1
|
Maxwell A, Swanson G, Thy Nguyen A, Hu A, Richards D, You Y, Stephan L, Manaloto M, Liao A, Ding J, Mor G. Hydroquinone impairs trophoblast migration and invasion via AHR-twist-IFITM1 axis. Placenta 2024; 155:88-99. [PMID: 39173312 PMCID: PMC11421844 DOI: 10.1016/j.placenta.2024.07.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Embryo implantation is a tightly regulated process, critical for a successful pregnancy. After attachment of the blastocyst to the surface epithelium of the endometrium trophoblast migrate from the trophectoderm and invade into the stromal component of endometrium. Alterations on either process will lead to implantation failure or miscarriage. Volatile organic compounds (VOCs) such as benzene induce pregnancy complications, including preterm birth and miscarriages. The mechanism of this effect is unknown. The objective of this study was to elucidate the impact of benzene metabolite, Hydroquinone, on trophoblast function. We tested the hypothesis that Hydroquinone activates the Aryl hydrocarbon receptor (AhR) pathway modulating trophoblast migration and invasion. METHODS First-trimester trophoblast cells (Sw.71) were treated with hydroquinone (6 and 25 μM). Trophoblast migration and invasion was evaluated using a 3D invasion/migration model. Gene expression was quantified by q-PCR and Western blot analysis. RESULTS Hydroquinone impairs trophoblast migration and invasion. This loss is associated with the activation of the AhR pathway which reduced the expression of Twist1and IFITM1. IFITM1 overexpression can rescue impaired trophoblast migration. DISCUSSION Our study highlights that hydroquinone treatment induces the activation of the AhR pathway in trophoblast cells, which impairs trophoblast invasion and migration. We postulate that activation of the AhR pathway in trophoblast suppress Twist1 and a subsequent IFITM1. Thus, the AhR-Twist1-IFITM1 axis represent a critical pathway involved in the regulation of trophoblast migration and it is sensitive to benzene exposure. These findings provide crucial insights into the molecular mechanisms underlying pregnancy complications induced by air pollution.
Collapse
Affiliation(s)
- Anthony Maxwell
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Grace Swanson
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Annie Thy Nguyen
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Darby Richards
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Laura Stephan
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Marcia Manaloto
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
3
|
Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B. Early human trophoblast development: from morphology to function. Cell Mol Life Sci 2022; 79:345. [PMID: 35661923 PMCID: PMC9167809 DOI: 10.1007/s00018-022-04377-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022]
Abstract
Human pregnancy depends on the proper development of the embryo prior to implantation and the implantation of the embryo into the uterine wall. During the pre-implantation phase, formation of the morula is followed by internalization of blastomeres that differentiate into the pluripotent inner cell mass lineage, while the cells on the surface undergo polarization and differentiate into the trophectoderm of the blastocyst. The trophectoderm mediates apposition and adhesion of the blastocyst to the uterine epithelium. These processes lead to a stable contact between embryonic and maternal tissues, resulting in the formation of a new organ, the placenta. During implantation, the trophectoderm cells start to differentiate and form the basis for multiple specialized trophoblast subpopulations, all of which fulfilling specific key functions in placentation. They either differentiate into polar cells serving typical epithelial functions, or into apolar invasive cells that adapt the uterine wall to progressing pregnancy. The composition of these trophoblast subpopulations is crucial for human placenta development and alterations are suggested to result in placenta-associated pregnancy pathologies. This review article focuses on what is known about very early processes in human reproduction and emphasizes on morphological and functional aspects of early trophoblast differentiation and subpopulations.
Collapse
Affiliation(s)
- Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
4
|
Elkin ER, Bakulski KM, Colacino JA, Bridges D, Kilburn BA, Armant DR, Loch-Caruso R. Transcriptional profiling of the response to the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine revealed activation of the eIF2α/ATF4 integrated stress response in two in vitro placental models. Arch Toxicol 2021; 95:1595-1619. [PMID: 33725128 PMCID: PMC7961173 DOI: 10.1007/s00204-021-03011-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant. Although TCE exposure is prevalent, epidemiological studies of TCE exposure associations with adverse birth outcomes are inconclusive. Prior studies show that the TCE metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) exhibits toxicity in a placental cell line. In the current study, genome-wide gene expression and gene set enrichment analyses were used to identify novel genes and pathway alterations in the HTR-8/SVneo human trophoblast cell line and human placental villous explants treated with DCVC at concentrations relevant to human exposures. In the cells, concentration- and time-dependent effects were observed, as evidenced by the magnitude of altered gene expression after treatment with 20 µM DCVC versus 10 µM, and 12-h versus 6-h of treatment. Comparing the two models for the transcriptional response to 12-h 20 µM DCVC treatment, no differentially expressed genes reached significance in villous explants, whereas 301 differentially expressed genes were detected in HTR-8/SVneo cells compared with non-treated controls (FDR < 0.05 + LogFC > 0.35 [FC > 1.3]). GSEA revealed five upregulated enriched pathways in common between explants and cells (FDR < 0.05). Moreover, all 12-h DCVC treatment groups from both models contained upregulated pathways enriched for genes regulated by the ATF4 transcription factor. The overrepresentation of ATF4 regulation of differentially expressed genes indicated activation of the integrated stress response (ISR), a condition triggered by multiple stress stimuli, including the unfolded protein response. DCVC-induced ISR activation was confirmed by elevated eIF2α phosphorylation, ATF4 protein concentrations, and decreased global protein synthesis in HTR-8/SVneo cells. This study identifies a mechanism of DCVC-induced cytotoxicity by revealing the involvement of a specific stress signaling pathway.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
5
|
Bhattacharjee J, Mohammad S, Adamo KB. Does exercise during pregnancy impact organs or structures of the maternal-fetal interface? Tissue Cell 2021; 72:101543. [PMID: 33940567 DOI: 10.1016/j.tice.2021.101543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Exercise during pregnancy has been shown to be associated with improved health outcomes both during and after pregnancy for mother and fetus across the lifespan. Increasing physical activity and reducing sedentary behaviour during pregnancy have been recommended by many researchers and clinicians-alike. It is thought that the placenta plays a central role in mediating any positive or negative pregnancy outcomes. The positive outcomes obtained through prenatal exercise are postulated to result from exercise-induced regulation of maternal physiology and placental development. Considerable research has been performed to understand the placenta's role in pregnancy-related diseases, such as preeclampsia, fetal growth restriction, and gestational diabetes mellitus. However, little research has examined the potential for healthy lifestyle and behavioural changes to improve placental growth, development, and function. While the placenta represents the critical maternal-fetal interface responsible for all gas, nutrient, and waste exchange between the mother and fetus, the impact of exercise during pregnancy on placental biology and function is not well known. This review will focus on prenatal exercise and its promising influence on the structures of the maternal-fetal interface, with particular emphasis on the placenta. Potential molecular mechanistic hypotheses are presented to aid future investigations of prenatal exercise and placental health.
Collapse
Affiliation(s)
- Jayonta Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Shuhiba Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
6
|
Feng X, Wei Z, Zhang S, Zhou J, Wu J, Luan B, Du Y, Zhao H. Overexpression of LVRN impedes the invasion of trophoblasts by inhibiting epithelial-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai) 2021; 53:249-257. [PMID: 33355358 DOI: 10.1093/abbs/gmaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 11/14/2022] Open
Abstract
Laeverin (LVRN) was first detected on the outer layer of the chorion laeve and migrating extravillous trophoblasts (EVTs). It is an enzyme that plays an important role in the placentation and pathophysiology of preeclampsia (PE). Previous studies have indicated that LVRN may be required for the invasion of human trophoblast cells. Paradoxically, LVRN was found to be highly expressed in the trophoblasts of PE patients with impaired invasive capacities. In this study, we detected the expression of LVRN in the placentas of PE patients (n=5) and normal term pregnancy women (n=5) as a control group by immunohistochemistry. LVRN was elevated in decidua (P=0.0083) and villi (P=0.0079) of PE patients. Next, LVRN was overexpressed via adeno-associated virus-mediated gene transfer in trophoblastic cell lines HTR8, Swan71, and JAR. Matrigel transwell assay and wound healing assay showed that overexpression of LVRN impeded the invasion of these three cell lines. Western blot analysis showed that LVRN overexpression caused downregulation of N-cadherin and vimentin and upregulation of E-cadherin, suggesting the inhibitory role of LVRN in epithelial-mesenchymal transition (EMT). Moreover, our data indicated that long noncoding RNA NONSTAT103348 (lnc10-7) was elevated in PE patients. Silencing lnc10-7 led to decreased LVRN expression. Taken together, although the basal level of LVRN may be crucial for cell invasion, overexpression of LVRN may abrogate the cell invasiveness, suggesting a multifaceted role of LVRN in the pathogenesis of PE.
Collapse
Affiliation(s)
- Xuan Feng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Zhi Wei
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Sai Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jiayi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jing Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Baoxin Luan
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yan Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Hongbo Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| |
Collapse
|
7
|
Io S, Kondoh E, Chigusa Y, Kawasaki K, Mandai M, Yamada AS. New era of trophoblast research: integrating morphological and molecular approaches. Hum Reprod Update 2020; 26:611-633. [PMID: 32728695 DOI: 10.1093/humupd/dmaa020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Many pregnancy complications are the result of dysfunction in the placenta. The pathogenic mechanisms of placenta-mediated pregnancy complications, however, are unclear. Abnormal placental development in these conditions begins in the first trimester, but no symptoms are observed during this period. To elucidate effective preventative treatments, understanding the differentiation and development of human placenta is crucial. This review elucidates the uniqueness of the human placenta in early development from the aspect of structural characteristics and molecular markers. We summarise the morphogenesis of human placenta based on human specimens and then compile molecular markers that have been clarified by immunostaining and RNA-sequencing data across species. Relevant studies were identified using the PubMed database and Google Scholar search engines up to March 2020. All articles were independently screened for eligibility by the authors based on titles and abstracts. In particular, the authors carefully examined literature on human placentation. This review integrates the development of human placentation from morphological approaches in comparison with other species and provides new insights into trophoblast molecular markers. The morphological features of human early placentation are described in Carnegie stages (CS), from CS3 (floating blastocyst) to CS9 (emerging point of tertiary villi). Molecular markers are described for each type of trophoblast involved in human placental development. We summarise the character of human trophoblast cell lines and explain how long-term culture system of human cytotrophoblast, both monolayer and spheroid, established in recent studies allows for the generation of human trophoblast cell lines. Due to differences in developmental features among species, it is desirable to understand early placentation in humans. In addition, reliable molecular markers that reflect normal human trophoblast are needed to advance trophoblast research. In the clinical setting, these markers can be valuable means for morphologically and functionally assessing placenta-mediated pregnancy complications and provide early prediction and management of these diseases.
Collapse
Affiliation(s)
- Shingo Io
- Department of Life Science Frontiers, Center for iPS Cell Research & Application, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Kawasaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - And Shigehito Yamada
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Raez-Villanueva S, Perono GA, Jamshed L, Thomas PJ, Holloway AC. Effects of dibenzothiophene, a sulfur-containing heterocyclic aromatic hydrocarbon, and its alkylated congener, 2,4,7-trimethyldibenzothiophene, on placental trophoblast cell function. J Appl Toxicol 2020; 41:1367-1379. [PMID: 33314207 DOI: 10.1002/jat.4128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
Worldwide demand for petroleum products has resulted in increased oil and gas activities in many countries. Conventional and unconventional oil and gas extraction, production, and transport lead to increased levels of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) in the environment. PAH exposure has profound effects on reproduction by affecting pathways involved in placental trophoblast cell function and impairing normal placental development and function-key contributors to reproductive success. However, other components found in petroleum and wastewaters from oil and gas extraction, including the sulfur-containing heterocyclic aromatic compounds such as dibenzothiophene (DBT) and its alkylated derivatives, may also impact reproductive success. The goal of this study was to examine the effect of exposure to DBT, a compound commonly detected in the environment, and one of its alkylated analogues, 2,4,7-trimethyldibenzothiophene (2,4,7-DBT), on steroidogenic and angiogenic pathways critical for mammalian development in placental trophoblast cells (HTR-8/SVneo cells). 2,4,7-DBT but not DBT increased estradiol output in association with increased tube-like formation (surrogate for angiogenesis). These changes in angiogenesis did not appear to be related to altered expression of the key placental angiogenic gene targets (ANGPTL4, VEGFA, and PGF). Neither compound showed a concentration related effect on progesterone synthesis or its receptor expression. Our results suggest that 2,4,7-DBT can disrupt key pathways important for placental trophoblast function and highlight the importance of determining the impact of exposure to both parent and alkylated compounds. Further, these data suggest that exposure to sulfur-containing heterocyclic aromatic compounds may lead to placental dysfunction and impact reproductive success at environmentally relevant levels.
Collapse
Affiliation(s)
| | - Genevieve A Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Katakura S, Takao T, Arase T, Yoshimasa Y, Tomisato S, Uchida S, Masuda H, Uchida H, Tanaka M, Maruyama T. UDP-glucose, a cellular danger signal, and nucleotide receptor P2Y14 enhance the invasion of human extravillous trophoblast cells. Placenta 2020; 101:194-203. [PMID: 33011563 DOI: 10.1016/j.placenta.2020.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION P2Y14, one of the P2Y purinergic G-protein coupled receptors, is expressed in a variety of cells and tissues. Its ligand, UDP-glucose (UDPG), is released from damaged and stress-stimulated cells and acts as a danger signal via P2Y14. Thus, P2Y14 plays an important role in immunological defense systems. Here, we aimed to elucidate the expression, localization, and role of P2Y14 in human trophoblasts and the placenta. METHODS Human chorionic villus and placental tissues were subjected to immunostaining for P2Y14 protein and an extravillous trophoblast (EVT) marker, HLA-G. We examined the expression of P2Y14 and the effect of UDPG on cell proliferation and invasion in an EVT cell line, HTR-8/SVneo, using an MTS assay and a Transwell assay, respectively. We tested the effect of UDPG on cell invasion in P2Y14-underexpressing HTR-8/SVneo clones established by the lentiviral introduction of shRNA for P2RY14 mRNA. RESULTS Immunostaining revealed that P2Y14 was exclusively expressed by EVTs. P2RY14 mRNA and P2Y14 protein were expressed in HTR-8/SVneo cells. UDPG did not affect cell proliferation but it did enhance invasion. Inhibition of P2Y14 and decreasing the expression of P2Y14 suppressed UDPG-mediated invasive activity. CONCLUSIONS These results showed that EVT selectively expressed P2Y14 and that P2Y14 was positively involved in UDPG-enhanced EVT invasion. It suggests the possible existence of a danger signal-mediated physiological system at the fetomaternal interface where UDPG released from maternal tissues through destruction by EVT invasion may accelerate EVT invasion, allowing EVTs to undergo successful placentation and vascular remodeling.
Collapse
Affiliation(s)
- Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoka Takao
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Arase
- Department of Obstetrics and Gynecology, Keiyu Hospital, Yokohama, Japan
| | - Yushi Yoshimasa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shoko Tomisato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Sayaka Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
10
|
Jamshed L, Raez-Villanueva S, Perono GA, Thomas PJ, Holloway AC. The effects of a technical mixture of naphthenic acids on placental trophoblast cell function. Reprod Toxicol 2020; 96:413-423. [PMID: 32871178 DOI: 10.1016/j.reprotox.2020.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 10/25/2022]
Abstract
There is considerable concern that naphthenic acids (NA) related to oil extraction can negatively impact reproduction in mammals, yet the mechanisms are unknown. Since placental dysfunction is central to many adverse pregnancy outcomes, the goal of this study was to determine the effects of NA exposure on placental trophoblast cell function. HTR-8/SVneo cells were exposed to a commercial technical NA mixture for 24 hours to assess transcriptional regulation of placentation-related pathways and functional assessment of migration, invasion, and angiogenesis. Pathway analysis suggests that NA treatment resulted in increased epithelial-to-mesenchymal transition. However, there was reduced migration and invasive potential. NA treatment increased angiogenesis-related pathways with a concomitant increase in tube formation. Since decreased trophoblast invasion/migration and aberrant angiogenesis have been associated with placental dysfunction, these findings suggest that it is biologically plausible that exposure to NA may result in altered placental development and/or function.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Sergio Raez-Villanueva
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Genevieve A Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa ON., Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada.
| |
Collapse
|
11
|
Raez-Villanueva S, Jamshed L, Ratnayake G, Cheng L, Thomas PJ, Holloway AC. Adverse effects of naphthenic acids on reproductive health: A focus on placental trophoblast cells. Reprod Toxicol 2019; 90:126-133. [DOI: 10.1016/j.reprotox.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023]
|
12
|
Lei D, Deng N, Wang S, Huang J, Fan C. Upregulated ARRDC3 limits trophoblast cell invasion and tube formation and is associated with preeclampsia. Placenta 2019; 89:10-19. [PMID: 31665660 DOI: 10.1016/j.placenta.2019.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Bioinformatics analysis indicated that the arrestin ARRDC3 was upregulated in placental tissue from patients with preeclampsia (PE). The study aimed to confirm the finding by examining placenta samples from women with and without early-onset PE and to investigate ARRDC3 roles in trophoblast function. METHODS ARRDC3 expression level and localization in placental tissue were determined by Western blot, real-time quantitative PCR and immunohistochemistry. An in vitro hypoxia and an in vitro ischemia (hypoxia/reoxygenation) cell models were used to determine the hypoxic and ischemic effects on ARRDC3 expression in extravillous trophoblast-derived HTR/8SVneo cells and trophoblast cell activity. The role of ARRDC3 in HTR8/SVneo cell proliferation, invasion and tube formation in vitro was investigated by testing the effects of ARRDC3 gene overexpression or siRNA-based gene silencing. RESULTS ARRDC3 expression was significantly elevated in placental tissue from women with early-onset PE compared to preterm birth pregnancies. ARRDC3 protein was localized in human placental trophoblasts. Hypoxia and ischemia both enhanced ARRDC3 protein expression in HTR8/SVneo cells. Hypoxia altered trophoblast cell activities. Overexpression of ARRDC3 in HTR8/SVneo cells suppressed cell invasion and tube formation. ARRDC3 gene silencing, by contrast, promoted invasion and tube formation under hypoxic conditions. CONCLUSION ARRDC3 was highly expressed in placental tissues of PE patients and directly affected biological activities of trophoblasts under hypoxic conditions. In regulation of ARRDC3- protein expression, ischemia (hypoxia/reoxygenation) are also important. These findings suggest that ARRDC3 may play a clinically significant role in the pathogenesis of PE.
Collapse
Affiliation(s)
- Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Hubei, PR China
| | - Na Deng
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Hubei, PR China
| | - Suqing Wang
- Department of Preventive Medicine, School of Health Science, Wuhan University, Wuhan, Hubei, PR China
| | - Jinfa Huang
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Hubei, PR China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Hubei, PR China.
| |
Collapse
|
13
|
Chang WL, Liu YW, Dang YL, Jiang XX, Xu H, Huang X, Wang YL, Wang H, Zhu C, Xue LQ, Lin HY, Meng W, Wang H. PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration. Development 2018; 145:dev.148932. [PMID: 29361555 PMCID: PMC5825838 DOI: 10.1242/dev.148932] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
Proper differentiation of trophoblast cells in the human placenta is a prerequisite for a successful pregnancy, and dysregulation of this process may lead to malignant pregnancy outcomes, such as preeclampsia. Finding specific markers for different types of trophoblast cells is essential for understanding trophoblast differentiation. Here, we report that placenta-specific protein 8 (PLAC8) is specifically expressed in the interstitial extravillous trophoblast cells (iEVTs) on the fetomaternal interface. Using model systems, including placental villi-decidua co-culture, iEVTs induction by using primary trophoblast cells or explants, etc., we found that PLAC8 promotes invasion and migration of iEVTs. Mechanistically, time-lapse imaging, GTPase activity assay, co-immunoprecipitation and RNA-seq studies show that PLAC8 increases the Cdc42 and Rac1 activities, and further induces the formation of filopodia at the leading edge of the migratory trophoblast cells. More interestingly, PLAC8 is significantly upregulated under hypoxia and expression of PLAC8 is higher in iEVTs from preeclamptic placentas when compared with those from the normal control placentas. Together, PLAC8 is a new marker for iEVTs and plays an important role in promoting trophoblast invasion and migration. Highlighted Article: Oxygen tension-dependent expression of placenta-specific protein 8 positively regulates trophoblast invasion and migration partially through upregulating the activation of Rac1 and Cdc42.
Collapse
Affiliation(s)
- Wen-Lin Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, People's Republic of China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Ya-Wei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Yan-Li Dang
- Department of Obstetrics and Gynecology, the 306th Hospital of PLA, Beijing 100101, People's Republic of China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xing Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Li-Qun Xue
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
14
|
Zurawa-Janicka D, Wenta T, Jarzab M, Skorko-Glonek J, Glaza P, Gieldon A, Ciarkowski J, Lipinska B. Structural insights into the activation mechanisms of human HtrA serine proteases. Arch Biochem Biophys 2017; 621:6-23. [PMID: 28396256 DOI: 10.1016/j.abb.2017.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Human HtrA1-4 proteins belong to the HtrA family of evolutionarily conserved serine proteases and function as important modulators of many physiological processes, including maintenance of mitochondrial homeostasis, cell signaling and apoptosis. Disturbances in their action are linked to severe diseases, including oncogenesis and neurodegeneration. The HtrA1-4 proteins share structural and functional features of other members of the HtrA protein family, however there are several significant differences in structural architecture and mechanisms of action which makes each of them unique. Our goal is to present recent studies regarding human HtrAs. We focus on their physiological functions, structure and regulation, and describe current models of activation mechanisms. Knowledge of molecular basis of the human HtrAs' action is a subject of great interest; it is crucial for understanding their relevance in cellular physiology and pathogenesis as well as for using them as targets in future therapies of diseases such as neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Dorota Zurawa-Janicka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Miroslaw Jarzab
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Przemyslaw Glaza
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Artur Gieldon
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jerzy Ciarkowski
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
15
|
Degrelle SA, Gerbaud P, Leconte L, Ferreira F, Pidoux G. Annexin-A5 organized in 2D-network at the plasmalemma eases human trophoblast fusion. Sci Rep 2017; 7:42173. [PMID: 28176826 PMCID: PMC5297248 DOI: 10.1038/srep42173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Only a limited number of human cells can fuse to form a multinucleated syncytium. Cell fusion occurs as part of the differentiation of some cell types, including myotubes in muscle and osteoclasts in remodeling bone. In the differentiation of the human placenta, mononuclear cytotrophoblasts aggregate and fuse to form endocrinologically active, non-proliferative, multinucleated syncytia. These syncytia allow the exchange of nutrients and gases between the maternal and fetal circulation. Alteration of syncytial formation during pregnancy affects fetal growth and the outcome of the pregnancy. Here, we demonstrate the role of annexin A5 (AnxA5) in syncytial formation by cellular delivery of recombinant AnxA5 and RNA interference. By a variety of co-immunoprecipitation, immunolocalization and proximity experiments, we show that a pool of AnxA5 organizes at the inner-leaflet of the plasma membrane in the vicinity of a molecular complex that includes E-Cadherin, α-Catenin and β-Catenin, three proteins previously shown to form adherens junctions implicated in cell fusion. A combination of knockdown and reconstitution experiments with AnxA5, with or without the ability to self-assemble in 2D-arrays, demonstrate that this AnxA5 2D-network mediates E-Cadherin mobility in the plasmalemma that triggers human trophoblasts aggregation and thereby cell fusion.
Collapse
Affiliation(s)
- Severine A Degrelle
- INSERM, U767, Cell fusion, Paris, F-75006 France.,Université Paris Descartes, Paris, F-75006 France.,PremUp, Paris, F-75006 France
| | - Pascale Gerbaud
- INSERM, U767, Cell fusion, Paris, F-75006 France.,Université Paris Descartes, Paris, F-75006 France.,UMR-S1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ludovic Leconte
- UMR144, Institut Curie/CNRS, Cell and Tissue Imaging Platform, Paris, France
| | - Fatima Ferreira
- INSERM, U767, Cell fusion, Paris, F-75006 France.,Université Paris Descartes, Paris, F-75006 France
| | - Guillaume Pidoux
- INSERM, U767, Cell fusion, Paris, F-75006 France.,Université Paris Descartes, Paris, F-75006 France.,PremUp, Paris, F-75006 France.,UMR-S1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
16
|
Granulocyte colony-stimulating factor (G-CSF) upregulates β1 integrin and increases migration of human trophoblast Swan 71 cells via PI3K and MAPK activation. Exp Cell Res 2016; 342:125-34. [PMID: 26992288 DOI: 10.1016/j.yexcr.2016.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 11/22/2022]
Abstract
Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the regulation of trophoblast functions and placental growth, but the role of G-CSF has not been completely established. Based on our previous study showing that G-CSF increases the activity of matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced morphological changes on actin cytoskeleton consistent with a migratory cell phenotype. G-CSF also up-regulated the expression levels of β1 integrin and promoted Swan 71 cell migration. By using selective pharmacological inhibitors and dominant negative mutants we showed that PI3K, Erk 1/2 and p38 pathways are required for promoting Swan 71 cell motility. It was also demonstrated that PI3K behaved as an upstream regulator of Erk 1/2 and p38 MAPK. In addition, the increase of β1 integrin expression was dependent on PI3K activation. In conclusion, our results indicate that G-CSF stimulates β1 integrin expression and Swan 71 cell migration by activating PI3K and MAPK signaling pathways, suggesting that G-CSF should be considered as an additional regulatory factor that contributes to a successful embryo implantation and to the placenta development.
Collapse
|
17
|
Kumar P, Thirkill TL, Ji J, Monte LH, Douglas GC. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS One 2015; 10:e0135089. [PMID: 26266541 PMCID: PMC4533975 DOI: 10.1371/journal.pone.0135089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The results provide valuable tools to manipulate trophoblast differentiation in vitro and to better understand the differentiation pathways that occur during early gestation.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Twanda L. Thirkill
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Jennifer Ji
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Louise H. Monte
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Gordon C. Douglas
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Takebayashi A, Kimura F, Yamanaka A, Takahashi A, Tsuji S, Ono T, Kaku S, Kita N, Takahashi K, Okabe H, Murakami T. Exaggerated placental site, consisting of implantation site intermediate trophoblasts, causes massive postpartum uterine hemorrhage: case report and literature review. TOHOKU J EXP MED 2014; 234:77-82. [PMID: 25186195 DOI: 10.1620/tjem.234.77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Every year, 14 million cases of obstetric hemorrhage occur worldwide, causing 127,000 maternal deaths. About 75% of postpartum hemorrhage cases are due to atonic uterus, which is loss of uterine muscular tone or strength for contraction of the uterus after delivery. The prediction of atonic uterus is therefore important for the prevention of postpartum maternal death. However, prediction of occurrence of atonic uterus is difficult before delivery, because the precise pathophysiological mechanism to trigger this condition remains unclear. Here, we present a case of severe postpartum hemorrhage due to atonic uterus. A 35-year-old woman gave a birth by vaginal delivery to a healthy boy. However, due to intractable massive hemorrhage after the removal of the retained placenta, we performed supravaginal hysterectomy as the best option for survival. Pathological examination showed that implantation site intermediate trophoblasts (ISITs) formed unusually large clumps in the decidua, diagnosed as exaggerated placental site (EPS). EPS is thought to be a condition consisting of an excessive number of ISITs. ISITs are differentiated from a trophoblast lineage in the process of placenta formation. ISITs anchor the placenta to the maternal tissue and are considered to maintain pregnancy, but the postpartum role of these cells remains unclear. Excessive infiltration of ISITs, namely EPS, may cause postpartum atonic uterus. In this article, we also reviewed the literatures on EPS. The present case and other reported cases indicate that EPS causes mass formation in the uterus, continuous uterine bleeding, and massive hemorrhage, resulting in hysterectomy.
Collapse
Affiliation(s)
- Akie Takebayashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rezende LC, Barbeito CG, Favaron PO, Mess A, Miglino MA. The fetomaternal interface in the placenta of three species of armadillos (Eutheria, Xenarthra, Dasypodidae). Reprod Biol Endocrinol 2012; 10:38. [PMID: 22559925 PMCID: PMC3447719 DOI: 10.1186/1477-7827-10-38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/24/2012] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Placental characters vary among Xenarthra, one of four supraordinal clades of Eutheria. Armadillos are known for villous, haemochorial placentas similar to humans. Only the nine-banded armadillo has been well studied so far. METHODS Placentas of three species of armadillos were investigated by means of histology, immunohistochemistry including proliferation marker, and transmission and scanning electron microscopy. RESULTS The gross anatomy differed: Euphractus sexcinctus and Chaetophractus villosus had extended, zonary placentas, whereas Chaetophractus vellerosus had a disk. All taxa had complex villous areas within the maternal blood sinuses of the endometrium. Immunohistochemistry indicated the validity of former interpretations that the endothelium of the sinuses was largely intact. Tips of the villi and the columns entering the maternal tissue possessed trophoblast cell clusters with proliferation activity. Elsewhere, the feto-maternal barrier was syncytial haemochorial with fetal vessels near the surface. CONCLUSIONS Differences among armadillos occurred in regard to the extension of the placenta, whereas the fine structure was similar. Parallels to the human suggest that armadillos are likely to be useful animal models for human placentation.
Collapse
Affiliation(s)
- Lorenna C Rezende
- Department of Surgery, Faculty of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, no. 87, Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil
| | - Claudio G Barbeito
- Faculty of Veterinary Science, La Plata University, 118 La Plata, Buenos Aires, Argentina
| | - Phelipe O Favaron
- Department of Surgery, Faculty of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, no. 87, Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil
| | - Andrea Mess
- Department of Surgery, Faculty of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, no. 87, Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil
| | - Maria A Miglino
- Department of Surgery, Faculty of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, no. 87, Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil
| |
Collapse
|
20
|
STUBERT J, RICHTER DU, GERBER B, BRIESE V. Expression Pattern of Progranulin in the Human Placenta and Its Effect on Cell Proliferation in the Choriocarcinoma Cell Line BeWo. J Reprod Dev 2011; 57:229-35. [DOI: 10.1262/jrd.10-073k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Bernd GERBER
- Department of Obstetrics and Gynecology, University of Rostock
| | - Volker BRIESE
- Department of Obstetrics and Gynecology, University of Rostock
| |
Collapse
|
21
|
Inhibition of HTRA3 stimulates trophoblast invasion during human placental development. Placenta 2010; 31:1085-92. [DOI: 10.1016/j.placenta.2010.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/17/2010] [Accepted: 10/03/2010] [Indexed: 01/19/2023]
|
22
|
Dubinsky V, Poehlmann TG, Suman P, Gentile T, Markert UR, Gutierrez G. ORIGINAL ARTICLE: Role of Regulatory and Angiogenic Cytokines in Invasion of Trophoblastic Cells. Am J Reprod Immunol 2009; 63:193-9. [DOI: 10.1111/j.1600-0897.2009.00778.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Spessotto P, Bulla R, Danussi C, Radillo O, Cervi M, Monami G, Bossi F, Tedesco F, Doliana R, Colombatti A. EMILIN1 represents a major stromal element determining human trophoblast invasion of the uterine wall. J Cell Sci 2007; 119:4574-84. [PMID: 17074837 DOI: 10.1242/jcs.03232] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The detection of EMILIN1, a connective tissue glycoprotein associated with elastic fibers, at the level of the ectoplacental cone and trophoblast giant cells of developing mouse embryos (Braghetta et al., 2002) favored the idea of a structural as well as a functional role for this protein in the process of placentation. During the establishment of human placenta, a highly migratory subpopulation of extravillous trophoblasts (EVT), originating from anchoring chorionic villi, penetrate and invade the uterine wall. In this study we show that EMILIN1, produced by decidual stromal and smooth muscle uterine cells, is expressed in the stroma and in some instances as a gradient of increasing concentration in the perivascular region of modified vessels. This distribution pattern is consistent with the haptotactic directional migration observed in in vitro functional studies of freshly isolated EVT and of the immortalized HTR-8/SVneo cell line of trophoblasts. Function-blocking monoclonal antibodies against alpha4-integrin chain and against EMILIN1 as well as the use of EMILIN1-specific short interfering RNA confirmed that trophoblasts interact with EMILIN1 and/or its functional gC1q1 domain via alpha4beta1 integrin. Finally, membrane type I-matrix metalloproteinase (MT1-MMP) and MMP-2 were upregulated in co-cultures of trophoblast cells and stromal cells, suggesting a contributing role in the haptotactic process towards EMILIN1.
Collapse
Affiliation(s)
- Paola Spessotto
- Divisione di Oncologia Sperimentale 2, CRO-IRCCS, 33081 Aviano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Evain-Brion D. [The 2 differentiation pathways of the human trophoblast]. GYNECOLOGIE, OBSTETRIQUE & FERTILITE 2001; 29:497-502. [PMID: 11575144 DOI: 10.1016/s1297-9589(01)00175-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The trophoblast is the major component of the human placenta. It is directly involved in blastocyst implantation and in feto-placental growth and development. Human trophoblast follows two major pathways of differentiation: the villous trophoblast, bathing in maternal blood of intervillous spaces and involved in matemo-fetal exchanges and in placental endocrine functions; the extra-villous trophoblast involved in uterine spiral arteries remodeling and in the placental anchorage into the uterine wall. It is essential to understand the cellular and molecular mechanisms involved in human trophoblast differentiation: cellular proliferation, migration, invasion and differentiation by cell-cell fusion. Abnormal trophoblast differentiation is implicated in the major pathologies of human pregnancy such as pre-eclampsia and intrauterine growth retardation.
Collapse
Affiliation(s)
- D Evain-Brion
- Inserm U427, faculté des sciences pharmaceutiques et biologiques, université René-Descartes, Paris V, 4, avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|