1
|
Mrozińska Z, Kaczmarek A, Świerczyńska M, Juszczak M, Kudzin MH. Biochemical Behavior, Influence on Cell DNA Condition, and Microbiological Properties of Wool and Wool-Copper Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2878. [PMID: 38930247 PMCID: PMC11204859 DOI: 10.3390/ma17122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The paper presents the study concerning the preparation and physio-chemical and biological properties of wool-copper (WO-Cu) materials obtained by the sputter deposition of copper onto the wool fibers. The WO-Cu material was subjected to physio-chemical and biological investigations. The physio-chemical investigations included the elemental analysis of materials (C, N, O, S, and Cu), their microscopic analysis, and surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of the antimicrobial activity tests of the WO-Cu materials against colonies of Gram-positive (Staphylococcus aureus) bacteria, Gram-negative (Escherichia coli) bacteria, and fungal mold species (Chaetomium globosum). Biochemical-hematological tests included the evaluation of the activated partial thromboplastin time and pro-thrombin time. The tested wool-copper demonstrated the ability to interact with the DNA in a time-dependent manner. These interactions led to the DNA's breaking and degradation. The antimicrobial and antifungal activities of the WO-Cu materials suggest a potential application as an antibacterial/antifungal material. Wool-copper materials may be also used as customized materials where the blood coagulation process could be well controlled through the appropriate copper content.
Collapse
Affiliation(s)
- Zdzisława Mrozińska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Anna Kaczmarek
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| |
Collapse
|
2
|
Kocak FZ, Yar M, Rehman IU. Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance. Int J Mol Sci 2022; 23:ijms23105370. [PMID: 35628172 PMCID: PMC9140455 DOI: 10.3390/ijms23105370] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
The investigation of natural bioactive injectable composites to induce angiogenesis during bone regeneration has been a part of recent minimally invasive regenerative medicine strategies. Our previous study involved the development of in situ-forming injectable composite hydrogels (Chitosan/Hydroxyapatite/Heparin) for bone regeneration. These hydrogels offered facile rheology, injectability, and gelation at 37 °C, as well as promising pro-angiogenic abilities. In the current study, these hydrogels were modified using glycerol as an additive and a pre-sterile production strategy to enhance their mechanical strength. These modifications allowed a further pH increment during neutralisation with maintained solution homogeneity. The synergetic effect of the pH increment and further hydrogen bonding due to the added glycerol improved the strength of the hydrogels substantially. SEM analyses showed highly cross-linked hydrogels (from high-pH solutions) with a hierarchical interlocking pore morphology. Hydrogel solutions showed more elastic flow properties and incipient gelation times decreased to just 2 to 3 min at 37 °C. Toluidine blue assay and SEM analyses showed that heparin formed a coating at the top layer of the hydrogels which contributed anionic bioactive surface features. The chick chorioallantoic membrane (CAM) assay confirmed significant enhancement of angiogenesis with chitosan-matrixed hydrogels comprising hydroxyapatite and small quantities of heparin (33 µg/mL) compared to basic chitosan hydrogels.
Collapse
Affiliation(s)
- Fatma Z. Kocak
- Engineering-Architecture Faculty, Metallurgy and Material Engineering, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey;
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Ihtesham U. Rehman
- Engineering-Architecture Faculty, Metallurgy and Material Engineering, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey;
- Correspondence:
| |
Collapse
|
3
|
El-Malek FA, Steinbüchel A. Post-Synthetic Enzymatic and Chemical Modifications for Novel Sustainable Polyesters. Front Bioeng Biotechnol 2022; 9:817023. [PMID: 35071219 PMCID: PMC8766639 DOI: 10.3389/fbioe.2021.817023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Because of their biodegradability, compostability, compatibility and flexible structures, biodegradable polymers such as polyhydroxyalkanoates (PHA) are an important class of biopolymers with various industrial and biological uses. PHAs are thermoplastic polyesters with a limited processability due to their low heat resistance. Furthermore, due to their high crystallinity, some PHAs are stiff and brittle. These features result sometimes in very poor mechanical characteristics with low extension at break values which limit the application range of some natural PHAs. Several in vivo approaches for PHA copolymer modifications range from polymer production to enhance PHA-based material performance after synthesis. The methods for enzymatic and chemical polymer modifications are aiming at modifying the structures of the polyesters and thereby their characteristics while retaining the biodegradability. This survey illustrates the efficient use of enzymes and chemicals in post-synthetic PHA modifications, offering insights on these green techniques for modifying and improving polymer performance. Important studies in this sector will be reviewed, as well as chances and obstacles for their stability and hyper-production.
Collapse
Affiliation(s)
- Fady Abd El-Malek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
4
|
Park J, Ueda T, Kawai Y, Araki K, Kido M, Kure B, Takenaka N, Takashima Y, Tanaka M. Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate. RSC Adv 2022; 12:27912-27917. [PMID: 36320244 PMCID: PMC9523658 DOI: 10.1039/d2ra04885j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress–strain curve). Regardless of the cross-links, the pMEA-based elastomers exhibit low platelet adhesion properties (approximately 3% platelet adherence) compared with those of poly(ethylene terephthalate), which is one of the commercialized materials for artificial blood vessels. Contact angle measurements imply a shift of supramolecular cross-links in response to the surrounding environment. When immersed in water, hydrophobic supramolecular cross-links are buried within the interior of the materials, thereby exposing pMEA chains to the aqueous environment; this is why supramolecular cross-links do not affect the platelet adhesion properties. In addition, the elastomers exhibit stable adhesion to human umbilical vein endothelial cells. This report shows the potential of combining supramolecular cross-links and pMEA. Supramolecular cross-links in poly(2-methoxyethyl acrylate) enhanced mechanical properties of the polymers maintaining high blood compatibility. The high blood compatibility suggests a potential for artificial blood vessel.![]()
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tomoya Ueda
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Yusaku Kawai
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kumiko Araki
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Makiko Kido
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Bunsho Kure
- Nara Laboratory, Kyoeisha Chemical Co., Ltd, 2-5,5-chome, Saikujo-cho, Nara 630-8453, Japan
| | - Naomi Takenaka
- Nara Laboratory, Kyoeisha Chemical Co., Ltd, 2-5,5-chome, Saikujo-cho, Nara 630-8453, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Ledford B, Barron C, Van Dyke M, He JQ. Keratose hydrogel for tissue regeneration and drug delivery. Semin Cell Dev Biol 2021; 128:145-153. [PMID: 34219034 DOI: 10.1016/j.semcdb.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
Keratin (KRT), a natural fibrous structural protein, can be classified into two categories: "soft" cytosolic KRT that is primarily found in the epithelia tissues (e.g., skin, the inner lining of digestive tract) and "hard" KRT that is mainly found in the protective tissues (e.g., hair, horn). The latter is the predominant form of KRT widely used in biomedical research. The oxidized form of extracted KRT is exclusively denoted as keratose (KOS) while the reduced form of KRT is termed as kerateine (KRTN). KOS can be processed into various forms (e.g., hydrogel, films, fibers, and coatings) for different biomedical applications. KRT/KOS offers numerous advantages over other types of biomaterials, such as bioactivity, biocompatibility, degradability, immune/inflammatory privileges, mechanical resilience, chemical manipulability, and easy accessibility. As a result, KRT/KOS has attracted considerable attention and led to a large number of publications associated with this biomaterial over the past few decades; however, most (if not all) of the published review articles focus on KRT regarding its molecular structure, biochemical/biophysical properties, bioactivity, biocompatibility, drug/cell delivery, and in vivo transplantation, as well as its applications in biotechnical products and medical devices. Current progress that is directly associated with KOS applications in tissue regeneration and drug delivery appears an important topic that merits a commentary. To this end, the present review aims to summarize the current progress of KOS-associated biomedical applications, especially focusing on the in vitro and in vivo effects of KOS hydrogel on cultured cells and tissue regeneration following skin injury, skeletal muscle loss, peripheral nerve injury, and cardiac infarction.
Collapse
Affiliation(s)
- Benjamin Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, 1209 E. 2nd Street, Tucson, AZ 85721, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
6
|
Patel H. Blood biocompatibility enhancement of biomaterials by heparin immobilization: a review. Blood Coagul Fibrinolysis 2021; 32:237-247. [PMID: 33443929 DOI: 10.1097/mbc.0000000000001011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood contacting materials are concerned with biocompatibility including thrombus formation, decrease blood coagulation time, hematology, activation of complement system, platelet aggression. Interestingly, recent research suggests that biocompatibility is increasing by incorporating various materials including heparin using different methods. Basic of heparin including uses and complications was mentioned, in which burst release of heparin is major issue. To minimize the problem of biocompatibility and unpredictable heparin release, present review article potentially reviews the reported work and investigates the various immobilization methods of heparin onto biomaterials, such as polymers, metals, and alloys. Detailed explanation of different immobilization methods through different intermediates, activation, incubation method, plasma treatment, irradiations and other methods are also discussed, in which immobilization through intermediates is the most exploitable method. In addition to biocompatibility, other required properties of biomaterials like mechanical and corrosion resistance properties that increase by attachment of heparin are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Himanshu Patel
- Department of Applied Science and Humanities, Pacific School of Engineering, Surat, Gujarat
| |
Collapse
|
7
|
Liao Y, Zhou Z, Dai S, Jiang L, Yang P, Zhao A, Lu L, Chen J, Huang N. Cell-friendly photo-functionalized TiO 2 nano-micro-honeycombs for selectively preventing bacteria and platelet adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111996. [PMID: 33812616 DOI: 10.1016/j.msec.2021.111996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022]
Abstract
Titanium dioxide (TiO2) is a widely used biomaterial. It is a great challenge to confer antibacterial and antithrombotic properties to TiO2 while maintaining its cell affinity. Here, we developed a new strategy to achieve the above goal by comprehensively controlling the chemical cues and geometrical cues of the surface of TiO2. Using colloidal etching technology and UV irradiation treatment, we obtained the photofunctionalized nano-micro-honeycomb structured TiO2. The honeycomb structured increased the photocatalytic activity of TiO2, which endowed TiO2 with photo-induced superhydrophilicity to inhibit bacterial adhesion. The high photocatalytic activity also induced the strong photocatalytic oxidation of TiO2 surface organic adsorbates to suppress fibrinogen and platelet attachment. In addition, owing to the micropore trapping-isolation effect on the bacteria and the nano-frames' contact guidance effect on the growth and spreading of platelet pseudopods, the honeycomb structure also shows a considerable inhibiting effect on bacterial and platelet adhesion. Therefore, due to the controlled chemical and geometrical cues' synergistic effect, the photo-functionalized TiO2 honeycomb structure shows excellent bacterial-adhesion resistance and antithrombotic properties. More importantly, the photo-functionalized TiO2 honeycomb did not inhibit the adhesion and growth of endothelial cells (ECs) after culturing for 3 d, indicating a good cell affinity that the traditional antifouling surfaces do not possess.
Collapse
Affiliation(s)
- Yuzhen Liao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhi Zhou
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Sheng Dai
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Lang Jiang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ansha Zhao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
8
|
Wen C, Zhang J, Li Y, Zheng W, Liu M, Zhu Y, Sui X, Zhang X, Han Q, Lin Y, Yang J, Zhang L. A zwitterionic hydrogel coated titanium surface with high-efficiency endothelial cell selectivity for rapid re-endothelialization. Biomater Sci 2020; 8:5441-5451. [PMID: 32996913 DOI: 10.1039/d0bm00671h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coronary stent implantation is an effective procedure for percutaneous coronary intervention treatment. However, its long-term safety and efficacy are still hindered by the in-stent restenosis and late thrombus formation. Herein, an anti-biofouling and endothelial cell selective zwitterionic hydrogel coating was developed to simultaneously enhance the nonspecific resistance and rapid re-endothelialization of the titanium surface. An endothelial cell selective peptide, REDV, could be simply conjugated on the zwitterionic carboxybetaine (CB) hydrogel to prepare the REDV/CB coating. It was found that the REDV/CB hydrogel layer maintained antifouling properties, which could inhibit the protein adsorption, bacterial adhesion, platelet activation and aggregation, and smooth muscle cell proliferation. More importantly, the co-culture study confirmed that the conjugated REVD peptide could specifically capture endothelial cells and promote their migration and proliferation, and simultaneously decrease the adhesion and proliferation of smooth muscle cells. Therefore, the antifouling and endothelial cell selective coating proposed in this work provides a promising strategy to develop an intravascular stent for promoted re-endothelialization and inhibited neointimal hyperplasia in clinical applications.
Collapse
Affiliation(s)
- Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Scamporrino AA, Puglisi C, Spina A, Montaudo M, Zampino DC, Cicala G, Ognibene G, Mauro CD, Dattilo S, Mirabella EF, Recca G, Samperi F. Synthesis and Characterization of Copoly(Ether Sulfone)s with Different Percentages of Diphenolic Acid Units. Polymers (Basel) 2020; 12:E1817. [PMID: 32823561 PMCID: PMC7465425 DOI: 10.3390/polym12081817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 11/16/2022] Open
Abstract
New functionalized Poly(ether sulfone)s having different molar ratio (10, 20, 30, 50, 70, 100 mol%) of 4,4-bis phenoxy pentanoic acid unit (diphenolic acid; DPA) units were synthesized and characterized by (1H and 13C)-NMR, MALDI-TOF MS, FT-IR, DSC and DMA analyses. The microstructural analysis of the copolymers, obtained by 13C-NMR using an appropriate statistical model, shows a random distribution of copolymer sequences, as expected. The presence of different amount of DPA units along the polymer chains affects the chemical and physical properties of the copolymers. The Tg and the contact angle values decrease as the molar fraction of DPA units increases, whereas the hydrophilicity increases. NMR and MALDI-TOF MS analyses show that all polymer chains are almost terminated with hydroxyl and chlorine as end groups. The presence of cyclic oligomers was also observed by MALDI-TOF MS analysis.
Collapse
Affiliation(s)
- Andrea A. Scamporrino
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| | - Concetto Puglisi
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| | - Angela Spina
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| | - Maurizio Montaudo
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| | - Daniela C. Zampino
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (G.O.); (C.D.M.)
| | - Giulia Ognibene
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (G.O.); (C.D.M.)
| | - Chiara Di Mauro
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (G.O.); (C.D.M.)
| | - Sandro Dattilo
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| | - Emanuele F. Mirabella
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| | - Giuseppe Recca
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| | - Filippo Samperi
- Institute for Polymers Composites and Biomaterials, IPCB-SS Catania CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (C.P.); (A.S.); (M.M.); (D.C.Z.); (S.D.); (E.F.M.); (G.R.); (F.S.)
| |
Collapse
|
10
|
Sandoval‐Castellanos AM, Claeyssens F, Haycock JW. Biomimetic surface delivery of NGF and BDNF to enhance neurite outgrowth. Biotechnol Bioeng 2020; 117:3124-3135. [DOI: 10.1002/bit.27466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/11/2022]
Affiliation(s)
| | - Frederik Claeyssens
- Department of Materials Science and Engineering The University of Sheffield Sheffield United Kingdom
| | - John W. Haycock
- Department of Materials Science and Engineering The University of Sheffield Sheffield United Kingdom
| |
Collapse
|
11
|
Koca RB, Güven O, Çelik MS, Fıratlı E. Wetting properties of blood lipid fractions on different titanium surfaces. Int J Implant Dent 2020; 6:16. [PMID: 32399791 PMCID: PMC7218032 DOI: 10.1186/s40729-020-00213-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/23/2020] [Indexed: 01/20/2023] Open
Abstract
Background Blood is the first tissue contacting the implant surface and starting the biological interactions to enhance osseointegration and stimulate bone formation with the progenitor cytokines, chemokines, and growth factors. The coagulation cascade initiates the first step of osseointegration between implant and neighboring tissues. The wound healing may be inadequate unless the blood wets the implant surface properly. Wettability is one of the most important features of the implant surface while lipid level constitutes a milestone that may change the energy of blood, which determines its distribution on implant material. Thus, the aim of this study was to evaluate the effect of lipid component of blood as cholesterol and its treatment on their wetting behavior of titanium surfaces. Methods Five surface groups were formed including grade 4 titanium-machined, grade 4 titanium-SLA, grade 4 titanium-SLActive, Roxolid-SLA, and Roxolid-SLActive. In healthy, hyperlipidemic, and treatment situations, blood was taken from eight rabbits and dropped to the disc surfaces. Contact angles were measured between the blood samples and disc surfaces. Results A significant difference was found between both machined and SLActive surfaces, SLA and SLActive surfaces in the hyperlipidemic period, and only Roxolid-SLA and SLActive surfaces during the treatment period. When evaluated according to time, only grade 4-machined and Grade 4-SLA surfaces showed a significant difference. Conclusions Our findings indicated that each period has its own characteristics and showed the importance of cholesterol in blood structure on applicability of implant surfaces.
Collapse
Affiliation(s)
- Revan Birke Koca
- Department of Periodontology, Faculty of Dentistry, University of Kyrenia, 99320, Kyrenia, Cyprus.
| | - Onur Güven
- Department of Mining Engineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Mehmet Sabri Çelik
- Department of Mineral Processing Engineering, Faculty of Mines, İstanbul Technical University, İstanbul, Turkey.,Harran University Rectorate, Şanlıurfa, Turkey
| | - Erhan Fıratlı
- Department of Periodontology, Faculty of Dentistry, Istanbul University, İstanbul, Turkey
| |
Collapse
|
12
|
Aidun A, Zamanian A, Ghorbani F. Immobilization of polyvinyl alcohol‐siloxane on the oxygen plasma‐modified polyurethane‐carbon nanotube composite matrix. J Appl Polym Sci 2019. [DOI: 10.1002/app.48477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amir Aidun
- National Cell Bank of IranPasteur Institute of Iran Tehran Iran
- Tissues and Biomaterials Research Group (TBRG)Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Tehran Iran
| | - Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong HospitalFudan University Pudong Medical Center Shanghai China
| |
Collapse
|
13
|
Hussein MA, Alam MM, Alenazi NA, Alamry KA, Asiri AM, Rahman MM. Nanocomposite based functionalized Polyethersulfone and conjugated ternary ZnYCdO nanomaterials for the fabrication of selective Cd2+ sensor probe. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1643-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Hedayati M, Reynolds MM, Krapf D, Kipper MJ. Nanostructured Surfaces That Mimic the Vascular Endothelial Glycocalyx Reduce Blood Protein Adsorption and Prevent Fibrin Network Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31892-31902. [PMID: 30156830 DOI: 10.1021/acsami.8b09435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Blood-contacting materials are critical in many applications where long-term performance is desired. However, there are currently no engineered materials used in cardiovascular implants and devices that completely prevent clotting when in long-term contact with whole blood. The most common approach to developing next-generation blood-compatible materials is to design surface chemistries and structures that reduce or eliminate protein adsorption to prevent blood clotting. This work proposes a new paradigm for controlling protein-surface interactions by strategically mimicking key features of the glycocalyx lining the interior surfaces of blood vessels: negatively charged glycosaminoglycans organized into a polymer brush with nanoscale domains. The interactions of two important proteins from blood (albumin and fibrinogen) with these new glycocalyx mimics are revealed in detail using surface plasmon resonance and single-molecule microscopy. Surface plasmon resonance shows that these blood proteins interact reversibly with the glycocalyx mimics, but have no irreversible adsorption above the limit of detection. Single-molecule microscopy is used to compare albumin and fibrinogen interactions on surfaces with and without glycocalyx-mimetic nanostructures. Microscopy videos reveal a new mechanism whereby the glycocalyx-mimetic nanostructures eliminate the formation of fibrin networks on the surfaces. This approach shows for the first time that the nanoscale structure and organization of glycosaminoglycans in the glycocalyx are essential to (i) reduce protein adsorption, (ii) reversibly bind fibrin(ogen), and (iii) inhibit fibrin network formation on surfaces. The insights gained from this work suggest new design principles for blood-compatible surfaces. New surfaces developed using these design principles could reduce risk of catastrophic failures of blood-contacting medical devices.
Collapse
|
15
|
Liu T, Liang JF. Nanostructured surfaces from high-density grafted poly (acrylic acid) with liquid-like property. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ghorbani F, Zamanian A. Oxygen-plasma treatment-induced surface engineering of biomimetic polyurethane nanofibrous scaffolds for gelatin-heparin immobilization. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPolyurethane (PU) has been extensively used in vascular tissue engineering due to its outstanding mechanical performance and blood compatibility behavior. Here, biomimetic PU-based scaffolds were prepared using an electrospinning technique and gelatin-heparin was introduced as a surface modifier after oxygen plasma treatment to improve cell attachment and release an anticoagulation agent. Morphology, Fourier transform infrared (FTIR) spectroscopy, compression strength, swelling and biodegradation ratio, drug release level and cellular interactions were evaluated. According to the scanning electron microscopy (SEM) micrographs, gelatin-heparin immobilized PU nanofibers exhibited a smooth surface and a bead free structure that nanofibers distributed in the range of 300–1000 nm. The mechanical strength of constructs, swelling and biodegradation ratio, and drug release level illustrated higher values for oxygen plasma-treated samples compared with bilayered scaffolds. Cellular adhesion and biocompatibility ameliorated after plasma treatment. All the mentioned findings indicated the initial physicomechanical and biological potential of biomimetic PU-based fibers in the improvements of vascular scaffolds.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, P.O. Box: 4515-775, Tehran, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box: 14155-4777, Tehran, Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box: 14155-4777, Tehran, Iran, Phone: (+98) 912 3211180, Fax: (+98) 263 6201818
| |
Collapse
|
17
|
Park DS, Bae IH, Jeong MH, Lim KS, Sim DS, Hong YJ, Lee SY, Jang EJ, Shim JW, Park JK, Lim HC, Kim HB. In vitro and in vivo evaluation of a novel polymer-free everolimus-eluting stent by nitrogen-doped titanium dioxide film deposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:615-623. [PMID: 30033294 DOI: 10.1016/j.msec.2018.05.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023]
Abstract
Inflammation and thrombosis are linked to the use of polymer-based drug-eluting stents (DES). The aim of this study was to develop a polymer-free everolimus (EVL)-eluting stent using nitrogen-doped titanium dioxide (N-TiO2) and verify its efficacy by in vitro and in vivo assessment in a porcine coronary model. Various analytical approaches such as scanning electron microscopy and atomic force microscopy, electron spectroscopy, Fourier transform infrared spectrometry and contact angle measurement were employed for the characterization. As a part of biocompatibility assessment, platelet adhesion and smooth muscle cell (SMC) proliferation were examined. Bare metal stent (BMS), N-TiO2 stent, everolimus-eluting N-TiO2 (N-TiO2-EVL) stent, and commercialized EVL-eluting stent (EES) were randomly placed in forty coronary arteries in twenty pigs. After four weeks of implantation, the stents were subjected to histological and quantitative analysis. The N-TiO2 film used in this study was well coated without any cracks or peeling. Surface hydrophilicity (88.8% of angle decrement) could be associated with the decrease in surface roughness post N-TiO2 deposition (37.0%). The platelet adhesion on the N-TiO2 surfaces was less than that on the BMS surface. The proliferation of SMC was suppressed in the N-TiO2-EVL group (30.2%) but not in the BMS group. In the animal study, the percent area restenosis was significantly decreased in the N-TiO2-EVL group compared to that in the BMS group. The results (BMS; 47.0 ± 11.00%, N-TiO2-EVL; 31.7 ± 10.50%, and EES; 29.1 ± 11.21%, n = 10, p < 0.05) were almost at par with those of the commercialized EVL-eluting stent. The introduction of N-TiO2 deposition during fabrication of polymer-free DES may be an efficient accessorial process for preventing in-stent restenosis and thrombosis.
Collapse
Affiliation(s)
- Dae Sung Park
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju 61469, Republic of Korea; Korea Cardiovascular Stent Research Institute, Jangsung 57248, Republic of Korea; Research Institute of Medical Sciences, Chonnam National University, Republic of Korea
| | - In-Ho Bae
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju 61469, Republic of Korea; Korea Cardiovascular Stent Research Institute, Jangsung 57248, Republic of Korea
| | - Myung Ho Jeong
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju 61469, Republic of Korea; Korea Cardiovascular Stent Research Institute, Jangsung 57248, Republic of Korea; Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Chungbuk, Republic of Korea
| | - Doo Sun Sim
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju 61469, Republic of Korea; Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - So-Youn Lee
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju 61469, Republic of Korea; Korea Cardiovascular Stent Research Institute, Jangsung 57248, Republic of Korea
| | - Eun Jae Jang
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju 61469, Republic of Korea; Korea Cardiovascular Stent Research Institute, Jangsung 57248, Republic of Korea
| | - Jae-Won Shim
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju 61469, Republic of Korea; Korea Cardiovascular Stent Research Institute, Jangsung 57248, Republic of Korea
| | - Jun-Kyu Park
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Han Chul Lim
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Han Byul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
18
|
Moorthi A, Tyan YC, Chung TW. Surface-modified polymers for cardiac tissue engineering. Biomater Sci 2018; 5:1976-1987. [PMID: 28832034 DOI: 10.1039/c7bm00309a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.
Collapse
Affiliation(s)
- Ambigapathi Moorthi
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan.
| | | | | |
Collapse
|
19
|
Nanda HS, Shah AH, Wicaksono G, Pokholenko O, Gao F, Djordjevic I, Steele TWJ. Nonthrombogenic Hydrogel Coatings with Carbene-Cross-Linking Bioadhesives. Biomacromolecules 2018; 19:1425-1434. [DOI: 10.1021/acs.biomac.8b00074] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Himansu Sekhar Nanda
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Department of Mechanical Engineering, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM)-Jabalpur, Dumna Airport Road, Jabalpur-482005, Madhya Pradesh, India
| | - Ankur Harish Shah
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Gautama Wicaksono
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Oleksandr Pokholenko
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Feng Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Ivan Djordjevic
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Terry W. J. Steele
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
20
|
Salehi H, Shakeri A, Rastgar M. Carboxylic polyethersulfone: A novel pH-responsive modifier in support layer of forward osmosis membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Han B, Xue F, Fan C, Mo X. Surface heparinization and blood compatibility modification of small intestinal submucosa (SIS) for small-caliber vascular regeneration. Biomed Mater Eng 2017; 28:213-222. [PMID: 28527185 DOI: 10.3233/bme-171668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aims to investigate the small intestinal submucosal (SIS) surface after heparinization with the hypothermia plasma technique, to improve the blood compatibility of SIS, and to explore the possibility of construction of small-caliber vascular grafts with modified SIS scaffolds in vivo. METHODS SIS films prepared from jejunums of pigs were processed for surface treatment at different time periods with the argon plasma initiation technique under vacuum, and were then immediately immersed in 4% (m/v) heparin sodium solution for 24-h heparinization. The surface morphologies of heparinized SIS were observed under a scanning electron microscope (SEM). The antithrombogenicity of the modified SIS films was tested by measuring the water contact angle, blood coagulation time, activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and observation of platelet adherence by SEM. Heparinized SIS films were sewn into a small caliber (3-mm) tube and implanted into the defect of a canine femur by anastomosis as a vascular graft. The efficiency of the SIS graft was evaluated according to the patency for the circulation of blood with Doppler color ultrasonography and hematoxylin-eosin staining. RESULTS Heparinized SIS showed a significantly different surface morphology compared with that of untreated SIS. The SIS surface resembles wrinkled film, but the heparinized SIS surface is uniformly coated with microdots, and appears to have a layer of heparin adhesion. CONCLUSION Heparin was attached to the SIS surface after hypothermia plasma treatment. Hydrophilicity and antithrombogenicity of heparinized SIS were clearly increased. The heparinized SIS vascular graft showed great potential for replacement of defective small-caliber vessels.
Collapse
Affiliation(s)
- Bensong Han
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated No.6 People's Hospital South Campus, Shanghai 20023, China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated No.6 People's Hospital South Campus, Shanghai 20023, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Institute for Microsurgery of Extremities, Shanghai Jiao Tong University Affiliated No.6 People's Hospital, Shanghai 20023, China
| | - Xiumei Mo
- Institute of Biological Science and Biotechnology, Donghua University, Shanghai 200051, China
| |
Collapse
|
22
|
Bahramian B, Chrzanowski W, Kondyurin A, Thomas N, Dehghani F. Fabrication of Antimicrobial Poly(propylene carbonate) Film by Plasma Surface Modification. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bahareh Bahramian
- School of Chemical & Biomolecular Engineering, ‡Faculty of Pharmacy, and §School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Pharmacy and Medical Sciences and ∥Adelaide Biofilm Test Facility,
Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Wojciech Chrzanowski
- School of Chemical & Biomolecular Engineering, ‡Faculty of Pharmacy, and §School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Pharmacy and Medical Sciences and ∥Adelaide Biofilm Test Facility,
Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Alexey Kondyurin
- School of Chemical & Biomolecular Engineering, ‡Faculty of Pharmacy, and §School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Pharmacy and Medical Sciences and ∥Adelaide Biofilm Test Facility,
Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Nicky Thomas
- School of Chemical & Biomolecular Engineering, ‡Faculty of Pharmacy, and §School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Pharmacy and Medical Sciences and ∥Adelaide Biofilm Test Facility,
Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Fariba Dehghani
- School of Chemical & Biomolecular Engineering, ‡Faculty of Pharmacy, and §School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Pharmacy and Medical Sciences and ∥Adelaide Biofilm Test Facility,
Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
23
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
24
|
Pezzoli D, Cauli E, Chevallier P, Farè S, Mantovani D. Biomimetic coating of cross-linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications. J Biomed Mater Res A 2017; 105:2405-2415. [DOI: 10.1002/jbm.a.36098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/03/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering; CRC-I, Department of Mining, Metallurgical and Materials Engineering and CHU de Quebec Research Centre, Laval University; Quebec City QC G1L 3L5 Canada
| | - Elisa Cauli
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano; Milan 20133 Italy
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering; CRC-I, Department of Mining, Metallurgical and Materials Engineering and CHU de Quebec Research Centre, Laval University; Quebec City QC G1L 3L5 Canada
| | - Silvia Farè
- Laboratory for Biomaterials and Bioengineering; CRC-I, Department of Mining, Metallurgical and Materials Engineering and CHU de Quebec Research Centre, Laval University; Quebec City QC G1L 3L5 Canada
- Local Unit Politecnico di Milano; INSTM, Consorzio Nazionale di Scienza e Tecnologia dei Materiali; Milan Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering; CRC-I, Department of Mining, Metallurgical and Materials Engineering and CHU de Quebec Research Centre, Laval University; Quebec City QC G1L 3L5 Canada
| |
Collapse
|
25
|
Xu T, Chi B, Wu F, Ma S, Zhan S, Yi M, Xu H, Mao C. A sensitive label-free immunosensor for detection α-Fetoprotein in whole blood based on anticoagulating magnetic nanoparticles. Biosens Bioelectron 2017; 95:87-93. [PMID: 28419916 DOI: 10.1016/j.bios.2017.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022]
Abstract
Accurate values of tumor markers in blood play an especially important role in the diagnosis of illness. Here, based on the combination of three techniques include anticoagulant technology, nanotechnology and biosensing technology, a sensitive label-free immunosensor with anti-biofouling electrode for detection α-Fetoprotein (AFP) in whole blood was developed by anticoagulating magnetic nanoparticles. The obtained products of Fe3O4-ɛ-PL-Hep nanoparticles were characterized by fourier transform infrared (FT-IR) spectra, transmission electron microscopy (TEM), ζ-potential and vibrating sample magnetometry (VSM). Moreover, the blood compatibility of anticoagulating magnetic nanoparticles was characterized by in vitro coagulation tests, hemolysis assay and whole blood adhesion tests. Combining the anticoagulant property of heparin (Hep) and the good magnetism of Fe3O4, the Fe3O4-ɛ-PL-Hep nanoparticles could improve not only the anti-biofouling property of the electrode surface when they contact with whole blood, but also the stability and reproducibility of the proposed immunosensor. Thus, the prepared anticoagulating magnetic nanoparticles modified immunosensor for the detection of AFP showed excellent electrochemical properties with a wide concentration range from 0.1 to 100ng/mL and a low detection limit of 0.072ng/mL. Furthermore, five blood samples were assayed using the developed immunosensor. The results showed satisfactory accuracy with low relative errors. It indicated that our developed immunoassay was competitive and could be potentially used for the detection of whole blood samples directly.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fan Wu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shangshang Ma
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shuyue Zhan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meihui Yi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
26
|
Affiliation(s)
- Daniel E. Heath
- Department of Chemical and Biomolecular Engineering; Particulate Fluids Processing Centre; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
27
|
Trimukhe AM, Pandiyaraj KN, Tripathi A, Melo JS, Deshmukh RR. Plasma Surface Modification of Biomaterials for Biomedical Applications. ADVANCED STRUCTURED MATERIALS 2017. [DOI: 10.1007/978-981-10-3328-5_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Zhou J, Zheng D, Zhang F, Zhang G. Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1290-6. [DOI: 10.1016/j.msec.2016.08.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/05/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
|
29
|
Simon-Walker R, Romero R, Staver JM, Zang Y, Reynolds MM, Popat KC, Kipper MJ. Glycocalyx-Inspired Nitric Oxide-Releasing Surfaces Reduce Platelet Adhesion and Activation on Titanium. ACS Biomater Sci Eng 2016; 3:68-77. [PMID: 33429688 DOI: 10.1021/acsbiomaterials.6b00572] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endothelial glycocalyx lining the inside surfaces of blood vessels has multiple features that prevent inflammation, blood clot formation, and infection. This surface represents the highest standard in blood compatibility for long-term contact with blood under physiological flow rates. Engineering materials used in blood-contacting biomedical devices, including metals and polymers, have undesirable interactions with blood that lead to failure modes associated with inflammation, blood clotting, and infection. Platelet adhesion and activation are key events governing these undesirable interactions. In this work, we propose a new surface modification to titanium with three features inspired by the endothelial glcyocalyx: First, titanium surfaces are anodized to produce titania nanotubes with high surface area. Second, the nanostructured surfaces are coated with heparin-chitosan polyelectrolyte multilayers to provide glycosaminoglycan functionalization. Third, chitosan is modified with a nitric oxide-donor chemistry to provide an important antithrombotic small-molecule signal. We show that these surfaces are nontoxic with respect to platelets and leukocytes. The combination of glycocalyx-inspired features results in a dramatic reduction of platelet and leukocyte adhesion and platelet activation.
Collapse
Affiliation(s)
- Rachael Simon-Walker
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Raimundo Romero
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Joseph M Staver
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States
| | - Yanyi Zang
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Melissa M Reynolds
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States.,Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523-1872, United States
| | - Ketul C Popat
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, Colorado 80523-1374, United States
| | - Matt J Kipper
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States
| |
Collapse
|
30
|
Luo R, Wang X, Deng J, Zhang H, Maitz MF, Yang L, Wang J, Huang N, Wang Y. Dopamine-assisted deposition of poly (ethylene imine) for efficient heparinization. Colloids Surf B Biointerfaces 2016; 144:90-98. [DOI: 10.1016/j.colsurfb.2016.03.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 01/23/2023]
|
31
|
Chen J, Li Q, Li J, Maitz MF. The effect of anti-CD34 antibody orientation control on endothelial progenitor cell capturing cardiovascular devices. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516637376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Efficient immobilization of the antibody to the substrate is of crucial importance in the development of anti-CD34-based endothelial progenitor cells capturing cardiovascular devices. This should go along with precise control of the antibody orientation by appropriate immobilization technology for retaining antibody activity, like in immunosensors. Recently, great attention was paid to immobilization of anti-CD34 antibody onto substrates by covalent binding, but at random orientation. Here, to investigate the biological effect of antibody orientation, we have prepared two kinds of anti-CD34 antibody coated surfaces, with random immobilization and oriented immobilization. The immunological binding activity (IBA) of the antibody at oriented immobilization was 3.48 times higher than at random immobilization, indicating that the two different surfaces were successfully prepared. The endothelial progenitor cell-capturing capability of oriented antibody-immobilized surface was 1.35 and 1.64 times higher than for the random immobilized surface after seeding for 2 and 12 h under flow condition, respectively. The endothelial progenitor cell-capturing efficiency per antibody by oriented immobilization was 5.16 and 6.26 times higher than for the random after seeding for 2 and 12 h under flow condition, respectively. In addition, the oriented antibody-immobilized surface possessed better blood-compatibility. These results clearly revealed the significance of antibody orientation which could retain its biological effect and may revolutionize the antibody-immobilization protocols used in cardiovascular and other blood-contacting biomedical devices.
Collapse
Affiliation(s)
- Jialong Chen
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
- College of Pharmacy, Anhui Medical University, Hefei, China
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Quanli Li
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Jun Li
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
| |
Collapse
|
32
|
Ali W, Sultana P, Joshi M, Rajendran S. A solvent induced crystallisation method to imbue bioactive ingredients of neem oil into the compact structure of poly (ethylene terephthalate) polyester. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:399-406. [DOI: 10.1016/j.msec.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 11/16/2022]
|
33
|
Dhahri M, Rodriguez-Ruiz V, Aid-Launais R, Ollivier V, Pavon-Djavid G, Journé C, Louedec L, Chaubet F, Letourneur D, Maaroufi RM, Meddahi-Pellé A. In vitro
and in vivo
hemocompatibility evaluation of a new dermatan sulfate-modified PET patch for vascular repair surgery. J Biomed Mater Res B Appl Biomater 2016; 105:2001-2009. [DOI: 10.1002/jbm.b.33733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Manel Dhahri
- Laboratoire de Pharmacologie 04/UR/01-09, Faculté de Médecine, Université de Monastir; Monastir Tunisia
| | - Violeta Rodriguez-Ruiz
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Rachida Aid-Launais
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Véronique Ollivier
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Graciela Pavon-Djavid
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Clément Journé
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Liliane Louedec
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Frédéric Chaubet
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Didier Letourneur
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Raoui M. Maaroufi
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de recherche Génétique, biodiversité et valorisation des bioressources LR11ES41, Université de Monastir; Monastir Tunisia
| | - Anne Meddahi-Pellé
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| |
Collapse
|
34
|
Wang F, Zhang Y, Chen X, Leng B, Guo X, Zhang T. ALD mediated heparin grafting on nitinol for self-expanded carotid stents. Colloids Surf B Biointerfaces 2016; 143:390-398. [DOI: 10.1016/j.colsurfb.2016.03.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
|
35
|
Preparation and characterization of controlled heparin release waterborne polyurethane coating systems. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1787-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Gabriel M, Niederer K, Becker M, Raynaud CM, Vahl CF, Frey H. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach. Bioconjug Chem 2016; 27:1216-21. [DOI: 10.1021/acs.bioconjchem.6b00047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthias Gabriel
- Sidra Medical and Research Center, Cardiovascular
Division, QCRC, Doha, Qatar
| | - Kerstin Niederer
- Department
of Organic Chemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | | | | | | | - Holger Frey
- Department
of Organic Chemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| |
Collapse
|
37
|
Gilmour AD, Woolley AJ, Poole-Warren LA, Thomson CE, Green RA. A critical review of cell culture strategies for modelling intracortical brain implant material reactions. Biomaterials 2016; 91:23-43. [PMID: 26994876 DOI: 10.1016/j.biomaterials.2016.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 02/07/2023]
Abstract
The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches.
Collapse
Affiliation(s)
- A D Gilmour
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - A J Woolley
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Western Sydney University, Sydney, NSW, Australia
| | - L A Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - C E Thomson
- Department of Veterinary Medicine, University of Alaska, Fairbanks, AK 99775, USA
| | - R A Green
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Khelifa F, Ershov S, Habibi Y, Snyders R, Dubois P. Free-Radical-Induced Grafting from Plasma Polymer Surfaces. Chem Rev 2016; 116:3975-4005. [PMID: 26943005 DOI: 10.1021/acs.chemrev.5b00634] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the advances in science and engineering in the second part of the 20th century, emerging plasma-based technologies continuously find increasing applications in the domain of polymer chemistry, among others. Plasma technologies are predominantly used in two different ways: for the treatment of polymer substrates by a reactive or inert gas aiming at a specific surface functionalization or for the synthesis of a plasma polymer with a unique set of properties from an organic or mixed organic-inorganic precursor. Plasma polymer films (PPFs), often deposited by plasma-enhanced chemical vapor deposition (PECVD), currently attract a great deal of attention. Such films are widely used in various fields for the coating of solid substrates, including membranes, semiconductors, metals, textiles, and polymers, because of a combination of interesting properties such as excellent adhesion, highly cross-linked structures, and the possibility of tuning properties by simply varying the precursor and/or the synthesis parameters. Among the many appealing features of plasma-synthesized and -treated polymers, a highly reactive surface, rich in free radicals arising from deposition/treatment specifics, offers a particular advantage. When handled carefully, these reactive free radicals open doors to the controllable surface functionalization of materials without affecting their bulk properties. The goal of this review is to illustrate the increasing application of plasma-based technologies for tuning the surface properties of polymers, principally through free-radical chemistry.
Collapse
Affiliation(s)
- Farid Khelifa
- University of Mons (UMONS) , Institute of Research in Science and Engineering of Materials, Place du Parc, 23, 7000 Mons, Belgium
| | - Sergey Ershov
- University of Mons (UMONS) , Institute of Research in Science and Engineering of Materials, Place du Parc, 23, 7000 Mons, Belgium.,Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST) , Rue du Brill 41, 4422 Belvaux, Luxembourg
| | - Youssef Habibi
- Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST) , Rue du Brill 41, 4422 Belvaux, Luxembourg
| | - Rony Snyders
- University of Mons (UMONS) , Institute of Research in Science and Engineering of Materials, Place du Parc, 23, 7000 Mons, Belgium
| | - Philippe Dubois
- University of Mons (UMONS) , Institute of Research in Science and Engineering of Materials, Place du Parc, 23, 7000 Mons, Belgium.,Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST) , Rue du Brill 41, 4422 Belvaux, Luxembourg
| |
Collapse
|
39
|
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84:101-11. [DOI: 10.1016/j.ijbiomac.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/15/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
40
|
Song Y, Gao Y, Wan X, Luo F, Li J, Tan H, Fu Q. Dual-functional anticoagulant and antibacterial blend coatings based on gemini quaternary ammonium salt waterborne polyurethane and heparin. RSC Adv 2016. [DOI: 10.1039/c5ra27081b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A simple design of the dual-functional anticoagulant and antibacterial blend coatings with controlled release of heparin.
Collapse
Affiliation(s)
- Yuanqing Song
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Yunlong Gao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
- Research Institute for Strengthening Technology
| | - Xinyuan Wan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Feng Luo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Jiehua Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Hong Tan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Qiang Fu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
41
|
Ngadiman NHA, Idris A, Irfan M, Kurniawan D, Yusof NM, Nasiri R. γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. J Mech Behav Biomed Mater 2015; 49:90-104. [DOI: 10.1016/j.jmbbm.2015.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
|
42
|
Kolar M, Mozetič M, Stana-Kleinschek K, Fröhlich M, Turk B, Vesel A. Covalent Binding of Heparin to Functionalized PET Materials for Improved Haemocompatibility. MATERIALS 2015; 8:1526-1544. [PMID: 28788016 PMCID: PMC5507051 DOI: 10.3390/ma8041526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/19/2015] [Accepted: 03/20/2015] [Indexed: 11/16/2022]
Abstract
The hemocompatibility of vascular grafts made from poly(ethylene terephthalate) (PET) is insufficient due to the rapid adhesion and activation of blood platelets that occur upon incubation with whole blood. PET polymer was treated with NHx radicals created by passing ammonia through gaseous plasma formed by a microwave discharge, which allowed for functionalization with amino groups. X-ray photoelectron spectroscopy characterization using derivatization with 4-chlorobenzaldehyde indicated that approximately 4% of the –NH2 groups were associated with the PET surface after treatment with the gaseous radicals. The functionalized polymers were coated with an ultra-thin layer of heparin and incubated with fresh blood. The free-hemoglobin technique, which is based on the haemolysis of erythrocytes, indicated improved hemocompatibility, which was confirmed by imaging the samples using confocal optical microscopy. A significant decrease in number of adhered platelets was observed on such samples. Proliferation of both human umbilical vein endothelial cells and human microvascular endothelial cells was enhanced on treated polymers, especially after a few hours of cell seeding. Thus, the technique represents a promising substitute for wet-chemical modification of PET materials prior to coating with heparin.
Collapse
Affiliation(s)
- Metod Kolar
- Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana 1000, Slovenia.
| | - Miran Mozetič
- Plasma Laboratory, Institute Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia.
| | - Karin Stana-Kleinschek
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, Maribor 2000, Slovenia.
| | - Mirjam Fröhlich
- Department of Biochemistry, Molecular and Structural Biology, Institute Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia.
- Educell Ltd., Prevale 9, Trzin 1236, Slovenia.
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Institute Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia.
| | - Alenka Vesel
- Plasma Laboratory, Institute Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia.
| |
Collapse
|
43
|
Park JK, Kim DG, Bae IH, Lim KS, Jeong MH, Choi C, Choi SK, Kim SC, Nah JW. Blood-compatible and biodegradable polymer-coated drug-eluting stent. Macromol Res 2015. [DOI: 10.1007/s13233-015-3023-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Wang C, Feng B. Research progress on site-oriented and three-dimensional immobilization of protein. Mol Biol 2015. [DOI: 10.1134/s0026893315010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Zhang Q, Shan G, Cao P, He J, Lin Z, Huang Y, Ao N. Mechanical and biological properties of oxidized horn keratin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:123-34. [DOI: 10.1016/j.msec.2014.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/12/2014] [Indexed: 11/29/2022]
|
46
|
Mikulska A, Filipowska J, Osyczka AM, Nowakowska M, Szczubiałka K. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry. Front Chem 2015; 2:117. [PMID: 25629028 PMCID: PMC4292785 DOI: 10.3389/fchem.2014.00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/24/2014] [Indexed: 11/23/2022] Open
Abstract
Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2.
Collapse
Affiliation(s)
- Anna Mikulska
- Nanotechnology of Polymers and Biomaterials, Faculty of Chemistry, Jagiellonian University Kraków, Poland
| | - Joanna Filipowska
- Department of Biology and Cell Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University Kraków, Poland
| | - Anna M Osyczka
- Department of Biology and Cell Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University Kraków, Poland
| | - Maria Nowakowska
- Nanotechnology of Polymers and Biomaterials, Faculty of Chemistry, Jagiellonian University Kraków, Poland
| | - Krzysztof Szczubiałka
- Nanotechnology of Polymers and Biomaterials, Faculty of Chemistry, Jagiellonian University Kraków, Poland
| |
Collapse
|
47
|
Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids Surf B Biointerfaces 2015; 125:134-41. [DOI: 10.1016/j.colsurfb.2014.11.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/05/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022]
|
48
|
Chen J, Zhao A, Chen H, Liao Y, Yang P, Sun H, Huang N. The effect of full/partial UV-irradiation of TiO 2 films on altering the behavior of fibrinogen and platelets. Colloids Surf B Biointerfaces 2014; 122:709-718. [DOI: 10.1016/j.colsurfb.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022]
|
49
|
Al Meslmani B, Mahmoud G, Strehlow B, Mohr E, Leichtweiß T, Bakowsky U. Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:538-46. [DOI: 10.1016/j.msec.2014.07.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/26/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
|
50
|
Cell adhesion to plasma-coated PVC. ScientificWorldJournal 2014; 2014:132308. [PMID: 25247202 PMCID: PMC4163460 DOI: 10.1155/2014/132308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022] Open
Abstract
To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.
Collapse
|