1
|
Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci 2023; 24:17034. [PMID: 38069357 PMCID: PMC10706910 DOI: 10.3390/ijms242317034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Calcium research, since its pivotal discovery in the early 1800s through the heating of limestone, has led to the identification of its multi-functional roles. These include its functions as a reducing agent in chemical processes, structural properties in shells and bones, and significant role in cells relating to this review: cellular signaling. Calcium signaling involves the movement of calcium ions within or between cells, which can affect the electrochemical gradients between intra- and extracellular membranes, ligand binding, enzyme activity, and other mechanisms that determine cell fate. Calcium signaling in muscle, as elucidated by the sliding filament model, plays a significant role in muscle contraction. However, as organisms age, alterations occur within muscle tissue. These changes include sarcopenia, loss of neuromuscular junctions, and changes in mineral concentration, all of which have implications for calcium's role. Additionally, a field of study that has gained recent attention, cellular senescence, is associated with aging and disturbed calcium homeostasis, and is thought to affect sarcopenia progression. Changes seen in calcium upon aging may also be influenced by its crosstalk with other minerals such as iron and zinc. This review investigates the role of calcium signaling in aging muscle and cellular senescence. We also aim to elucidate the interactions among calcium, iron, and zinc across various cells and conditions, ultimately deepening our understanding of calcium signaling in muscle aging.
Collapse
Affiliation(s)
| | | | - Sangyong Choi
- Department of Nutritional Sciences, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Sun 孙意冉 Y, Yan C, He L, Xiang S, Wang P, Li Z, Chen Y, Zhao J, Yuan Y, Wang W, Zhang X, Su P, Su Y, Ma J, Xu J, Peng Q, Ma H, Xie Z, Zhang Z. Inhibition of ferroptosis through regulating neuronal calcium homeostasis: An emerging therapeutic target for Alzheimer's disease. Ageing Res Rev 2023; 87:101899. [PMID: 36871781 DOI: 10.1016/j.arr.2023.101899] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, generates a serious threat to the health of the elderly. The AD brain is microscopically characterized by amyloid plaques and neurofibrillary tangles. There are still no effective therapeutic drugs to restrain the progression of AD though much attention has been paid to exploit AD treatments. Ferroptosis, a type of programmed cell death, has been reported to promote the pathological occurrence and development of AD, and inhibition of neuronal ferroptosis can effectively improve the cognitive impairment of AD. Studies have shown that calcium (Ca2+) dyshomeostasis is closely related to the pathology of AD, and can drive the occurrence of ferroptosis through several pathways, such as interacting with iron, and regulating the crosstalk between endoplasmic reticulum (ER) and mitochondria. This paper mainly reviews the roles of ferroptosis and Ca2+ in the pathology of AD, and highlights that restraining ferroptosis through maintaining the homeostasis of Ca2+ may be an innovative target for the treatment of AD.
Collapse
Affiliation(s)
- Yiran Sun 孙意冉
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jie Zhao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang 330052, Jiangxi, China
| | - Xiaowei Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunfang Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinlian Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Quekun Peng
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
3
|
The roles of hypoxia-inducible Factor-1 and iron regulatory protein 1 in iron uptake induced by acute hypoxia. Biochem Biophys Res Commun 2018; 507:128-135. [DOI: 10.1016/j.bbrc.2018.10.185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
|
4
|
Cui R, Choi SE, Kim TH, Lee HJ, Lee SJ, Kang Y, Jeon JY, Kim HJ, Lee KW. Iron overload by transferrin receptor protein 1 regulation plays an important role in palmitate-induced insulin resistance in human skeletal muscle cells. FASEB J 2018; 33:1771-1786. [PMID: 30207798 DOI: 10.1096/fj.201800448r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Free fatty acid is considered to be one of the major pathogenic factors of inducing insulin resistance. The association between iron disturbances and insulin resistance has recently begun to receive a lot of attention. Although skeletal muscles are a major tissue for iron utilization and storage, the role of iron in palmitate (PA)-induced insulin resistance is unknown. We investigated the molecular mechanism underlying iron dysregulation in PA-induced insulin resistance. Interestingly, we found that PA simultaneously increased intracellular iron and induced insulin resistance. The iron chelator deferoxamine dramatically inhibited PA-induced insulin resistance, and iron donors impaired insulin sensitivity by activating JNK. PA up-regulated transferrin receptor 1 (tfR1), an iron uptake protein, which was modulated by iron-responsive element-binding proteins 2. Knockdown of tfR1 and iron-responsive element-binding proteins 2 prevented PA-induced iron uptake and insulin resistance. PA also translocated the tfR1 by stimulating calcium influx, but the calcium chelator, BAPTA-AM, dramatically reduced iron overload by inhibiting tfR1 translocation and ultimately increased insulin sensitivity. Iron overload may play a critical role in PA-induced insulin resistance. Blocking iron overload may thus be a useful strategy for preventing insulin resistance and diabetes.-Cui, R., Choi, S.-E., Kim, T. H., Lee, H. J., Lee, S. J., Kang, Y., Jeon, J. Y., Kim, H. J., Lee, K.-W. Iron overload by transferrin receptor protein 1 regulation plays an important role in palmitate-induced insulin resistance in human skeletal muscle cells.
Collapse
Affiliation(s)
- Rihua Cui
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Tae Ho Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul Medical Center, Seoul, South Korea
| | - Hwa Joung Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Soo Jin Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
5
|
Tian J, Zheng W, Li XL, Cui YH, Wang ZY. Lower Expression of Ndfip1 Is Associated With Alzheimer Disease Pathogenesis Through Decreasing DMT1 Degradation and Increasing Iron Influx. Front Aging Neurosci 2018; 10:165. [PMID: 29937728 PMCID: PMC6002492 DOI: 10.3389/fnagi.2018.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 01/23/2023] Open
Abstract
We have previously reported that high expression of divalent metal transporter 1 (DMT1) plays a crucial role in iron dyshomeostasis and β-amyloid (Aβ) peptide generation in the brain of Alzheimer’s disease (AD). Recent studies have shown that Nedd4 family interacting protein 1 (Ndfip1) can degrade DMT1 through ubiquitination pathway and reduce the accumulation of intracellular iron. The present study aims to evaluate whether Ndfip1 is involved in AD pathogenesis through mediating DMT1 degradation and iron metabolism. β-amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mouse and Ndfip1 transfected SH-SY5Y cells were used in this study. Immunohistochemistry and Western blot were performed to examine the distribution and expression levels of Ndfip1 and DMT1. In addition, ELISA and calcein fluorescence were carried out for analyzing the levels of Aβ peptide and iron influx, respectively. The results showed that Ndfip1 immunoreactivity was decreased in the cortex and hippocampus of APP/PS1 mice, compared with wild type (WT) controls. Colocalization of Ndfip1 and Aβ within senile plaques could be observed. Immunoblot analyses showed that low expression of Ndfip1 and high expression of DMT1 proteins were detected in APP/PS1 mouse brain, compared with age-matched WT animals. Overexpression of Ndfip1 down-regulated DMT1 expression, and reduced iron influx and Aβ secretion in SH-SY5Y cells. Further, overexpressed Ndfip1 significantly attenuated iron-induced cell damage in Ndfip1 transfected cells. The present study suggests that lower expression of Ndfip1 might be associated with the pathogenesis of AD, through decreasing DMT1 degradation and increasing iron accumulation in the brain.
Collapse
Affiliation(s)
- Juan Tian
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Wei Zheng
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Xin-Lu Li
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Yuan-Hong Cui
- Science and Technology Innovation System Construction Service Center of Liaoning Province, Shenyang, China
| | - Zhan-You Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Manteniotis S, Wojcik S, Brauhoff P, Möllmann M, Petersen L, Göthert JR, Schmiegel W, Dührsen U, Gisselmann G, Hatt H. Functional characterization of the ectopically expressed olfactory receptor 2AT4 in human myelogenous leukemia. Cell Death Discov 2016; 2:15070. [PMID: 27551494 PMCID: PMC4979481 DOI: 10.1038/cddiscovery.2015.70] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/26/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022] Open
Abstract
The olfactory receptor (OR) family was found to be expressed mainly in the nasal epithelium. In the last two decades members of the OR family were detected to be functional expressed in different parts of the human body such as in liver, prostate or intestine cancer cells. Here, we detected the expression of several ORs in the human chronic myelogenous leukemia (CML) cell line K562 and in white blood cells of clinically diagnosed acute myeloid leukemia (AML) patients by RT-PCR and next-generation sequencing. With calcium-imaging, we characterized in greater detail the cell biological role of one OR (OR2AT4) in leukemia. In both cell systems, the OR2AT4 agonist Sandalore-evoked strong Ca2+ influx via the adenylate cyclase-cAMP-mediated pathway. The OR2AT4 antagonist Phenirat prevented the Sandalore-induced intracellular Ca2+ increase. Western blot and flow cytometric experiments revealed that stimulation of OR2AT4 reduced the proliferation by decreasing p38-MAPK phosphorylation and induced apoptosis via phosphorylation of p44/42-MAPK. Furthermore, Sandalore increased the number of hemoglobin-containing cells in culture. We described for the first time an OR-mediated pathway in CML and AML that can regulate proliferation, apoptosis and differentiation after activation. This mechanism offers novel therapeutic options for the treatment of AML.
Collapse
Affiliation(s)
- S Manteniotis
- Department of Cell Physiology, Ruhr-University Bochum , Bochum, Germany
| | - S Wojcik
- Department of Cell Physiology, Ruhr-University Bochum , Bochum, Germany
| | - P Brauhoff
- Department of Cell Physiology, Ruhr-University Bochum , Bochum, Germany
| | - M Möllmann
- Department of Hematology, University Hospital Essen , Essen, Germany
| | - L Petersen
- Department of Hematology, University Hospital Knappschaftskrankenhaus Bochum , Bochum, Germany
| | - J R Göthert
- Department of Hematology, University Hospital Essen , Essen, Germany
| | - W Schmiegel
- Department of Hematology, University Hospital Knappschaftskrankenhaus Bochum , Bochum, Germany
| | - U Dührsen
- Department of Hematology, University Hospital Essen , Essen, Germany
| | - G Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum , Bochum, Germany
| | - H Hatt
- Department of Cell Physiology, Ruhr-University Bochum , Bochum, Germany
| |
Collapse
|
7
|
Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 2014; 6:173. [PMID: 25100994 PMCID: PMC4107949 DOI: 10.3389/fnagi.2014.00173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
Modulations of the potentially toxic transition metals iron (Fe) and copper (Cu) are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS). However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD-1) in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients, Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe-storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons, and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER) stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy.
Collapse
Affiliation(s)
- David B Lovejoy
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|
8
|
Díaz-Castro J, Pulido M, Alférez M, Ochoa J, Rivas E, Hijano S, López-Aliaga I. Goat milk consumption modulates liver divalent metal transporter 1 (DMT1) expression and serum hepcidin during Fe repletion in Fe-deficiency anemia. J Dairy Sci 2014; 97:147-54. [DOI: 10.3168/jds.2013-7250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/01/2013] [Indexed: 01/28/2023]
|
9
|
Qian ZM, Mei Wu X, Fan M, Yang L, Du F, Yung WH, Ke Y. Divalent metal transporter 1 is a hypoxia-inducible gene. J Cell Physiol 2011; 226:1596-603. [DOI: 10.1002/jcp.22485] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Wan L, Nie G, Zhang J, Luo Y, Zhang P, Zhang Z, Zhao B. β-Amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 2011; 50:122-9. [PMID: 21034809 DOI: 10.1016/j.freeradbiomed.2010.10.707] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/09/2010] [Accepted: 10/20/2010] [Indexed: 11/29/2022]
Abstract
Recent studies indicate that the deposition of β-amyloid peptide (Aβ) is related to the pathogenesis of Alzheimer disease (AD); however, the underlying mechanism is still not clear. The abnormal interactions of Aβ with metal ions such as iron are implicated in the process of Aβ deposition and oxidative stress in AD brains. In this study, we observed that Aβ increased the levels of iron content and oxidative stress in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw) and in Caenorhabditis elegans Aβ-expressing strain CL2006. Intracellular iron and calcium levels and reactive oxygen species and nitric oxide generation significantly increased in APPsw cells compared to control cells. The activity of superoxide dismutase and the antioxidant levels of APPsw cells were significantly lower than those of control cells. Moreover, iron treatment decreased cell viability and mitochondrial membrane potential and aggravated oxidative stress damage as well as the release of Aβ1-40 from the APPsw cells. The iron homeostasis disruption in APPsw cells is very probably associated with elevated expression of the iron transporter divalent metal transporter 1, but not transferrin receptor. Furthermore, the C. elegans with Aβ-expression had increased iron accumulation. In aggregate, these results demonstrate that Aβ accumulation in neuronal cells correlated with neuronal iron homeostasis disruption and probably contributed to the pathogenesis of AD.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang D, Wang LH, Zhao Y, Lu YP, Zhu L. Hypoxia regulates the ferrous iron uptake and reactive oxygen species level via divalent metal transporter 1 (DMT1) Exon1B by hypoxia-inducible factor-1. IUBMB Life 2010; 62:629-36. [DOI: 10.1002/iub.363] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Shawki A, Mackenzie B. Interaction of calcium with the human divalent metal-ion transporter-1. Biochem Biophys Res Commun 2010; 393:471-5. [PMID: 20152801 PMCID: PMC2838957 DOI: 10.1016/j.bbrc.2010.02.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/06/2010] [Indexed: 11/16/2022]
Abstract
Iron deficiency is the most prevalent micronutrient deficiency worldwide. Whereas dietary calcium is known to reduce the bioavailability of iron, the molecular basis of this interaction is not understood. We tested the hypothesis that divalent metal-ion transporter-1 (DMT1)-the principal or only mechanism by which nonheme iron is taken up at the intestinal brush border-is shared also by calcium. We expressed human DMT1 in RNA-injected Xenopus oocytes and examined its activity using radiotracer assays and the voltage clamp. DMT1 did not mediate 45Ca2+ uptake. Instead, we found that Ca2+ blocked the Fe2+-evoked currents and inhibited 55Fe2+ uptake in a noncompetitive manner (K(i) approximately 20 mM). The mechanism of inhibition was independent of voltage and did not involve intracellular Ca2+ signaling. The alkaline-earth metal ions Ba2+, Sr2+, and Mg2+ also inhibited DMT1-mediated iron-transport activity. We conclude that Ca2+ is a low-affinity noncompetitive inhibitor--but not a transported substrate--of DMT1, explaining in part the effect of high dietary calcium on iron bioavailability.
Collapse
Affiliation(s)
- Ali Shawki
- Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, PO Box 670576, Cincinnati, Ohio 45267-0576, USA
| | - Bryan Mackenzie
- Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, PO Box 670576, Cincinnati, Ohio 45267-0576, USA
| |
Collapse
|
13
|
Zheng W, Xin N, Chi ZH, Zhao BL, Zhang J, Li JY, Wang ZY. Divalent metal transporter 1 is involved in amyloid precursor protein processing and Aβ generation. FASEB J 2009; 23:4207-17. [DOI: 10.1096/fj.09-135749] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wei Zheng
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Na Xin
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Zhi-Hong Chi
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Bo-Lu Zhao
- State Key Laboratory of Brain and Cognitive Sciences Institute of Biophysics Academia Sinica Beijing China
| | - Jie Zhang
- State Key Laboratory of Brain and Cognitive Sciences Institute of Biophysics Academia Sinica Beijing China
| | - Jia-Yi Li
- Department of Experimental Medical Science Lund University Sweden
| | - Zhan-You Wang
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| |
Collapse
|
14
|
Chang YZ, Qian ZM, Du JR, Zhu L, Xu Y, Li LZ, Wang CY, Wang Q, Ge XH, Ho KP, Niu L, Ke Y. Ceruloplasmin expression and its role in iron transport in C6 cells. Neurochem Int 2007; 50:726-33. [PMID: 17316903 DOI: 10.1016/j.neuint.2007.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 09/14/2006] [Accepted: 01/09/2007] [Indexed: 11/30/2022]
Abstract
Ceruloplasmin (CP) is essential for brain iron homeostasis. However, little is known about the effect of iron on CP expression in the brain. Also, the role of CP in brain iron transport has not been well determined. In this study, we investigated the effects of iron on CP expression and the role of CP in iron transport in the C6 rat glioma cells. Our data showed that treatment of the cells with iron (cell iron overload) or iron chelators (cell iron deficiency) did not induce a significant change in the expression of CP mRNA. However, western blotting analysis demonstrated that cell iron overload induced a significant decrease in CP protein content in the cells and that treatment with iron chelators led to a significant increase in CP protein level in the cells. These findings suggest a translational regulation of CP expression by iron in the cells. We also examined the effects of CP on iron transport in the cells. We found that glycosylphosphatidylinositol-anchored CP did not have any impact on iron uptake by normal iron or iron-deficient cells nor on iron release from normal iron or iron-sufficient cells. However, low concentrations of soluble CP (2-8 microg/ml) increased iron uptake by iron-deficient C6 glioma cells, while the same concentrations of CP had no effect on iron uptake by normal iron cells and iron release from normal iron and iron-sufficient cells. The possible reason for the difference between our results in vitro and those obtained from in vivo studies was discussed.
Collapse
Affiliation(s)
- Yan Zhong Chang
- Laboratory of Brain Iron Metabolism, Department of Applied Biology & Chemical Technology, and National Key Laboratory of Chinese Medicine and Molecular Pharmacology (Shenzhen), Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ke Y, Ho K, Du J, Zhu L, Xu Y, Wang Q, Wang CY, Li L, Ge X, Chang Y, Qian ZM. Role of soluble ceruloplasmin in iron uptake by midbrain and hippocampus neurons. J Cell Biochem 2006; 98:912-9. [PMID: 16475160 DOI: 10.1002/jcb.20740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ceruloplasmin (CP) is essential for brain iron homeostasis. However, its precise function in brain iron transport has not been definitely determined. In this study, we investigated the effects of soluble CP on iron influx and efflux in primary neuronal culture from the midbrain (the substantia nigra and striatum) and the hippocampus. Our data showed that low concentrations of CP (2, 4, 8 microg/ml) can promote iron influx into iron-deficient neurons, but not the neurons with normal iron status. The same concentrations of CP had no effect on iron efflux from iron-sufficient and normal-iron neurons. Contrary to our expectation, we did not find any regional difference in the effects of CP on iron influx as well as efflux in neurons. The changes in quenching (iron influx) and also dequenching (iron efflux) of intracellular fluorescence, induced by the addition of CP with iron, in the midbrain neurons were no different from those in the hippocampus neurons. The data showed that soluble CP has a role in iron uptake by iron-deficient brain neurons under our experimental conditions. The physiological significance of the results forms the focus for future work.
Collapse
Affiliation(s)
- Ya Ke
- Laboratory of Brain Iron Metabolism, Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chang YZ, Ke Y, Du JR, Halpern GM, Ho KP, Zhu L, Gu XS, Xu YJ, Wang Q, Li LZ, Wang CY, Qian ZM. Increased divalent metal transporter 1 expression might be associated with the neurotoxicity of L-DOPA. Mol Pharmacol 2005; 69:968-74. [PMID: 16317110 DOI: 10.1124/mol.105.017756] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Based on the available data, we speculated that changes in brain iron metabolism induced by L-DOPA might be associated with the neurotoxicity of L-DOPA. To investigate this possibility, the effects of L-DOPA on the expression of iron influx proteins [transferrin receptor (TfR) and divalent metal transporter 1 (DMT1)], iron efflux protein (ferroportin 1), and iron uptake in C6 glioma cells were determined in this study using Northern blot and Western blot analysis and the calcein method. The findings showed that treatment of C6 cells with different concentrations of L-DOPA (0-100 microM) did not affect the expression of mRNA and protein of TfR and DMT1 with iron-responsive element (+IRE) and protein of ferroportin 1. However, a significant increase in the expression of DMT1(-IRE) mRNA and protein was found in cells treated, respectively, with 10 and 30 microM L-DOPA (mRNA) and 1, 5, 10 and 30 microM L-DOPA (protein). The increase in DMT(-IRE) protein induced by L-DOPA treatment was in parallel with the increase in DMT(-IRE) mRNA. The levels of DMT1(-IRE) mRNA and protein peaked in the cells treated with 10 microM L-DOPA and then decreased progressively with increasing concentrations of L-DOPA. Further study demonstrated that treatment of the cells with 10 microM L-DOPA induced a significant increase in ferrous uptake by C6 glioma cells. The findings suggested that the increased DMT1(-IRE) expression might be partly associated with the neurotoxicity of L-DOPA. Clinical relevance of the findings needs to be investigated further.
Collapse
Affiliation(s)
- Yan-Zhong Chang
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu H, Jin J, DeFelice LJ, Andrews NC, Clapham DE. A spontaneous, recurrent mutation in divalent metal transporter-1 exposes a calcium entry pathway. PLoS Biol 2004; 2:E50. [PMID: 15024413 PMCID: PMC368157 DOI: 10.1371/journal.pbio.0020050] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 12/16/2003] [Indexed: 11/19/2022] Open
Abstract
Divalent metal transporter-1 (DMT1/DCT1/Nramp2) is the major Fe2+ transporter mediating cellular iron uptake in mammals. Phenotypic analyses of animals with spontaneous mutations in DMT1 indicate that it functions at two distinct sites, transporting dietary iron across the apical membrane of intestinal absorptive cells, and transporting endosomal iron released from transferrin into the cytoplasm of erythroid precursors. DMT1 also acts as a proton-dependent transporter for other heavy metal ions including Mn2+, Co2+, and Cu2, but not for Mg2+ or Ca2+. A unique mutation in DMT1, G185R, has occurred spontaneously on two occasions in microcytic (mk) mice and once in Belgrade (b) rats. This mutation severely impairs the iron transport capability of DMT1, leading to systemic iron deficiency and anemia. The repeated occurrence of the G185R mutation cannot readily be explained by hypermutability of the gene. Here we show that G185R mutant DMT1 exhibits a new, constitutive Ca2+ permeability, suggesting a gain of function that contributes to remutation and the mk and b phenotypes. David Clapham and colleagues offer new evidence that blurs the line between ion transporters and channels
Collapse
Affiliation(s)
- Haoxing Xu
- 1Howard Hughes Medical Institute, Children's HospitalHarvard Medical School, Boston, MassachusettsUnited States of America
| | - Jie Jin
- 1Howard Hughes Medical Institute, Children's HospitalHarvard Medical School, Boston, MassachusettsUnited States of America
| | - Louis J DeFelice
- 2Department of Pharmacology, Vanderbilt University Medical CenterNashville, TennesseeUnited States of America
| | - Nancy C Andrews
- 1Howard Hughes Medical Institute, Children's HospitalHarvard Medical School, Boston, MassachusettsUnited States of America
| | - David E Clapham
- 1Howard Hughes Medical Institute, Children's HospitalHarvard Medical School, Boston, MassachusettsUnited States of America
| |
Collapse
|