1
|
Jing W, Huang Y, Feng J, Li H, Yu X, Zhao B, Wei P. The clinical effectiveness of staple line reinforcement with different matrix used in surgery. Front Bioeng Biotechnol 2023; 11:1178619. [PMID: 37351469 PMCID: PMC10282759 DOI: 10.3389/fbioe.2023.1178619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Staplers are widely used in clinics; however, complications such as bleeding and leakage remain a challenge for surgeons. To tackle this issue, buttress materials are recommended to reinforce the staple line. This Review provides a systematic summary of the characteristics and applications of the buttress materials. First, the physical and chemical properties of synthetic polymer materials and extracellular matrix used for the buttress materials are introduced, as well as their pros and cons in clinical applications. Second, we review the clinical effects of reinforcement mesh in pneumonectomy, sleeve gastrectomy, pancreatectomy, and colorectal resection. Based on the analysis of numerous research data, we believe that buttress materials play a crucial role in increasing staple line strength and reducing the probability of complications, such as bleeding and leakage. However, considering the requirements of bioactivity, degradability, and biosafety, non-crosslinked small intestinal submucosa (SIS) matrix material is the preferred candidate. It has high research and application value, but further studies are required to confirm this. The aim of this Review is to provide comprehensive guidance on the selection of materials for staple line reinforcement.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Zhao
- *Correspondence: Bo Zhao, ; Pengfei Wei,
| | | |
Collapse
|
2
|
Inflammation-triggered dual release of nitroxide radical and growth factor from heparin mimicking hydrogel-tissue composite as cardiovascular implants for anti-coagulation, endothelialization, anti-inflammation, and anti-calcification. Biomaterials 2022; 289:121761. [DOI: 10.1016/j.biomaterials.2022.121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022]
|
3
|
Xu L, Yang F, Ge Y, Guo G, Wang Y. Crosslinking porcine aortic valve by radical polymerization for the preparation of BHVs with improved cytocompatibility, mild immune response, and reduced calcification. J Biomater Appl 2021; 35:1218-1232. [PMID: 33478311 DOI: 10.1177/0885328220984066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over one million artificial heart valve transplantations are performed each year due to valvular stenosis or regurgitation. Among them, bioprosthetic heart valves (BHVs) are increasingly being used because of the absence of the need for lifelong anticoagulation. Almost all of the commercial BHVs are treated with Glutaraldehyde (GLUT). As GLUT-treated BHVs are prone to calcification and structural degradation, their durability is greatly reduced with a service life of only 12-15 years. The physiological structure and mechanical properties of the porcine aortic valve (PAV) are closer to that of a human heart valve, so in this study, PAV is used as the model to explore the comprehensive properties of the prepared BHVs by radical polymerization crosslinking method. We found that PAV treated by radical polymerization crosslinking method showed similar ECM stability and biaxial mechanical properties with GLUT-treated PAV. However, radical polymerization crosslinked PAV exhibited better cytocompatibility and endothelialization potential in vitro cell experiment as better anticalcification potential and reduced immune response than GLUT-treated PAV through subcutaneous animal experiments in rats. To conclude, a novel crosslinking method of non-glutaraldehyde fixation of xenogeneic tissues for the preparation of BHVs is expected.
Collapse
Affiliation(s)
- Liangpeng Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, PR China
| | - Fan Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, PR China
| | - Yao Ge
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, PR China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, PR China
| |
Collapse
|
4
|
Grebenik EA, Gafarova ER, Istranov LP, Istranova EV, Ma X, Xu J, Guo W, Atala A, Timashev PS. Mammalian Pericardium-Based Bioprosthetic Materials in Xenotransplantation and Tissue Engineering. Biotechnol J 2020; 15:e1900334. [PMID: 32077589 DOI: 10.1002/biot.201900334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Bioprosthetic materials based on mammalian pericardium tissue are the gold standard in reconstructive surgery. Their application range covers repair of rectovaginal septum defects, abdominoplastics, urethroplasty, duraplastics, maxillofacial, ophthalmic, thoracic and cardiovascular reconstruction, etc. However, a number of factors contribute to the success of their integration into the host tissue including structural organization, mechanical strength, biocompatibility, immunogenicity, surface chemistry, and biodegradability. In order to improve the material's properties, various strategies are developed, such as decellularization, crosslinking, and detoxification. In this review, the existing issues and long-term achievements in the development of bioprosthetic materials based on the mammalian pericardium tissue, aimed at a wide-spectrum application in reconstructive surgery are analyzed. The basic technical approaches to preparation of biocompatible forms providing continuous functioning, optimization of biomechanical and functional properties, and clinical applicability are described.
Collapse
Affiliation(s)
- Ekaterina A Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elvira R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Photonic Technologies, Research center "Crystallography and Photonics" RAS, Moscow, 142190, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
5
|
Guo G, Jin L, Jin W, Chen L, Lei Y, Wang Y. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response. Acta Biomater 2018; 82:44-55. [PMID: 30326277 DOI: 10.1016/j.actbio.2018.10.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/04/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
In recent years, the number of heart valve replacements has multiplied with valve diseases because of aging populations and the surge in rheumatic heart disease in young people. Among them, bioprosthetic heart valves (BHVs) have become increasingly popular. Transcatheter aortic valve implantation (TAVI) valve as an emerging BHV has been increasingly applied to patients. However, the current commercially used BHVs treated with glutaraldehyde (Glut) still face the problem of durability. BHVs derived from Glut-treated xenogenetic tissues would undergo structural degeneration and calcification sometimes even as short as less than 10 years. This issue has already become a big challenge considering more and more young patients at the age of 50-60 s are receiving the BHV replacement. In our study, an approach that is totally different from the previous techniques named by us as the radical polymerization-crosslinking (RPC) method was developed to improve extracellular matrix stability, prevent calcification, and reduce inflammatory response in BHVs. The porcine pericardium (PP) tissue was decellularized, functionalized with methacryloyl groups, and subsequently crosslinked by radical polymerization. We found that high-density RPC treatment remarkably improved the stability of collagen and elastin of PP, enhanced its endothelialization potential, and provided reliable biomechanical performance as compared to Glut treatment. The in vivo rat model also confirmed the increased componential stability and the reduced inflammatory response of RPC-treated PP. Moreover, the RPC-treated PP showed better in vivo anticalcification potential than Glut-treated PP. STATEMENT OF SIGNIFICANCE: Bioprosthetic heart valves (BHVs) manufactured from glutaraldehyde (Glut)-treated xenogeneic tissues have been used to treat valve-related diseases for several decades. However, the durability of BHVs remains unresolved and becomes more pronounced particularly in younger patients. Although a number of new alternative methods for Glut crosslinking have been proposed, their overall performance is still far from ready to use in humans. In this study, radical polymerization was investigated for crosslinking the porcine pericardium (PP). This treatment was found to have advantages compared to Glut-treated PP in terms of stability, biocompatibility, and anticalcification potential with the hope of addressing the needs of more robust biomaterials for the fabrication of BHVs.
Collapse
|
6
|
Li J, Chen B, Hong N, Wu S, Li Y. Effect of Baicalein on Matrix Metalloproteinases and Durability of Resin-Dentin Bonding. Oper Dent 2018. [PMID: 29513641 DOI: 10.2341/17-097-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE In an attempt to increase resin-dentin bonding quality, this study used baicalein as a preconditioner in an etch-and-rinse adhesive to evaluate its effect on matrix metalloproteinases (MMPs) and adhesive durability. METHODS As a MMP inhibitor and potential collagen cross-linking agent, baicalein was used as a preconditioner in an etch-and-rinse adhesive system. The degree of conversion was evaluated by Fourier-transform infrared spectroscopy. EnzChek gelatinase/collagenase assay kits were then used to detect the MMP inhibitory effect of different concentrations of baicalein (0.1, 0.5, 2.5, and 5.0 μg/mL) on dentin powders. During in vitro bonding procedures, flat dentin surfaces on sound third molars were preconditioned with 2.5 μg/mL baicalein after being acid-etched; this step was followed by continuation of adhesive processes and build-up of resin composite. After resin-dentin stick preparation, bonding strength, failure mode, and interface nanoleakage were respectively evaluated via microtensile testing, stereomicroscopy, and field emission scanning electron microscopy either immediately or after storage in artificial saliva for three or six months. Data were analyzed by two-way analysis of variance and Tukey test (α=0.05). RESULTS Baicalein at a concentration of 0-5.0 μg/mL did not influence the conversion of adhesives. However, it inhibited the activities of dentin-bond gelatinase and collagenase, especially at a concentration of 2.5 μg/mL, while effectively increasing microtensile bonding strength and decreasing nanoleakage in vitro, both immediately and after aging. CONCLUSIONS Baicalein used as preconditioner in an etch-and-rinse adhesive system has an anti-MMP function and effectively improves resin-dentin bonding durability in vitro, which has potential value in clinical bonding procedures.
Collapse
|
7
|
Collagen cross-linkers on dentin bonding: Stability of the adhesive interfaces, degree of conversion of the adhesive, cytotoxicity and in situ MMP inhibition. Dent Mater 2016; 32:732-41. [PMID: 27087688 DOI: 10.1016/j.dental.2016.03.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/16/2015] [Accepted: 03/15/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the effect of collagen cross-links on the stability of adhesive properties, the degree of conversion within the hybrid layer, cytotoxicity and the inhibition potential of the MMPs' activity. METHODS The dentin surfaces of human molars were acid-etched and treated with primers containing: 6.5wt% proanthocyanidin, UVA-activated 0.1wt% riboflavin, 5wt% glutaraldehyde and distilled water for 60s. Following, dentin was bonded with Adper Single Bond Plus and Tetric N-Bond; and restored with resin composite. The samples were sectioned into resin-dentin "sticks" and tested for microtensile bond strength (μTBS) after immediate (IM) and 18-month (18M) periods. Bonded sticks at each period were used to evaluate nanoleakage and the degree of conversion (DC) under micro-Raman spectroscopy. The enzimatic activity (P1L10 cross-linkers, P1L22 MMPs' activities) in the hybrid layer was evaluated under confocal microscopy. The culture cell (NIH 3T3 fibroblast cell line) and MTT assay were performed to transdentinal cytotoxicity evaluation. Data from all tests were submitted to appropriate statistical analysis (α=0.05). RESULTS All cross-linking primers reduced the degradation of μTBS compared with the control group after 18M (p>0.05). The DC was not affected (p>0.213). The NL increased after 18M for all experimental groups, except for proanthocyanidin with Single Bond Plus (p>0.05). All of the cross-link agents reduced the MMPs' activity, although this inhibition was more pronounced by PA. The cytotoxicity assay revealed reduced cell viability only for glutaraldehyde (p<0.001). SIGNIFICANCE Cross-linking primers used in clinically relevant minimized the time degradation of the μTBS without jeopardizing the adhesive polymerization, as well as reduced the collagenolytic activity of MMPs. Glutaraldeyde reduced cell viability significantly and should be avoided for clinical use.
Collapse
|
8
|
Singh H, Kumar N, Sharma AK, Kataria M, Munjal A, Kumar A, Dewangan R, Kumar V, Devarathnam J, Kumar S. Activity of MMP-9 after repair of abdominal wall defects with acellular and crosslinked bovine pericardium in rabbit. Int Wound J 2014; 11:5-13. [PMID: 22726204 PMCID: PMC7950627 DOI: 10.1111/j.1742-481x.2012.01031.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study was undertaken for the identification of matrix metalloproteinases (MMPs) in extracts obtained from native, acellular and crosslinked bovine pericardium (in vitro), as well as in the plasma after implantation of these biomaterials in rabbits (in vivo). Native pericardium (NP) expressed a 72 kDa (MMP-2) band; whereas, in acellular pericardium (AP) two bands (10 kDa and 92 kDa) of MMPs were observed of which, 92 kDa band was very faint. AP crosslinked with glutaraldehyde did not show any gelatinase activity and thus reflects the creation of new additional chemical bonds between the collagen molecules which has been effectively removed. Gelatin zymography showed only one major band of 92 kDa in all the implanted and untreated rabbit plasma, but the relative amount of 92 kDa was 1-2 times higher in acellular bovine pericardium implanted rabbits as compared to crosslinked and native groups. In NP group, the 92 kDa band was the dullest among the three groups. This indicated that the level of MMP-9 corresponds to the degree of collagen degradation.
Collapse
Affiliation(s)
- Himani Singh
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Naveen Kumar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - AK Sharma
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Meena Kataria
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ashok Munjal
- Department of Bioscience and Biotechnology, Banasthali Vidyapeeth, Rajasthan, India
| | - Amit Kumar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Rukmani Dewangan
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Vineet Kumar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - J Devarathnam
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Biomedical technology, Jiwaji University, Gwalior, MP, India
| |
Collapse
|
9
|
Mazzoni A, Apolonio FM, Saboia VPA, Santi S, Angeloni V, Checchi V, Curci R, Di Lenarda R, Tay FR, Pashley DH, Breschi L. Carbodiimide inactivation of MMPs and effect on dentin bonding. J Dent Res 2013; 93:263-8. [PMID: 24334409 DOI: 10.1177/0022034513516465] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zymographic assay was performed on protein extracts obtained from dentin powder treated with Optibond FL or Scotchbond 1XT with or without 0.3M EDC pre-treatment. For in situ zymography, adhesive/dentin interfaces were created with the same adhesives applied to acid-etched dentin slabs pre-treated or not with EDC conditioner. Zymograms revealed increased expression of dentin endogenous MMP-2 and -9 after adhesive application, while the use of EDC as a primer inactivated dentin gelatinases. Results of in situ zymograpy showed that hybrid layers of tested adhesives exhibited intense collagenolytic activity, while almost no fluorescence signal was detected when specimens were pre-treated with EDC. The correlative analysis used in this study demonstrated that EDC could contribute to inactivate endogenous dentin MMPs within the hybrid layer created by etch-and-rinse adhesives.
Collapse
Affiliation(s)
- A Mazzoni
- Department of Biomedicine, Unit of Dental Sciences and Biomaterials, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Burugapalli K, Chan JCY, Kelly JL, Pandit AS. Efficacy of Crosslinking on Tailoring In Vivo Biodegradability of Fibro-Porous Decellularized Extracellular Matrix and Restoration of Native Tissue Structure: A Quantitative Study using Stereology Methods. Macromol Biosci 2013; 14:244-56. [DOI: 10.1002/mabi.201300195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/12/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Krishna Burugapalli
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
- Brunel Institute for Bioengineering; Brunel University; Uxbridge, London UK
| | - Jeffrey C. Y. Chan
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
- Department of Plastic, Reconstructive and Hand Surgery; University College Hospital; Galway Ireland
| | - John L. Kelly
- Department of Plastic, Reconstructive and Hand Surgery; University College Hospital; Galway Ireland
| | - Abhay S. Pandit
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| |
Collapse
|
11
|
McDade JK, Brennan-Pierce EP, Ariganello MB, Labow RS, Michael Lee J. Interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment. Acta Biomater 2013; 9:7191-9. [PMID: 23454057 DOI: 10.1016/j.actbio.2013.02.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/21/2013] [Accepted: 02/12/2013] [Indexed: 01/23/2023]
Abstract
While macrophages have been implicated in the failure of bioprosthetic heart valves, the macrophage response to crosslinked native pericardial collagen has not been previously investigated. Using decellularized bovine pericardium (DBP) as a model for native collagen, this study investigated the response of macrophage-like cells (U937s) to DBP, either: (i) untreated, or (ii) exogenously crosslinked with glutaraldehyde or 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide (EDC). We have previously validated the use of U937 cells as models for the response of human monocyte-derived macrophages to decellularized pericardial materials and, per our previous work, differentiated the U937 cells directly on the three material surfaces. After 72h in culture, the cells and medium were analyzed for DNA content, acid phosphatase activity, and cytokine and matrix metalloproteinase release. As well, cell/substrate samples were fixed for SEM. Fewer cells attached to or survived on the glutaraldehyde-treated substrate, and some showed an abnormal morphology compared to cells cultured on the other surfaces. Further, cells on glutaraldehyde-treated surfaces released more pro-inflammatory cytokines, more MMP-1 and less MMP-2 and MMP-9. The poor performance of the U937 macrophage-like cells on the glutaraldehyde-treated surfaces appears to be due to surface characteristics rather than to soluble aldehyde or other components leaching from the crosslinked material. These results provide evidence that crosslinking with glutaraldehyde is cytotoxic to macrophage-like cells, and that crosslinking with a zero-length crosslinker like EDC can be an acceptable alternative crosslinking treatment for biomaterials.
Collapse
|
12
|
Santiago-Gómez A, Barrasa JI, Olmo N, Lecona E, Burghardt H, Palacín M, Lizarbe MA, Turnay J. 4F2hc-silencing impairs tumorigenicity of HeLa cells via modulation of galectin-3 and β-catenin signaling, and MMP-2 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2045-56. [PMID: 23651923 DOI: 10.1016/j.bbamcr.2013.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/17/2023]
Abstract
4F2hc is a type-II glycoprotein whose covalent-bound association with one of several described light chains yields a heterodimer mainly involved in large neutral amino acid transport. Likewise, it is well known that the heavy chain interacts with β-integrins mediating integrin-dependent events such as survival, proliferation, migration and even transformation. 4F2hc is a ubiquitous protein whose overexpression has been related to tumor development and progression. Stable silencing of 4F2hc in HeLa cells using an artificial miRNA impairs in vivo tumorigenicity and leads to an ineffective proliferation response to mitogens. 4F2hc colocalizes with β1-integrins and CD147, but this interaction does not occur in lipid rafts in HeLa cells. Moreover, silenced cells present defects in integrin- (FAK, Akt and ERK1/2) and hypoxia-dependent signaling, and reduced expression/activity of MMP-2. These alterations seem to be dependent on the inappropriate formation of CD147/4F2hc/β1-integrin heterocomplexes on the cell surface, arising when CD147 cannot interact with 4F2hc. Although extracellular galectin-3 accumulates due to the decrease in MMP-2 activity, galectin-3 signaling events are blocked due to an impaired interaction with 4F2hc, inducing an increased degradation of β-catenin. Furthermore, cell motility is compromised after protein silencing, suggesting that 4F2hc is related to tumor invasion by facilitating cell motility. Therefore, here we propose a molecular mechanism by which 4F2hc participates in tumor progression, favoring first steps of epithelial-mesenchymal transition by inhibition of β-catenin proteasomal degradation through Akt/GSK-3β signaling and enabling cell motility.
Collapse
Affiliation(s)
- Angélica Santiago-Gómez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Young JJ, Cheng KM, Tsou TL, Liu HW, Wang HJ. Preparation of cross-linked hyaluronic acid film using 2-chloro-1-methylpyridinium iodide or water-soluble 1-ethyl-(3,3-dimethylaminopropyl)carbodiimide. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 15:767-80. [PMID: 15255525 DOI: 10.1163/156856204774196153] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to obtain much slower biodegradable films, which are often required for biomedical applications, we have developed a series of studies on heterogeneous cross-linking of hyaluronic acid (HA) films by using 2-chloro-1-methylpyridinium iodide (CMPI) or 1-ethyl-(3,3-dimethylaminopropyl)carbodiimide (EDC) as cross-linking reagents. From the in vitro degradation rate, we found that EDC cross-linked HA films completely dissolved in PBS at 37 degrees C during the period of 4-6 days. However, CMPI cross-linked HA films showed only a low percentage of weight loss over 30 days. This phenomenon could be explained from the mechanism of reaction between carboxyl group of HA and EDC. The latter reacted with carboxyl group to form an unstable intermediate O-acylurea, which showed a relatively low reactivity and quickly rearranged to form a stable N-acylurea. Thus, most of the EDC-activated carboxyl groups in HA were chemically transferred into N-acylurea or left as unreactive O-acylurea, and only a few of cross-linking bonds were formed between HA. On the other hand, the intermediate obtained from the reaction between carboxyl group and CMPI showed a relatively high reactivity and reacted with the hydroxyl group of the same and/or different molecules of HA to form an inter- and intramolecular esterification. Apparently, CMPI cross-linked HA films have a much higher cross-linking density and constructed a more rigid three-dimensional network. Therefore, it produced HA films, which dramatically increased its enzymatic stability in aqueous solution of hyaluronidase. The obtained results from elemental analyses, FT-IR spectra and NMR spectra also indicate that acylurea groups were introduced into EDC-cross-linked HA films.
Collapse
Affiliation(s)
- Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, PO Box 90048-700, Sanhsia, Taipei 237, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
14
|
Lee JH, Chang J, Son HH. Effects of matrix metallproteinases on dentin bonding and strategies to increase durability of dentin adhesion. Restor Dent Endod 2012. [DOI: 10.5395/rde.2012.37.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jung-Hyun Lee
- Department of Conservative Dentistry, Seoul National University School of Dentistry, Seoul, Korea
| | - Juhea Chang
- Clinic for Persons with Disabilities, Seoul National University Dental Hospital, Seoul, Korea
| | - Ho-Hyun Son
- Department of Conservative Dentistry, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
15
|
Tezvergil-Mutluay A, Mutluay MM, Agee KA, Seseogullari-Dirihan R, Hoshika T, Cadenaro M, Breschi L, Vallittu P, Tay FR, Pashley DH. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro. J Dent Res 2011; 91:192-6. [PMID: 22058118 DOI: 10.1177/0022034511427705] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) cause collagen degradation in hybrid layers created by dentin adhesives. This in vitro study evaluated the feasibility of using a cross-linking agent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), to inactivate soluble rhMMP-9, as an example of dentin MMPs, and matrix-bound dentin proteases. The inhibitory effects of 5 EDC concentrations (0.01-0.3 M) and 5 incubation times (1-30 min) on soluble rhMMP-9 were screened with an MMP assay kit. The same EDC concentrations were used to evaluate their inhibitory effects on endogenous proteinases from completely demineralized dentin beams that were incubated in simulated body fluid for 30 days. Decreases in modulus of elasticity (E) and dry mass of the beams, and increases in hydroxyproline content of hydrolysates derived from the incubation medium were used as indirect measures of matrix collagen hydrolysis. All EDC concentrations and pre-treatment times inactivated MMP-9 by 98% to 100% (p < 0.05) compared with non-cross-linked controls. Dentin beams incubated in 0.3 M EDC showed only a 9% decrease in E (45% decrease in control), a 3.6% to 5% loss of dry mass (18% loss in control), and significantly less solubilized hydroxyproline when compared with the control without EDC cross-linking (p < 0.05). It is concluded that EDC application for 1 min may be a clinically relevant and effective means for inactivating soluble rhMMP-9 and matrix-bound dentin proteinases if further studies demonstrate that EDC is not toxic to pulpal tissues.
Collapse
Affiliation(s)
- A Tezvergil-Mutluay
- Department of Prosthodontics, University of Turku, Institute of Dentistry, Lemminkaisenkatu 2, FI-20520 Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater 2011; 7:1735-41. [PMID: 21167964 DOI: 10.1016/j.actbio.2010.12.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interaction, biodegradation rates, proteoglycan interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent-dentin interaction was observed with GSE, which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates decreased remarkably following biomodification of dentin matrices after 24h collagenase digestion. A significant decrease in the proteoglycan content of GSE-treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and the control. The tensile strength properties of GD-biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD- and GSE-treated samples were observed following exposure to collagenase and 8 months water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry, but also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.
Collapse
|
17
|
Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 2011; 90:953-68. [PMID: 21220360 DOI: 10.1177/0022034510391799] [Citation(s) in RCA: 423] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding.
Collapse
Affiliation(s)
- Y Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou District, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tezvergil-Mutluay A, Agee KA, Hoshika T, Tay FR, Pashley DH. The inhibitory effect of polyvinylphosphonic acid on functional matrix metalloproteinase activities in human demineralized dentin. Acta Biomater 2010; 6:4136-42. [PMID: 20580949 PMCID: PMC2930042 DOI: 10.1016/j.actbio.2010.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/13/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
This study has examined the use of polyvinylphosphonic acid (PVPA) as a potential matrix metalloproteinase (MMP) inhibitor and how brief cross-linking of demineralized dentin matrix that did not affect its mechanical properties enhanced the anti-MMP activity of PVPA. The anti-MMP potential of five PVPA concentrations (100-3000 microgml(-1)) was initially screened using a rhMMP-9 colorimetic assay. Demineralized dentin beams were treated with the same five concentrations of PVPA to collagen and then aged for 30 days in a calcium- and zinc-containing medium. The changes in modulus of elasticity, loss of dry mass and dissolution of collagen peptides were measured via three-point bending, precision weighing and hydroxyproline assay, respectively. All tested PVPA concentrations were highly effective (P<0.05) in inhibiting MMP-9. Ageing in the incubation medium did not significantly alter the modulus of elasticity of the five PVPA treatment groups. Conversely, aged dentin beams from the control group exhibited a significant decline in their modulus of elasticity (P<0.05) over time. Mass loss from the dentin beams and the corresponding increase in hydroxyproline in the medium in the five PVPA treatment groups were significantly lower than for the control (P<0.05). PVPA is a potent inhibitor of endogenous MMP activities in demineralized dentin. It may be used as an alternative to chlorhexidine to prevent collagen degradation within hybrid layers to extend the longevity of resin-dentin bonds.
Collapse
Affiliation(s)
- Arzu Tezvergil-Mutluay
- Department of Prosthetic Dentistry, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Oral Biology, Medical College of Georgia, School of Dentistry, Augusta, GA, USA
| | - Kelli A. Agee
- Department of Oral Biology, Medical College of Georgia, School of Dentistry, Augusta, GA, USA
| | - Tomohiro Hoshika
- Department of Operative Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Franklin R. Tay
- Department of Oral Biology, Medical College of Georgia, School of Dentistry, Augusta, GA, USA
- Department of Endodontics, Medical College of Georgia, School of Dentistry, Augusta, GA, USA
| | - David H. Pashley
- Department of Oral Biology, Medical College of Georgia, School of Dentistry, Augusta, GA, USA
| |
Collapse
|
19
|
Jorge-Herrero E, Fonseca C, Barge AP, Turnay J, Olmo N, Fernández P, Lizarbe MA, García Páez JM. Biocompatibility and Calcification of Bovine Pericardium Employed for the Construction of Cardiac Bioprostheses Treated With Different Chemical Crosslink Methods. Artif Organs 2010; 34:E168-76. [PMID: 20633147 DOI: 10.1111/j.1525-1594.2009.00978.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Eduardo Jorge-Herrero
- Divisão de Biomateriais, INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mi FL, Huang CT, Chiu YL, Chen MC, Liang HF, Sung HW. Aglycone geniposidic acid, a naturally occurring crosslinking agent, and its application for the fixation of collagenous tissues. J Biomed Mater Res A 2007; 83:667-73. [PMID: 17530623 DOI: 10.1002/jbm.a.31274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A natural compound, aglycone geniposidic acid (aGSA), originated from the fruits of Gardenia jasminoides ELLIS was used for the fixation of collagenous tissues. The presumed crosslinking reaction mechanism of collagenous tissues with aGSA was inferred by reacting aGSA with a bifunctional amine, 1,6-hexanediamine, using a series of (1)H NMR, FT-IR, and UV/Vis spectra analyses. aGSA reacted with 1,6-hexanediamine by a nucleophilic attack on the olefinic carbon atom at C-2 of deoxyloganin aglycone, followed by opening the dihydropyran ring to form heterocyclic amine compounds. It is inferred that aGSA may form intramolecular and intermolecular crosslinks with a heterocyclic structure within collagen fibers in tissues. The degrees of tissue fixation by aGSA at different pH values were investigated by examining the fixation indices and denaturation temperatures of test samples. It was found that the fixation indices and denaturation temperatures of test samples fixed at neutral or basic pH (pH 7.4 or pH 8.5) were significantly greater than at acidic pH (pH 4.0). The results obtained in this study may be used to elucidate the crosslinking mechanism and optimize the fixation process for developing bioprostheses fixed by aGSA.
Collapse
Affiliation(s)
- Fwu-Long Mi
- Department of Biotechnology, Vanung Universtiy, Chung-Li, Tao-Yuan, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Halloran DO, Grad S, Stoddart M, Dockery P, Alini M, Pandit AS. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials 2007; 29:438-47. [PMID: 17959242 DOI: 10.1016/j.biomaterials.2007.10.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/05/2007] [Indexed: 01/08/2023]
Abstract
Incorporation of scaffolds has long been recognized as a critical element in most tissue engineering strategies. However with regard to intervertebral disc tissue engineering, the use of a scaffold containing the principal extracellular matrix components of native disc tissue (i.e. collagen type II, aggrecan and hyaluronan) has not been investigated. In this study the behavior of bovine nucleus pulposus cells that were seeded within non-cross-linked and enzymatically cross-linked, atelocollagen type II based scaffolds containing varying concentrations of aggrecan and hyaluronan was investigated. Cross-linking atelocollagen type II based scaffolds did not cause any negative effects on cell viability or cell proliferation over the 7-day culture period. The cross-linked scaffolds retained the highest proteoglycan synthesis rate and the lowest elution of sulfated glycosaminoglycan into the surrounding medium. From confined compression testing and volume reduction measurements, it was seen that the cross-linked scaffolds provided a more stable structure for the cells compared to the non-cross-linked scaffolds. The results of this study indicate that the enzymatically cross-linked, composite collagen-hyaluronan scaffold shows the most potential for developing an injectable cell-seeded scaffold for nucleus pulposus treatment in degenerated intervertebral discs.
Collapse
Affiliation(s)
- Damien O Halloran
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Over the past few years, many biologic patches have been developed to augment repairs of large or complex tendon tears. These patches include both allograft and xenografts. Regardless of their origins, these products are primarily composed of purified type I collagen. Many factors should be considered when choosing an augmentation patch including tissue origin, graft processing, cross-linking, clinical experience, and physical properties. The purpose of this article is to familiarize the sports medicine community with several tendon augmentation grafts: GraftJacket (Wright Medical Technology, Arlington, TN), CuffPatch (Organogenesis, Canton, MA, licensed to Arthrotek, Warsaw, IN), Restore (Depuy, Warsaw, IN), Zimmer Collagen Repair (Permacol) patch (Tissue Science Laboratories Covington, GA, licensed to Zimmer, Warsaw, IN), TissueMend (TEI Biosciences, Boston, MA, licensed to Stryker Howmedica Osteonics, Kalamazoo, MI), OrthoADAPT (Pegasus Biologics, Irvine, CA), and BioBlanket (Kensey Nash, Exton, PA).
Collapse
Affiliation(s)
- David A Coons
- Pacific Sports Medicine at Multicare, Tacoma, WA, USA.
| | | |
Collapse
|
23
|
O Halloran DM, Collighan RJ, Griffin M, Pandit AS. Characterization of a Microbial Transglutaminase Cross-linked Type II Collagen Scaffold. ACTA ACUST UNITED AC 2006; 12:1467-74. [PMID: 16846344 DOI: 10.1089/ten.2006.12.1467] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigated the effect on the mechanical and physicochemical properties of type II collagen scaffolds after cross-linking with microbial transglutaminase (mTGase). It is intended to develop a collagen-based scaffold to be used for the treatment of degenerated intervertebral discs. By measuring the amount of epsilon-(gamma-glutamyl)lysine isodipeptide formed after cross-linking, it was determined that the optimal enzyme concentration was 0.005% (w/v). From the production of covalent bonds induced by mTGase cross-linking, the degradation resistance of type II collagen scaffolds can be enhanced. Rheological analysis revealed an almost sixfold increase in storage modulus (G') with 0.005% (w/v) mTGase cross-linked scaffolds (1.31 +/- 0.03 kPa) compared to controls (0.21 +/- 0.01 kPa). There was a significant reduction in the level of cell-mediated contraction of scaffolds with increased mTGase concentrations. Cell proliferation assays showed that mTGase crosslinked scaffolds exhibited similar cytocompatibility properties in comparison to non-cross-linked scaffolds. In summary, cross-linking type II collagen with mTGase imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications.
Collapse
Affiliation(s)
- Damien M O Halloran
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
24
|
Yang SH, Chen PQ, Chen YF, Lin FH. An In-vitro Study on Regeneration of Human Nucleus Pulposus by Using Gelatin/Chondroitin-6-Sulfate/Hyaluronan Tri-copolymer Scaffold. Artif Organs 2005; 29:806-14. [PMID: 16185342 DOI: 10.1111/j.1525-1594.2005.00133.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tissue engineering approaches for treating degenerative intervertebral discs aim to promote tissue regeneration then retard or even reverse the degenerative process. A gelatin/chondroitin-6-sulfate/hyaluronan tri-copolymer was developed to serve as a bioactive scaffold that could help human nucleus pulposus (NP) cells to preserve their cell viability/proliferation and promote matrix synthesis. Each scaffold was seeded with 1 x 10(6) monolayer-expanded human NP cells and then cultured in vitro. Over a 4-week cultivation period, cell-scaffold hybrids demonstrated active cell viability/proliferation and a progressive increase in net production of glycosaminoglycans. In comparison to monolayer cells, scaffold-cultured cells showed significantly higher mRNA expression in collagen II, aggrecan, Sox9, TGFbeta1, and TIMP1. Expression of mRNA was significantly suppressed in collagen I, collagen X, IL1, and Fas-associating death domain protein. Histological studies showed newly synthesized glycosaminoglycans deposits and collagen II in scaffolds. These results indicate that the tri-copolymer scaffold could be considered as a promising bioactive scaffold for regenerating human NP.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
25
|
Yang SH, Hsu CK, Wang KC, Hou SM, Lin FH. Tricalcium phosphate and glutaraldehyde crosslinked gelatin incorporating bone morphogenetic protein--a viable scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2005; 74:468-75. [PMID: 15889421 DOI: 10.1002/jbm.b.30200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone defects caused by various etiologies must be filled with suitable substances to promote bone repair. Autogenous iliac crest graft is most frequently used, but is often associated with morbidities. Several bone graft substitutes have been developed to provide osteoconductive matrices as well as to enhance osteoinductivity. A tricalcium phosphate and glutaraldehyde crosslinked gelatin (GTG) scaffold, incorporated with bone morphogenetic proteins (BMPs), was developed to provide an alternative mean of bone tissue engineering. This study investigated differences between GTG and BMP-4 immobilized GTG (GTG-BMP) scaffolds on neonatal rat calvaria osteoblast activities. The GTG scaffold possessed an average pore size of 200 microm and a porosity of 75%. HE staining revealed uniform cell distribution throughout the scaffold 24 h post cell seeding. Alkaline phosphatase (ALP) activity of the GTG samples increased initially and then stabilized at 3 weeks postseeding. ALP activity of the GTG-BMP samples was similar to that of the GTG samples in the second and third weeks, but it continued increasing and became significantly greater than that of the GTG samples by the fourth week. Gla-type osteocalcin (Gla-OC) activity of the GTG-BMP samples was initially lower, but also became significantly greater than that of the GTG samples by the fourth week. An HE stain revealed greater numbers of attached cells and a richer matrix deposits in the GTG-BMP samples. A von Kossa stain showed larger mineralizing nodules, in greater numbers, after 4 weeks of in vitro cultivation. These findings suggest that the GTG scaffold provides an excellent porous structure, conductive to greater cell attachment and osteoblast differentiation, and that utility can be significantly enhanced by the inclusion of BMPs. A GTG-BMP scaffold holds promise as a superior bioactive material for bone tissue engineering.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
26
|
Jastrzebska M, Barwinski B, Mróz I, Turek A, Zalewska-Rejdak J, Cwalina B. Atomic force microscopy investigation of chemically stabilized pericardium tissue. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2005; 16:381-388. [PMID: 15750684 DOI: 10.1140/epje/i2004-10093-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 01/17/2005] [Indexed: 05/24/2023]
Abstract
Native and chemically stabilized porcine pericardium tissue was imaged by the contact mode atomic force microscopy (AFM), in air. Chemically stabilized pericardium is used as a tissue-derived biomaterial in various fields of the reconstructive and replacement surgery. Collagen type I is the main component of the fibrous layer of the pericardium tissue. In this study, the surface topography of collagen fibrils in their native state in tissue and after chemical stabilization with different cross-linking reagents: glutaraldehyde (GA), dimethyl suberimidate (DMS) and tannic acid (TA) was investigated. It has been found that chemical stabilization causes considerable changes in the surface topography of collagen fibrils as well as in the spatial organization of the fibrils within the tissue. The observed changes in the D-spacing pattern of the collagen fibril correspond to the formation of intrafibrilar cross-links, whereas formation of interfibrilar cross-links is mainly responsible for the observed tangled spatial arrangement of fibrils and crimp structure of the tissue surface. The crimp structure was distinctly seen for the GA cross-linked tissue. Surface heterogeneity of the cross-linking process was observed for the DMS-stabilized tissue. SDS-PAGE electrophoresis was performed in order to evaluate the stabilization effect of the tissues treated with the cross-linking reagents. It has been found that stabilization with DMS, GA or TA enhances significantly the tissue resistance to SDS/NaCl extraction. The relation between the tissue stability and changes in the topography of the tissue surface was interpreted in terms of different nature of cross-links formed by DMS, GA and TA with collagen.
Collapse
Affiliation(s)
- M Jastrzebska
- Department of Biophysics, Faculty of Pharmacy, Medical University of Silesia, Ostrogorska 30, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | |
Collapse
|
27
|
Yang SH, Chen PQ, Chen YF, Lin FH. Gelatin/chondroitin-6-sulfate copolymer scaffold for culturing human nucleus pulposus cellsin vitro with production of extracellular matrix. J Biomed Mater Res B Appl Biomater 2005; 74:488-94. [PMID: 15912520 DOI: 10.1002/jbm.b.30221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue-engineering approaches for treating degenerative intervertebral discs aim to regenerate intervertebral disc tissues in order to retard or even reverse the degenerative process. This study was designed to investigate the feasibility of the glutaraldehyde crosslinked gelatin/chondroitin-6-sulfate copolymer scaffold to serve as a bioactive scaffold for culturing human nucleus pulposus (NP) cells in vitro with preservation of the cell viability, cell proliferation, and production of important extracellular matrix, including glycoaminoglycans (GAG) and Type II collagen. Each experimental sample was seeded with 1 x 10(6) human NP cells, and then the cell-scaffold hybrids were cultured in vitro for 6 or 12 weeks. SEM showed a highly porous structure with an average pore size of 100 microm in the copolymer scaffold. Immediately after cell seeding, SEM showed that the seeded cells penetrated deeply and distributed evenly in the copolymer scaffold. Water-soluble tetrazolium salt-1 (WST-1) assay showed good viability and active proliferation of cultured human NP cells in the copolymer scaffolds up to 12 weeks. The cell-scaffold hybrids contained significantly higher levels of sulfated GAG than the control samples (41.29 mug vs 6.04 mug per scaffold). Immunohistochemical study showed Type II collagen fibrils on the surface of scaffold substrate after 6 weeks of cultivation. More abundant deposition of Type II collagen could be detected after 12 weeks. The results achieved in this study indicate that the gelatin/chondroitin-6-sulfate copolymer scaffold is a promising bioactive scaffold for regeneration of nucleus pulposus tissue.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei
| | | | | | | |
Collapse
|
28
|
Arenaz B, Maestro MM, Fernández P, Turnay J, Olmo N, Senén J, Mur JG, Lizarbe MA, Jorge-Herrero E. Effects of periodate and chondroitin 4-sulfate on proteoglycan stabilization of ostrich pericardium. Inhibition of calcification in subcutaneous implants in rats. Biomaterials 2004; 25:3359-68. [PMID: 15020108 DOI: 10.1016/j.biomaterials.2003.09.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2003] [Accepted: 09/22/2003] [Indexed: 11/26/2022]
Abstract
Chemical modification of biological materials used in the manufacture of cardiac valves tends to reduce the relatively high degree of biodegradation and calcification of the implanted bioprostheses. The most widely used treatment to reduce biodegradability of the valves is glutaraldehyde fixation. However, this treatment is potentially toxic and induces tissue calcification. In order to minimize these undesirable effects, we have analyzed the effect of a pre-fixation of endogenous proteoglycans and exogenous glycosaminoglycans, as well as the borohydride reduction influence on the different modified ostrich pericardium implants after subcutaneous implantation in rats. The presence of calcific deposits was detected in all implanted GA-fixed samples; however, calcification was highly reduced in both groups of periodate-prefixed materials, which showed also a very low Ca/P molar ratio. Borohydride post-treatment of these biomaterials resulted in a significant increase in calcium phosphate precipitation, with the appearance of calcium deposits mainly in an amorphous form even though X-ray diffraction allowed the detection of brushite- and apatite-like crystals. Regarding tissue stability, no significant differences were found among the borohydride-untreated implants but higher levels of matrix metalloproteinases were observed by gelatin zymography in the periodate pre-fixed materials. This increase was partially reduced by pre-fixation of exogenous chondroitin 4-sulfate. On the other hand, borohydride post-treatment not only increased calcification, but also reduced tissue stability and increased the presence of matrix-degrading activities.
Collapse
Affiliation(s)
- Beatriz Arenaz
- Servicio de Cirugía Experimental, Unidad de Biomateriales, Clínica Puerta de Hierro, San Martín de Porres 4, Madrid 28035, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|