, and COOH) surfaces were prepared based on their functionality and varying wettability and their effect on protein adsorption and initial cell adhesion was investigated. AFM analysis revealed nanoscale roughness on all modified surfaces. Fetal bovine serum (FBS) was used for protein adsorption experiment and effect of FBS was analyzed on initial cell adhesion kinetics (up to 6 h) under three different experimental conditions: (a) with FBS in media, (b) with preadsorbed FBS on surfaces, and (c) incomplete media, i.e., without FBS. Various cell features such as cell morphology/circularity, cell area and nuclei size were also studied for the above stated conditions at different time intervals. The cell adhesion rate as well as cell spread area were highest in the case of surfaces with preadsorbed FBS. We observed higher surface coverage rate by adhering cells on hybrid (rate, 0.073 h-1) and amine (0.072 h-1) surfaces followed by COOH (0.062 h-1) and other surfaces under preadsorbed FBS condition. Surface treated with cells in incomplete media exhibited least adhesion rate, poor cell spreading and improper morphology. Furthermore, we found that initial cell adhesion rate and Δadhered cells (%) linearly increased with the change in α-helix content of adsorbed FBS on surfaces. Among all the modified surfaces and under all three experimental conditions, hybrid surface exhibited excellent properties for supporting cell adhesion and growth and hence can be potentially used as surface modifiers in biomedical applications to design biocompatible surfaces.
Collapse
Affiliation(s)
- Abshar Hasan
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sudip K Pattanayek
- Macromolecules and Interfaces Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Lalit M Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
21
|
Somasundaram S. Silane coatings of metallic biomaterials for biomedical implants: A preliminary review. J Biomed Mater Res B Appl Biomater 2018; 106:2901-2918. [PMID: 30091505 DOI: 10.1002/jbm.b.34151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/24/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
In response to increased attention in literature, this work provides a qualitative review surrounding the application of silane-based coatings of metallic biomaterials for biomedical implants. Included herein is both a brief summary of existing knowledge and concepts regarding silane-based thin films, along with an analysis of recent peer-reviewed publications and advances towards their practical application for biomedical coatings. Specifically, the review identifies innovative silane-based coatings according to their molecular identity and film structure and analyses their impact on the biocorrosion resistance, protein adsorption, cell viability, and antimicrobial properties of the overall coated implant. It is shown that a range of common silanes clearly exhibit promising properties for biomedical implant coatings, but further work is needed, particularly on mechanisms of physiological interaction and characteristic effects of silane functional groups, before seeing clinical use. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2901-2918, 2018.
Collapse
Affiliation(s)
- Sahadev Somasundaram
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
22
|
Mohd Daud N, Hussein Al-Ashwal R, Abdul Kadir MR, Saidin S. Polydopamine-assisted chlorhexidine immobilization on medical grade stainless steel 316L: Apatite formation and in vitro osteoblastic evaluation. Ann Anat 2018; 220:29-37. [PMID: 30048761 DOI: 10.1016/j.aanat.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 11/29/2022]
Abstract
Immobilization of chlorhexidine (CHX) on stainless steel 316L (SS316L), assisted by a polydopamine film as an intermediate layer is projected as an approach in combating infection while aiding bone regeneration for coating development on orthopedic and dental implants. This study aimed to investigate the ability of CHX coating to promote apatite layer, osteoblast cells viability, adhesion, osteogenic differentiation and mineralization. Stainless steel 316L disks were pre-treated, grafted with a polydopamine film and immobilized with different concentrations of CHX (10-30mM). The apatite layer formation was determined through an in vitro simulated body fluid (SBF) test by ATR-FTIR and SEM-EDX analyses. The osteoblastic evaluations including cells viability, cells adhesion, osteogenic differentiation and mineralization were assessed with human fetal osteoblast cells through MTT assay, morphology evaluation under FESEM, ALP enzyme activity and Alizarin Red S assay. The apatite layer was successfully formed on the CHX coated disks, demonstrating potential excellent bioactivity property. The CHX coatings were biocompatible with the osteoblast cells at low CHX concentration (<20mM) with good adhesion on the metal surfaces. The increment of ALP activity and calcium deposition testified that the CHX coated disks able to support osteoblastic maturation and mineralization. These capabilities give a promising value to the CHX coating to be implied in bone regeneration area.
Collapse
Affiliation(s)
- Nurizzati Mohd Daud
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Rania Hussein Al-Ashwal
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohammed Rafiq Abdul Kadir
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Medical Implant Technology Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; IJN-UTM Cardiovascular Engineering Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
23
|
Hasan A, Waibhaw G, Pandey LM. Conformational and Organizational Insights into Serum Proteins during Competitive Adsorption on Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8178-8194. [PMID: 29936836 DOI: 10.1021/acs.langmuir.8b01110] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Physicochemical interactions of proteins with surfaces mediate the interactions between the implant and the biological system. Surface chemistry of the implant is crucial as it regulates the events at the interface. The objective of this study was to explore the performance of modified surfaces for such interactions relevant to various biomedical applications. Because of a wide range of surface wettability, we aimed to study protein behavior (i.e., conformational changes and their packing) during competitive protein adsorption. Three serum proteins (bovine serum albumin, BSA; fibrinogen, FB; and immunoglobulin G, IgG) were tested for their conformational changes and orientation upon adsorption on hydrophilic (COOH and amine), moderately hydrophobic (mixed and hybrid), and hydrophobic (octyl) surfaces generated via silanization. Modified surfaces were characterized using Fourier-transform infrared spectroscopy, contact angle, and atomic force microscopy (AFM) techniques. Adsorbed masses of proteins from single and binary protein solutions on different surfaces were quantified along with their secondary structure analyses. Maximum adsorbed protein masses were found to be on negatively charged and hydrophobic (octyl) surfaces because of ionic and hydrophobic interactions between protein molecules and surfaces, respectively. Side-on and end-on orientations of adsorbed protein molecules were analyzed using theoretical and AFM analyses. We observed compact and elongated forms of BSA molecules on hydrophilic and hydrophobic surfaces, respectively. We further found a linear increase in the α-helix content of BSA and β-sheet contents of FB and IgG proteins with the increasing side-on (%)-oriented protein molecules on the surfaces. This indicates that side-on orientations of adsorbed FB and IgG lead to the formation of β-sheets. Sodium dodecyl sulfate polyacrylamide gel electrophoresis was employed to quantify the protein types and their ratio in competitively adsorbed proteins on different surfaces. A theoretical analysis was also used to determine the % secondary structures of competitively adsorbed proteins from BSA/FB and BSA/IgG solutions, which very well agreed with experimental results. The competitive protein adsorption from both BSA/FB and BSA/IgG solutions was found to be entropy-driven, as revealed by thermodynamic studies performed using isothermal titration calorimetry.
Collapse
Affiliation(s)
- Abshar Hasan
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Gyan Waibhaw
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Lalit M Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| |
Collapse
|
24
|
Kayani ZN, Kamran A, Saddiqe Z, Riaz S, Naseem S. Probe of ZrTiO 2 thin films with TiO 2 -ZrO 2 binary oxides deposited by dip coating technique. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:357-366. [DOI: 10.1016/j.jphotobiol.2018.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022]
|
25
|
Hasan A, Saxena V, Pandey LM. Surface Functionalization of Ti6Al4V via Self-assembled Monolayers for Improved Protein Adsorption and Fibroblast Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3494-3506. [PMID: 29489380 DOI: 10.1021/acs.langmuir.7b03152] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although metallic biomaterials find numerous biomedical applications, their inherent low bioactivity and poor osteointegration had been a great challenge for decades. Surface modification via silanization can serve as an attractive method for improving the aforementioned properties of such substrates. However, its effect on protein adsorption/conformation and subsequent cell adhesion and spreading has rarely been investigated. This work reports the in-depth study of the effect of Ti6Al4V surface functionalization on protein adsorption and cell behavior. We prepared self-assembled monolayers (SAMs) of five different surfaces (amine, octyl, mixed [1:1 ratio of amine:octyl], hybrid, and COOH). Synthesized surfaces were characterized by Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, contact angle goniometry, profilometry, and field emission scanning electron microscopy (FESEM). Quantification of adsorbed mass of bovine serum albumin (BSA) and fibronectin (FN) was determined on different surfaces along with secondary structure analysis. The adsorbed amount of BSA was found to increase with an increase in surface hydrophobicity with the maximum adsorption on the octyl surface while the reverse trend was detected for FN adsorption, having the maximum adsorbed mass on the COOH surface. The α-helix content of adsorbed BSA increased on amine and COOH surfaces while it decreased for other surfaces. Whereas increasing β-turn content of the adsorbed FN with the increase in the surface hydrophobicity was observed. In FN, RGD loops are located in the β-turn and consequently the increase in Δ adhered cells (%) was predominantly increased with the increasing Δ β-turn content (%). We found hybrid surfaces to be the most promising surface modifier due to maximum cell adhesion (%) and proliferation, larger nuclei area, and the least cell circularity. Bacterial density increased with the increasing hydrophobicity and was found maximum for the amine surface (θ = 63 ± 1°) which further decreased with the increasing hydrophobicity. Overall, modified surfaces (in particular hybrid surface) showed better protein adsorption and cell adhesion properties as compared to unmodified Ti6Al4V and can be potentially used for tissue engineering applications.
Collapse
Affiliation(s)
- Abshar Hasan
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Varun Saxena
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Lalit M Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| |
Collapse
|
26
|
Van Vrekhem S, Vloebergh K, Asadian M, Vercruysse C, Declercq H, Van Tongel A, De Wilde L, De Geyter N, Morent R. Improving the surface properties of an UHMWPE shoulder implant with an atmospheric pressure plasma jet. Sci Rep 2018; 8:4720. [PMID: 29549270 PMCID: PMC5856771 DOI: 10.1038/s41598-018-22921-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/21/2018] [Indexed: 11/09/2022] Open
Abstract
Insufficient glenoid fixation is one of the main reasons for failure in total shoulder arthroplasty. This is predominantly caused by the inert nature of the ultra-high molecular weight polyethylene (UHMWPE) used in the glenoid component of the implant, which makes it difficult to adhesively bind to bone cement or bone. Previous studies have shown that this adhesion can be ameliorated by changing the surface chemistry using plasma technology. An atmospheric pressure plasma jet is used to treat UHMWPE substrates and to modify their surface chemistry. The modifications are investigated using several surface analysis techniques. The adhesion with bone cement is assessed using pull-out tests while osteoblast adhesion and proliferation is also tested making use of several cell viability assays. Additionally, the treated samples are put in simulated body fluid and the resulting calcium phosphate (CaP) deposition is evaluated as a measure of the in vitro bioactivity of the samples. The results show that the plasma modifications result in incorporation of oxygen in the surface, which leads to a significant improved adhesion to bone cement, an enhanced osteoblast proliferation and a more pronounced CaP deposition. The plasma-treated surfaces are therefore promising to act as a shoulder implant.
Collapse
Affiliation(s)
- S Van Vrekhem
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B-9000, Ghent, Belgium.
| | - K Vloebergh
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B-9000, Ghent, Belgium
| | - M Asadian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B-9000, Ghent, Belgium
| | - C Vercruysse
- Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000, Ghent, Belgium
| | - H Declercq
- Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000, Ghent, Belgium
| | - A Van Tongel
- Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185 13K12, 9000, Ghent, Belgium
| | - L De Wilde
- Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185 13K12, 9000, Ghent, Belgium
| | - N De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B-9000, Ghent, Belgium
| | - R Morent
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B-9000, Ghent, Belgium
| |
Collapse
|
27
|
Self-Assembled Monolayers for Dental Implants. Int J Dent 2018; 2018:4395460. [PMID: 29552036 PMCID: PMC5818935 DOI: 10.1155/2018/4395460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs) for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available), combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials.
Collapse
|
28
|
Liu X, Carbonell C, Braunschweig AB. Towards scanning probe lithography-based 4D nanoprinting by advancing surface chemistry, nanopatterning strategies, and characterization protocols. Chem Soc Rev 2018; 45:6289-6310. [PMID: 27460011 DOI: 10.1039/c6cs00349d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biointerfaces direct some of the most complex biological events, including cell differentiation, hierarchical organization, and disease progression, or are responsible for the remarkable optical, electronic, and biological behavior of natural materials. Chemical information encoded within the 4D nanostructure of biointerfaces - comprised of the three Cartesian coordinates (x, y, z), and chemical composition of each molecule within a given volume - dominates their interfacial properties. As such, there is a strong interest in creating printing platforms that can emulate the 4D nanostructure - including both the chemical composition and architectural complexity - of biointerfaces. Current nanolithography technologies are unable to recreate 4D nanostructures with the chemical or architectural complexity of their biological counterparts because of their inability to position organic molecules in three dimensions and with sub-1 micrometer resolution. Achieving this level of control over the interfacial structure requires transformational advances in three complementary research disciplines: (1) the scope of organic reactions that can be successfully carried out on surfaces must be increased, (2) lithography tools are needed that are capable of positioning soft organic and biologically active materials with sub-1 micrometer resolution over feature diameter, feature-to-feature spacing, and height, and (3) new techniques for characterizing the 4D structure of interfaces should be developed and validated. This review will discuss recent advances in these three areas, and how their convergence is leading to a revolution in 4D nanomanufacturing.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Carlos Carbonell
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA
| | - Adam B Braunschweig
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA and Department of Chemistry and Biochemistry, City University of New York, Hunter College, 695 Park Avenue, New York, New York 10065, USA.
| |
Collapse
|
29
|
Kannan MB, Walter R, Yamamoto A, Khakbaz H, Blawert C. Electrochemical surface engineering of magnesium metal by plasma electrolytic oxidation and calcium phosphate deposition: biocompatibility and in vitro degradation studies. RSC Adv 2018; 8:29189-29200. [PMID: 35548009 PMCID: PMC9084472 DOI: 10.1039/c8ra05278f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/10/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, the surface of magnesium metal was electrochemically engineered for enhanced biocompatibility and controlled degradation in body fluid. Firstly, a plasma electrolytic oxidation (PEO) coating was formed on magnesium, followed by electrochemical deposition of calcium phosphate (CaP) using an unconventional electrolyte. Cytocompatibility tests using L929 cells revealed that the PEO-CaP coating significantly improved the biocompatibility of magnesium. In vitro electrochemical degradation experiments in simulated body fluid (SBF) showed that the PEO-CaP coating improved the degradation resistance of magnesium significantly. The corrosion current density (icorr) of the PEO-CaP coated magnesium was ∼99% and ∼97% lower than that of bare magnesium and the PEO-only coated magnesium, respectively. Similarly, electrochemical impedance spectroscopy (EIS) results showed that the polarisation resistance (RP) of the PEO-CaP coated magnesium was one-order of magnitude higher as compared to the PEO-only coated magnesium and two-orders of magnitude higher than the bare magnesium, after 72 h immersion in SBF. Scanning electron microscopy (SEM) analysis revealed no localized degradation in the PEO-CaP coated magnesium. The study demonstrated that the PEO-CaP coating is a promising combination for enhancing the biocompatibility and reducing the degradation of magnesium for potential biodegradable implant applications. The PEO-CaP coating produced on magnesium metal using an unconventional electrolyte enhanced the degradation resistance and provided excellent cytocompatibility.![]()
Collapse
Affiliation(s)
- M. Bobby Kannan
- Biomaterials and Engineering Materials (BEM) Laboratory
- College of Science and Engineering
- James Cook University
- Townsville
- Australia
| | - R. Walter
- Biomaterials and Engineering Materials (BEM) Laboratory
- College of Science and Engineering
- James Cook University
- Townsville
- Australia
| | - A. Yamamoto
- Research Center for Functional Materials
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - H. Khakbaz
- Biomaterials and Engineering Materials (BEM) Laboratory
- College of Science and Engineering
- James Cook University
- Townsville
- Australia
| | - C. Blawert
- Institute of Materials Research
- Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung GmbH
- Geesthacht D 21502
- Germany
| |
Collapse
|
30
|
Hydrothermal treatment and butylphosphonic acid derived self-assembled monolayers for improving the surface chemistry and corrosion resistance of AZ61 magnesium alloy. Sci Rep 2017; 7:16910. [PMID: 29203906 PMCID: PMC5715064 DOI: 10.1038/s41598-017-17199-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022] Open
Abstract
The hydrothermal treatment followed by a self-assembled monolayer (SAM) of 1-butylphosphonic acid through the tethering by aggregation and growth (T-BAG) method was employed to produce protective surface coatings on the Mg-6Al-1Zn alloy (AZ61) for reducing the degradation rate in physiological environments. Potentiodynamic polarization measurements revealed that the organic self-assembled monolayer and Mg(OH)2 coating can further enhance the surface chemical stability and corrosion resistance of Mg alloys. SAM-treated Mg(OH)2 coatings can be served as a more passive surface layer as a result of their much higher charge transfer resistance and the presence of Warburg impedance in electrochemical impedance spectroscopy measurement.
Collapse
|
31
|
Abstract
This paper addresses the taphonomic processes responsible for fossil preservation in calcium phosphate, or phosphatization. Aside from silicification and rarer examples of carbonaceous compression, phosphatization is the only taphonomic mode claimed to preserve putative subcellular structures. Because this fossilization window can record such valuable information, a comprehensive understanding of its patterns of occurrence and the geochemical processes involved in the replication of soft tissues are critical endeavors. Fossil phosphatization was most abundant during the latest Neoproterozoic through the early Paleozoic, coinciding with the decline of non-pelletal phosphorite deposits. Its temporal abundance during this timeframe makes it a particularly valuable window for the study of early animal evolution. Several occurrences of phosphatization from the Ediacaran through the Permian Period, including Doushantuo-type preservation of embryo-like fossils and acritarchs, phosphatized gut tracts within Burgess Shale-type carbonaceous compressions, Orsten-type preservation of meiofaunas, and other cases from the later Paleozoic are reviewed. In addition, a comprehensive description of the geochemical controls of calcium phosphate precipitation from seawater is provided, with a focus on the rates of phosphate nucleation and growth, favorable nucleation substrates, and properties of substrate tissue and pore-fluid chemistry. It is hoped that the paleontological and geochemical summaries provided here offer a practical and valuable guide to the Neoproterozoic–Paleozoic phosphatization window.
Collapse
|
32
|
Harding JL, Krebs MD. Bioinspired Deposition-Conversion Synthesis of Tunable Calcium Phosphate Coatings on Polymeric Hydrogels. ACS Biomater Sci Eng 2017; 3:2024-2032. [DOI: 10.1021/acsbiomaterials.7b00280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jacqueline L. Harding
- Department of Chemical and
Biological Engineering, Colorado School of Mines, 1613 Illinois
Street, Golden, Colorado 80401, United States
| | - Melissa D. Krebs
- Department of Chemical and
Biological Engineering, Colorado School of Mines, 1613 Illinois
Street, Golden, Colorado 80401, United States
| |
Collapse
|
33
|
Cao L, Wang L, Fan L, Xiao W, Lin B, Xu Y, Liang J, Cao B. RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy. MATERIALS 2017; 10:ma10040358. [PMID: 28772717 PMCID: PMC5506929 DOI: 10.3390/ma10040358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 01/23/2023]
Abstract
Magnesium alloys as biodegradable metal implants have received a lot of interest in biomedical applications. However, magnesium alloys have extremely high corrosion rates a in physiological environment, which have limited their application in the orthopedic field. In this study, calcium phosphate compounds (Ca–P) coating was prepared by arginine–glycine–aspartic acid–cysteine (RGDC) peptide-induced mineralization in 1.5 simulated body fluid (SBF) to improve the corrosion resistance and biocompatibility of the AZ31 magnesium alloys. The adhesion of Ca–P coating to the AZ31 substrates was evaluated by a scratch test. Corrosion resistance and cytocompatibility of the Ca–P coating were investigated. The results showed that the RGDC could effectively promote the nucleation and crystallization of the Ca–P coating and the Ca–P coating had poor adhesion to the AZ31 substrates. The corrosion resistance and biocompatibility of the biomimetic Ca–P coating Mg alloys were greatly improved compared with that of the uncoated sample.
Collapse
Affiliation(s)
- Lin Cao
- School of Stomatology, Lanzhou University, Lanzhou 730000, China.
| | - Lina Wang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China.
| | - Lingying Fan
- School of Stomatology, Lanzhou University, Lanzhou 730000, China.
| | - Wenjun Xiao
- School of Stomatology, Lanzhou University, Lanzhou 730000, China.
| | - Bingpeng Lin
- School of Stomatology, Lanzhou University, Lanzhou 730000, China.
| | - Yimeng Xu
- School of Stomatology, Lanzhou University, Lanzhou 730000, China.
| | - Jun Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Baocheng Cao
- School of Stomatology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
34
|
Carradò A, Perrin-Schmitt F, Le Q, Giraudel M, Fischer C, Koenig G, Jacomine L, Behr L, Chalom A, Fiette L, Morlet A, Pourroy G. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration. Dent Mater 2017; 33:321-332. [DOI: 10.1016/j.dental.2016.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
|
35
|
Chitosan-Recombinamer Layer-by-Layer Coatings for Multifunctional Implants. Int J Mol Sci 2017; 18:ijms18020369. [PMID: 28208793 PMCID: PMC5343904 DOI: 10.3390/ijms18020369] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022] Open
Abstract
The main clinical problems for dental implants are (1) formation of biofilm around the implant—a condition known as peri-implantitis and (2) inadequate bone formation around the implant—lack of osseointegration. Therefore, developing an implant to overcome these problems is of significant interest to the dental community. Chitosan has been reported to have good biocompatibility and anti-bacterial activity. An osseo-inductive recombinant elastin-like biopolymer (P-HAP), that contains a peptide derived from the protein statherin, has been reported to induce biomineralization and osteoblast differentiation. In this study, chitosan/P-HAP bi-layers were built on a titanium surface using a layer-by-layer (LbL) assembly technique. The difference in the water contact angle between consecutive layers, the representative peaks in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and the changes in the topography between surfaces with a different number of bi-layers observed using atomic force microscopy (AFM), all indicated the successful establishment of chitosan/P-HAP LbL assembly on the titanium surface. The LbL-modified surfaces showed increased biomineralization, an appropriate mouse pre-osteoblastic cell response, and significant anti-bacterial activity against Streptococcus gordonii, a primary colonizer of tissues in the oral environment.
Collapse
|
36
|
Koju N, Sikder P, Ren Y, Zhou H, Bhaduri SB. Biomimetic coating technology for orthopedic implants. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2016.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Hou J, Zhang F, Cheng D, Shi X, Cao X. Mineralization of a superficially porous microsphere scaffold via plasma modification. RSC Adv 2017. [DOI: 10.1039/c6ra25256g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel porous mineralization layers were obtained on scaffolds. The plasma process could enhance the bonding force between apatite and the substrate surface.
Collapse
Affiliation(s)
- Jie Hou
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Fen Zhang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Delin Cheng
- Centre for Human Tissue and Organ Degeneration
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Xuetao Shi
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Xiaodong Cao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| |
Collapse
|
38
|
Tavafoghi M, Cerruti M. The role of amino acids in hydroxyapatite mineralization. J R Soc Interface 2016; 13:20160462. [PMID: 27707904 PMCID: PMC5095212 DOI: 10.1098/rsif.2016.0462] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/31/2016] [Indexed: 11/12/2022] Open
Abstract
Polar and charged amino acids (AAs) are heavily expressed in non-collagenous proteins (NCPs), and are involved in hydroxyapatite (HA) mineralization in bone. Here, we review what is known on the effect of single AAs on HA precipitation. Negatively charged AAs, such as aspartic acid, glutamic acid (Glu) and phosphoserine are largely expressed in NCPs and play a critical role in controlling HA nucleation and growth. Positively charged ones such as arginine (Arg) or lysine (Lys) are heavily involved in HA nucleation within extracellular matrix proteins such as collagen. Glu, Arg and Lys intake can also increase bone mineral density by stimulating growth hormone production. In vitro studies suggest that the role of AAs in controlling HA precipitation is affected by their mobility. While dissolved AAs are able to inhibit HA precipitation and growth by chelating Ca2+ and PO43- ions or binding to nuclei of calcium phosphate and preventing their further growth, AAs bound to surfaces can promote HA precipitation by attracting Ca2+ and PO43- ions and increasing the local supersaturation. Overall, the effect of AAs on HA precipitation is worth being investigated more, especially under conditions closer to the physiological ones, where the presence of other factors such as collagen, mineralization inhibitors, and cells heavily influences HA precipitation. A deeper understanding of the role of AAs in HA mineralization will increase our fundamental knowledge related to bone formation, and could lead to new therapies to improve bone regeneration in damaged tissues or cure pathological diseases caused by excessive mineralization in tissues such as cartilage, blood vessels and cardiac valves.
Collapse
Affiliation(s)
- M Tavafoghi
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - M Cerruti
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| |
Collapse
|
39
|
Zhang Y, Gao WL, Liu ZY, Jiang Y, Duan K, Feng B. Mineralization and osteoblast behavior of multilayered films on TiO2 nanotube surfaces assembled by the layer-by-layer technique. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Metoki N, Sadman K, Shull K, Eliaz N, Mandler D. Electro-Assisted Deposition of Calcium Phosphate on Self-Assembled Monolayers. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Wang F, Zhang Y, Chen X, Leng B, Guo X, Zhang T. ALD mediated heparin grafting on nitinol for self-expanded carotid stents. Colloids Surf B Biointerfaces 2016; 143:390-398. [DOI: 10.1016/j.colsurfb.2016.03.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
|
42
|
Tavafoghi M, Brodusch N, Gauvin R, Cerruti M. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid. J R Soc Interface 2016; 13:20150986. [PMID: 26791001 PMCID: PMC4759803 DOI: 10.1098/rsif.2015.0986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.
Collapse
Affiliation(s)
- M Tavafoghi
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - N Brodusch
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - R Gauvin
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - M Cerruti
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| |
Collapse
|
43
|
Kannan MB, Walter R, Yamamoto A. Biocompatibility and in Vitro Degradation Behavior of Magnesium–Calcium Alloy Coated with Calcium Phosphate Using an Unconventional Electrolyte. ACS Biomater Sci Eng 2015; 2:56-64. [DOI: 10.1021/acsbiomaterials.5b00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Bobby Kannan
- Biomaterials
and Engineering Materials (BEM) Laboratory, College of Science, Technology
and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- Biometals
Group, International Centre for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - R. Walter
- Biomaterials
and Engineering Materials (BEM) Laboratory, College of Science, Technology
and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - A. Yamamoto
- Biometals
Group, International Centre for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
44
|
Fukui Y, Kabayama N, Fujimoto K. Fine-tuning in mineral cross-linking of biopolymer nanoparticle for incorporation and release of cargo. Colloids Surf B Biointerfaces 2015; 136:168-74. [DOI: 10.1016/j.colsurfb.2015.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/13/2015] [Accepted: 09/05/2015] [Indexed: 01/13/2023]
|
45
|
Gentile P, Carmagnola I, Nardo T, Chiono V. Layer-by-layer assembly for biomedical applications in the last decade. NANOTECHNOLOGY 2015; 26:422001. [PMID: 26421916 DOI: 10.1088/0957-4484/26/42/422001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the past two decades, the design and manufacture of nanostructured materials has been of tremendous interest to the scientific community for their application in the biomedical field. Among the available techniques, layer-by-layer (LBL) assembly has attracted considerable attention as a convenient method to fabricate functional coatings. Nowadays, more than 1000 scientific papers are published every year, tens of patents have been deposited and some commercial products based on LBL technology have become commercially available. LBL presents several advantages, such as (1): a precise control of the coating properties; (2) environmentally friendly, mild conditions and low-cost manufacturing; (3) versatility for coating all available surfaces; (4) obtainment of homogeneous film with controlled thickness; and (5) incorporation and controlled release of biomolecules/drugs. This paper critically reviews the scientific challenge of the last 10 years--functionalizing biomaterials by LBL to obtain appropriate properties for biomedical applications, in particular in tissue engineering (TE). The analysis of the state-of-the-art highlights the current techniques and the innovative materials for scaffold and medical device preparation that are opening the way for the preparation of LBL-functionalized substrates capable of modifying their surface properties for modulating cell interaction to improve substitution, repair or enhancement of tissue function.
Collapse
Affiliation(s)
- P Gentile
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, UK
| | | | | | | |
Collapse
|
46
|
Sukhorukova IV, Sheveyko AN, Kiryukhantsev-Korneev PV, Levashov EA, Shtansky DV. In vitro bioactivity study of TiCaPCO(N) and Ag-doped TiCaPCO(N) films in simulated body fluid. J Biomed Mater Res B Appl Biomater 2015; 105:193-203. [PMID: 26461975 DOI: 10.1002/jbm.b.33534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 01/04/2023]
Abstract
Bioactivity of multicomponent TiCaPCO(N) and Ag-doped TiCaPCO(N) films was evaluated in vitro using simulated body fluid (SBF) and compared with that of bioactive glass Biogran. The first group of films was fabricated by magnetron sputtering of composite TiС0.5 -Ti3 POx -CaO target produced via the self-propagating high-temperature synthesis (SHS) method (TiCaPCON films), after which their surface was implanted with Ag+ ions to obtain Ag-doped TiCaPCON films. The second group of films was fabricated by pulsed electrospark deposition (PED) using SHS-produced composite TiС0.5 -Ti3 POx -CaO and TiС0.5 -Ti3 POx -CaO-Ag electrodes. After immersion in SBF, the structure and chemistry of surface were well characterized using a combination of various microanalytical techniques, such as scanning electron microscopy, X-ray diffractometry (both in conventional and grazing incidence mode), Fourier transform infrared spectroscopy, Raman spectroscopy, and glow discharge optical emission spectroscopy. The results showed that the surfaces of the TiCaPCO(N) and Ag-doped TiCaPCO(N) films were bioactive in vitro and induced the formation of an apatite layer during exposure in SBF. In the case of the magnetron-sputtered films, the apatite layer was formed over 14 days, while 28 days were needed to form CaP phase on the surface of PED-modified samples. Various factors (film structure, surface roughness, surface functional groups, surface charge, and composition, supersaturation, and near-surface local supersaturation of SBF) affecting the kinetics of bone-like apatite formation on a bioactive surface are discussed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 193-203, 2017.
Collapse
Affiliation(s)
- I V Sukhorukova
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow, 119049, Russia
| | - A N Sheveyko
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow, 119049, Russia
| | | | - E A Levashov
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow, 119049, Russia
| | - D V Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow, 119049, Russia
| |
Collapse
|
47
|
In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application. BIOMED RESEARCH INTERNATIONAL 2015; 2015:328943. [PMID: 26504800 PMCID: PMC4609364 DOI: 10.1155/2015/328943] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 11/18/2022]
Abstract
Polyetheretherketone (PEEK), which has biomechanical performance similar to that of human cancellous bone, is used widely as a spinal implant material. However, its bioinertness and hydrophobic surface properties result in poor osseointegration. This study applies a novel modification method, arc ion plating (AIP), that produces a highly osteoblast compatible titanium dioxide (TiO2) coatings on a PEEK substrate. This PEEK with TiO2 coating (TiO2/PEEK) was implanted into the femurs of New Zealand white male rabbits to evaluate its in vivo performance by the push-out test and histological observation. Analytical results show that AIP can prepare TiO2 coatings on bullet-shaped PEEK substrates as implant materials. After prolonged implantation in rabbits, no signs of inflammation existed. Newly regenerated bone formed more prominently with the TiO2/PEEK implant by histological observation. The shear strength of the bone/implant interface increases as implantation period increases. Most importantly, bone bonding performance of the TiO2/PEEK implant was superior to that of bare PEEK. The rutile-TiO2 coatings achieved better osseointegration than the anatase-TiO2 coatings. Therefore, AIP-TiO2 can serve as a novel surface modification method on PEEK for spinal interbody fusion cages.
Collapse
|
48
|
Shen J, Qi Y, Jin B, Wang X, Hu Y, Jiang Q. Control of hydroxyapatite coating by self-assembled monolayers on titanium and improvement of osteoblast adhesion. J Biomed Mater Res B Appl Biomater 2015; 105:124-135. [PMID: 26426988 DOI: 10.1002/jbm.b.33539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/24/2015] [Accepted: 09/12/2015] [Indexed: 11/11/2022]
Abstract
Self-assembly technique was applied to introduce functional groups and form hydroxyl-, amine-, and carboxyl-terminal self-assembled monolayers (SAMs). The SAMs were grafted onto titanium substrates to obtain a molecularly smooth functional surface. Subsequent hydrothermal crystal growth formed homogeneous and crack-free crystalline hydroxyapatite (HA) coatings on these substrates. AFM and XPS were used to characterize the SAM surfaces, and XRD, SEM, and TEM were used to characterize the HA coatings. Results show that highly crystalline, dense, and oriented HA coatings can be formed on the OH-, NH2 -, and COOH-SAM surfaces. The SAM surface with -COOH exhibited stronger nucleating ability than that with -OH and -NH2 . The nucleation and growth processes of HA coatings were effectively controlled by varying reaction time, pH, and temperature. By using this method, highly crystalline, dense, and adherent HA coatings were obtained. In addition, in vitro cell evaluation demonstrated that HA coatings improved cell adhesion as compared with pristine titanium substrate. The proposed method is considerably effective in introducing the HA coatings on titanium surfaces for various biomedical applications and further usage in other industries. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 124-135, 2017.
Collapse
Affiliation(s)
- Juan Shen
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.,Department of Chemistry, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yongcheng Qi
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bo Jin
- Department of Chemistry, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyan Wang
- Department of Chemistry, Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yamin Hu
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qiying Jiang
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
49
|
Immobilization of specific proteins to titanium surface using self-assembled monolayer technique. Dent Mater 2015; 31:1169-79. [DOI: 10.1016/j.dental.2015.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/26/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022]
|
50
|
Suchanek K, Bartkowiak A, Gdowik A, Perzanowski M, Kąc S, Szaraniec B, Suchanek M, Marszałek M. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:57-63. [DOI: 10.1016/j.msec.2015.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 10/24/2022]
|