1
|
A molluscan calreticulin ortholog from Haliotis discus discus: Molecular characterization and transcriptional evidence for its role in host immunity. Biochem Biophys Res Commun 2016; 474:43-50. [PMID: 27086846 DOI: 10.1016/j.bbrc.2016.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 11/20/2022]
Abstract
Calreticulin (CALR), a Ca(2+) binding chaperone of the endoplasmic reticulum (ER) and mainly involved in Ca(2+) storage and signaling. In this study, we report the molecular characterization and immune responses of CALR homolog from disk abalone (AbCALR). The full length AbCALR cDNA (1837 bp) had an ORF of 1224 bp. According to the multiple alignments analysis, N- and P-domains were highly conserved in all the selected members of CALRs. In contrast, the C-domain which terminated with the characteristic ER retrieval signal (HDEL) was relatively less conserved. The phylogenetic analysis showed that all the selected molluscan homologs clustered together. Genomic sequence of AbCALR revealed that cDNA sequence was dispersed into ten exons interconnected with nine introns. AbCALR mRNA expression shows the significant (P < 0.05) up-regulation of AbCALR transcripts in hemocytes upon bacterial (Listeria monocytogenes and Vibrio parahaemolyticus), viral (Viral haemorrhagic septicaemia virus; VHSV) and immune stimulants (LPS and poly I:C) challenges at middle and/or late phases. These results collectively implied that AbCALR is able to be stimulated by pathogenic signals and might play a potential role in host immunity.
Collapse
|
2
|
Duan Y, Liu P, Li J, Wang Y, Li J, Chen P. Molecular responses of calreticulin gene to Vibrio anguillarum and WSSV challenge in the ridgetail white prawn Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2014; 36:164-171. [PMID: 24188748 DOI: 10.1016/j.fsi.2013.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Calreticulin (CRT), as a highly conserved endoplasmic reticulum luminal resident protein, plays important roles in Ca(2+) homeostasis, molecular chaperoning and response to viral infection. In this study, a full-length cDNA of CRT (designated EcCRT) was cloned from hemocytes of the ridgetail white prawn Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcCRT was 1725 bp, which contains a 5'-untranslated region (UTR) of 57 bp, 3'-UTR of 453 bp with a poly (A) tail, an open reading frame (ORF) of 1215 bp, encoding a 404 amino-acid polypeptide with the predicted molecular weight of 46.51 kDa and estimated isoelectric point of 4.32. The deduced amino acid sequence of EcCRT shared high identity (82%-85%) with that of other crustaceans. Phylogenetic analysis showed that EcCRT of E. carinicauda was clustered together with CRT of other shrimps, indicating that EcCRT should be a member of the CRT family. Quantitative real-time RT-qPCR analysis indicated that EcCRT was expressed in hemocytes, gill, hepatopancreas, muscle, ovary, intestine, stomach and eyestalk, with the highest expression level in hemocytes. After Vibrio anguillarum and WSSV challenge, the expression level of EcCRT transcripts both in the hemocytes and hepatopancreas of E. carinicauda were up-regulated in the first 6 h, respectively. The results suggested that EcCRT might be associated with the immune defenses to V. anguillarum and WSSV in E. carinicauda.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China.
| | - Jitao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Ping Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| |
Collapse
|
3
|
McGivan JD, Burston J, Nicholson B. Regulation of amino acid transport in the renal epithelial cell line NBL-1. Amino Acids 2013; 11:107-16. [PMID: 24178682 DOI: 10.1007/bf00813855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1995] [Accepted: 12/15/1995] [Indexed: 12/19/2022]
Abstract
The activities of the transport systems A, B° and XAG- are induced by various forms of stress in renal epithelial cells. Amino acid deprivation induces System A and XAG- in a protein-synthesis dependent process. In the case of System XAG- evidence is presented that induction of transport does not involve an increase in the amount of mRNA for the transporter or of the amount of transport protein. Preliminary evidence for the existence of a novel glycoprotein which is induced in parallel to the induction of these transport systems is presented. It is suggested that the induction of amino acid transport proteins and of some of the so-called stress proteins may be triggered by a common molecular mechanism.
Collapse
Affiliation(s)
- J D McGivan
- Department of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | | |
Collapse
|
4
|
Van Duyn Graham L, Sweetwyne MT, Pallero MA, Murphy-Ullrich JE. Intracellular calreticulin regulates multiple steps in fibrillar collagen expression, trafficking, and processing into the extracellular matrix. J Biol Chem 2010; 285:7067-78. [PMID: 20044481 PMCID: PMC2844156 DOI: 10.1074/jbc.m109.006841] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 12/29/2009] [Indexed: 12/19/2022] Open
Abstract
Calreticulin (CRT), a chaperone and Ca(2+) regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts deficient in CRT (CRT(-/-) MEFs) have reduced transcript levels of fibrillar collagen I and III and less soluble collagen as compared with wild type MEFs. Correspondingly, fibroblasts engineered to overexpress CRT have increased collagen type I transcript and protein. Collagen expression appears to be regulated by endoplasmic reticulum (ER) calcium levels and intracellular CRT, because thapsigargin treatment reduced collagen expression, whereas addition of exogenous recombinant CRT had no effect. CRT(-/-) MEFs exhibited increased ER retention of collagen, and collagen and CRT were co-immunoprecipitated from isolated cell lysates, suggesting that CRT is important for trafficking of collagen through the ER. CRT(-/-) MEFs also have reduced type I procollagen processing and deposition into the extracellular matrix. The reduced collagen matrix deposition is partly a consequence of reduced fibronectin matrix formation in the CRT-deficient cells. Together, these data show that CRT complexes with collagen in cells and that CRT plays critical roles at multiple stages of collagen expression and processing. These data identify CRT as an important regulator of collagen and suggest that intracellular CRT signaling plays an important role in tissue remodeling and fibrosis.
Collapse
Affiliation(s)
| | - Mariya T. Sweetwyne
- Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | | | | |
Collapse
|
5
|
Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88:887-918. [PMID: 18626063 DOI: 10.1152/physrev.00033.2007] [Citation(s) in RCA: 528] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The LDL receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes, and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, macrophages, and adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: 1) its ability to recognize more than 30 distinct ligands, 2) its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner, and 3) its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases.
Collapse
Affiliation(s)
- Anna P Lillis
- Center for Vascular and Inflammatory Diseases and Department of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
6
|
Underhill MF, Birch JR, Smales CM, Naylor LH. eIF2alpha phosphorylation, stress perception, and the shutdown of global protein synthesis in cultured CHO cells. Biotechnol Bioeng 2005; 89:805-14. [PMID: 15688359 DOI: 10.1002/bit.20403] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The perception of environmental stress in animal cells engineered to produce heterologous protein leads to the induction of stress signaling pathways and ultimately apoptosis and cell death. Protein synthesis is regulated in response to various environmental stresses by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2). In this study we have utilized a model system of Chinese hamster ovary cells engineered to secrete recombinant TIMP-1 protein to investigate the relationship between the cellular rate of protein synthesis, eIF2alpha phosphorylation, cellular stress perception, and the rate of cell specific recombinant protein synthesis. The rate of total protein synthesis was maximal after 48 hours of culture, remaining relatively high until 96 hours of culture, after which a decline was observed. Towards the end of culture a marked increase in labeled secreted protein was observed. Total eIF2alpha expression levels were high during the exponential growth phase and decreased slightly towards the end of culture. On the other hand, the relative expression of phosphorylated eIF2alpha showed a bi-phasic response with a small increase in phosphorylated eIF2alpha observed at 48 hours of culture, and a significant increase at 120 hours post-inoculation. The large increase in phosphorylated eIF2alpha coincided with the observed increase in labeled secreted protein and the decline in total cellular protein synthesis. A marked increase in ubiquitination was also observed at 120 hours post-inoculation that coincided with reduced rates of cellular protein synthesis and mRNA translation attenuation. We suggest that eIF2alpha phosphorylation is an indicator of cellular stress perception, which could be exploited in recombinant protein manufacturing to commence feeding and engineering strategies.
Collapse
Affiliation(s)
- Michèle F Underhill
- Research School of Biosciences, University of Kent, Giles Lane, Canterbury, CT2 7NJ, United Kingdom.
| | | | | | | |
Collapse
|
7
|
Ferreira V, Molina MC, Valck C, Rojas A, Aguilar L, Ramírez G, Schwaeble W, Ferreira A. Role of calreticulin from parasites in its interaction with vertebrate hosts. Mol Immunol 2004; 40:1279-91. [PMID: 15128045 DOI: 10.1016/j.molimm.2003.11.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although parasites range from protozoan to complex, evolutionary advanced arthropods, in general, a hallmark of parasite life cycles is their ability to adapt to changes in temperature, pH and host defense strategies. Calreticulin, a calcium-binding protein, highly conserved and multifunctional, is present in every cell of higher organisms, except erythrocytes. The surprising array of calreticulin-associated functions include lectin-like chaperoning, calcium storage and signaling, modulation of gene expression, cell adhesion, enhancement of phagocytosis of C1q or collectin opsonized apoptotic cells, inhibition of angiogenesis and tumoral growth, inhibition of perforin pore formation in T and NK cells, and inhibition of C1q-dependent complement activation. Likewise, calreticulin is present in a wide spectrum of sub cellular compartments. Parasite calreticulin shows a surprisingly high degree of conservation within the framework of its functional domains. Its role within the parasite/host relationship needs to be assessed further, in particular with regard to its impact on parasite infectivity, by helping to evade from its hosts' immune response. With special emphasis on calreticulin from Trypanosoma cruzi, the intracellular protozoan agent of American trypanosomiasis (Chagas' disease), we wish to exemplify and highlight the various implications of parasite calreticulin, within the pathophysiology of parasite-mediated human and animal disease.
Collapse
Affiliation(s)
- Viviana Ferreira
- Programa de Immunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Núñez MT, Osorio A, Tapia V, Vergara A, Mura CV. Iron-induced oxidative stress up-regulates calreticulin levels in intestinal epithelial (Caco-2) cells. J Cell Biochem 2001; 82:660-5. [PMID: 11500943 DOI: 10.1002/jcb.1194] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calreticulin, a molecular chaperone involved in the folding of endoplasmic reticulum synthesized proteins, is also a shock protein induced by heat, food deprivation, and chemical stress. Mobilferrin, a cytosolic isoform of calreticulin, has been proposed to be an iron carrier for iron recently incoming into intestinal cells. To test the hypothesis that iron could affect calreticulin expression, we investigated the possible associations of calreticulin with iron metabolism. To that end, using Caco-2 cells as a model of intestinal epithelium, the mass and mRNA levels of calreticulin were evaluated as a function of the iron concentration in the culture media. Increasing the iron content in the culture from 1 to 20 microM produced an increase in calreticulin mRNA and a two-fold increase in calreticulin. Increasing iron also induced oxidative damage to proteins, as assessed by the formation of 4-hydroxy-2-nonenal adducts. Co-culture of cells with the antioxidants quercetin, dimethyltiourea and N-acetyl cysteine abolished both the iron-induced oxidative damage and the iron-induced increase in calreticulin. We postulate that the iron-induced expression of calreticulin is part of the cellular response to oxidative stress generated by iron.
Collapse
Affiliation(s)
- M T Núñez
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
9
|
Bussolati O, Dall'Asta V, Franchi-Gazzola R, Sala R, Rotoli BM, Visigalli R, Casado J, Lopez-Fontanals M, Pastor-Anglada M, Gazzola GC. The role of system A for neutral amino acid transport in the regulation of cell volume. Mol Membr Biol 2001; 18:27-38. [PMID: 11396608 DOI: 10.1080/09687680110033756] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
System A is a secondary active, sodium dependent transport system for neutral amino acids. Strictly coupled with Na,K-ATPase, its activity determines the size of the intracellular amino acid pool, through a complex network of metabolic reaction and exchange fluxes. Many hormones and drugs affect system A activity in specific cell models or tissues. In all the cell models tested thus far the activity of the system is stimulated by amino acid starvation, cell cycle progression, and the incubation under hypertonic conditions. These three conditions produce marked alterations of cell volume. The stimulation of system A activity plays an important role in cell volume restoration, through an expansion of the intracellular amino acid pool. Under normal conditions, system A substrates represent a major fraction of cell compatible osmolytes, organic compounds that exert a protein stabilizing effect. It is, therefore, likely that the activation of system A represents a portion of a more complex response triggered by exposure to stresses of various nature. Since system A transporters have been recently cloned, the molecular bases of these regulatory mechanisms will probably be elucidated in a short time.
Collapse
Affiliation(s)
- O Bussolati
- Department of Experimental Medicine, University of Parma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression.
Collapse
Affiliation(s)
- P Fafournoux
- Unité de Nutrition Cellulaire et Moléculaire, INRA de Theix, 63122 Saint Genès Champanelle, France.
| | | | | |
Collapse
|
11
|
McGivan JD, Nicholson B. Regulation of high-affinity glutamate transport by amino acid deprivation and hyperosmotic stress. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F498-500. [PMID: 10516272 DOI: 10.1152/ajprenal.1999.277.4.f498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-affinity glutamate transport activity is induced by stress in NBL-1 cells. Exposure of cells to hyperosmotic medium led to an induction of the EAAC1 glutamate transporter, preceded by a large increase in EAAC1 mRNA levels. Culture of cells in amino acid-free medium also caused a protein synthesis-dependent increase in glutamate transport activity, but this was not accompanied by an increase of either EAAC1 mRNA or protein. Indirect evidence suggests that the increase in EAAC1 activity in the latter case may be due to the synthesis of an activator protein in response to decreased intracellular glutamate concentrations.
Collapse
Affiliation(s)
- J D McGivan
- Department of Biochemistry, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
12
|
Abstract
In mammals, the plasma concentration of amino acids is affected by nutritional or pathological conditions. For example, an amino acid profile alteration has been reported as a result of a deficiency of any one of the essential amino acids, a dietary imbalance of amino acids or an insufficient intake of protein. Amino acid availability regulates the expression of several genes involved in the regulation of growth, cellular function or amino acid metabolism. A limitation of several amino acids strongly increases the expression of insulin-like growth factor binding protein CHOP and asparagine synthetase genes. Elevated messenger RNA levels result from both an increase in the rate of transcription and an increase in messenger RNA stability. DNA amino acid response elements have been characterized in the promoter of CHOP and asparagine synthetase genes. The underlying mechanisms of gene regulation by amino acid limitation are not yet completely understood. The results discussed in this review demonstrate that amino acids by themselves can play, in concert with hormones, an important role in the control of gene expression.
Collapse
Affiliation(s)
- C Jousse
- Unité de Nutrition Cellulaire et Moléculaire, INRA de Theix, Saint Genès Champanelle, France
| | | | | |
Collapse
|
13
|
Sim RB, Moestrup SK, Stuart GR, Lynch NJ, Lu J, Schwaeble WJ, Malhotra R. Interaction of C1q and the collectins with the potential receptors calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology 1998; 199:208-24. [PMID: 9777407 DOI: 10.1016/s0171-2985(98)80028-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several proteins have been identified as candidate cell-surface receptors for the complement protein C1q. Some of these also interact with the structurally-related collectin proteins. Previous descriptions of C1q-binding properties of cells, and information on the cellular distribution of candidate receptors suggest that there is more than one physiologically relevant receptor for C1q. Two such candidate receptors, cell-surface calreticulin (also referred to as cC1qR or collectin receptor) and megalin are discussed in this review.
Collapse
Affiliation(s)
- R B Sim
- Department of Biochemistry, University of Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Heal R, McGivan J. Induction of calreticulin expression in response to amino acid deprivation in Chinese hamster ovary cells. Biochem J 1998; 329 ( Pt 2):389-94. [PMID: 9425124 PMCID: PMC1219056 DOI: 10.1042/bj3290389] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of calreticulin as a stress-induced molecular chaperone protein of the endoplasmic reticulum is becoming more apparent. We characterize here the induction of calreticulin in response to complete amino acid deprivation in Chinese hamster ovary cells. Amino acid deprivation caused a 4-fold increase in calreticulin protein levels over a period of 4-10 h. In addition to an overall increase in protein levels, the glycosylation of calreticulin was increased. This glycosylation event was blocked by tunicamycin and was not required for the increase in calreticulin protein levels. Immunofluorescence studies localized calreticulin to the ER of CHO cells, and no significant change was observed after amino acid deprivation. Northern-blot analysis showed that calreticulin mRNA levels were increased approx. 10-fold in response to complete amino acid deprivation. The response was sensitive to actinomycin D and alpha-amanitin, implying that regulation is primarily at the level of transcription. These results are similar to the large increases in asparagine synthetase mRNA observed in response to amino acid deprivation, but the amino acid-deprivation-response element identified to be involved in asparagine synthetase induction is absent from the calreticulin promoter.
Collapse
Affiliation(s)
- R Heal
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | | |
Collapse
|
15
|
Eggleton P, Reid KB, Kishore U, Sontheimer RD. Clinical relevance of calreticulin in systemic lupus erythematosus. Lupus 1997; 6:564-71. [PMID: 9302659 DOI: 10.1177/096120339700600703] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calreticulin is an abundant intracellular protein which is proposed to have numerous biological functions. However, there is increasing evidence to suggest that calreticulin plays a multifunctional role as an autoantigen present in patients with systemic lupus erythematosus. In this review we detail some of the recent evidence which indicate that calreticulin may play a supportive role in the formation of the autoantigen complex-Ro/SS-A. In addition, several proposed mechanisms of release and surface expression of calreticulin are described in relation to SLE mediated responses to the autoantigen. In particular, the generation of autoantibodies to specific regions of the protein and the ability of calreticulin to interfere with complement mediated inflammatory processes.
Collapse
Affiliation(s)
- P Eggleton
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
16
|
Heal RD, McGivan JD. Induction of the stress protein Grp75 by amino acid deprivation in CHO cells does not involve an increase in Grp75 mRNA levels. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1357:31-40. [PMID: 9202172 DOI: 10.1016/s0167-4889(97)00009-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The induction of the stress protein Grp75 in response to amino acid deprivation of Chinese Hamster Ovary cells was characterised using a specific monoclonal antibody. A 2-fold increase in the Grp75 protein content occurred over a period of 5-10 h after incubation of the cells in amino acid-free medium. A partial induction was obtained when either all non-essential amino acids or all essential amino acids were omitted from the medium indicating a broad-specificity response. Deletion of the single amino acids tryptophan, histidine or phenylalanine from otherwise complete medium also produced a partial induction of the protein. The increase in the level of Grp75 was completely blocked by cycloheximide, but only partially blocked by the inhibitors of mRNA synthesis actinomycin D and alpha-amanitin. A specific cDNA probe for Grp75 was generated by PCR and used to quantify mRNA levels. No increase in Grp75 mRNA was observed during the induction of the protein indicating that the primary regulation of Grp75 expression was not at the transcriptional level. These results contrast with the large increase in asparagine synthetase mRNA which has been shown to occur during amino acid deprivation, and indicate that cells respond to this form of stress by more than one mechanism.
Collapse
Affiliation(s)
- R D Heal
- Department of Biochemistry, School of Medical Sciences, Bristol, UK
| | | |
Collapse
|
17
|
Burston J, McGivan J. Identification and partial characterization of a novel membrane glycoprotein induced by amino acid deprivation in renal epithelial cells. Biochem J 1997; 322 ( Pt 2):551-5. [PMID: 9065776 PMCID: PMC1218225 DOI: 10.1042/bj3220551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified a protein of 110 kDa in the renal epithelial cell line NBL-1. which is induced on incubation of the cells in an amino-acid-free medium. The protein was purified on conA-Sepharose and subjected to N-terminal sequencing. The sequence obtained. VDRINFKT, does not correspond to any protein in the databases. Antipeptide antibodies made to this sequence recognised a single protein of 110 kDa in whole cell membranes and in a conconavalin A protein extract. Using the antibody on Western blots, the protein was induced 2.5-3 fold in 10-15 h and the induction was inhibited by cycloheximide and tunicamycin. The protein was found also in rat liver plasma membranes. A procedure for the partial purification of this protein from rat liver is described, and some internal sequence is reported. The possible relationship of the induction of this novel protein to the induction of amino acid transport in these cells by amino acid deprivation is discussed.
Collapse
Affiliation(s)
- J Burston
- Department of Biochemistry, School of Medical Sciences, Bristol, U.K
| | | |
Collapse
|
18
|
Otteken A, Moss B. Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J Biol Chem 1996; 271:97-103. [PMID: 8550632 DOI: 10.1074/jbc.271.1.97] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ubiquitous eukaryotic protein calreticulin has been detected in a wide variety of different cell types. Recently, calreticulin was found to bind in vitro to a number of proteins isolated from the endoplasmic reticulum. In addition, calreticulin has sequence similarities with the molecular chaperone calnexin. These data suggest that calreticulin might also act as a chaperone. We found that calreticulin associated transiently with a large number of newly synthesized cellular proteins. In cells expressing recombinant human immunodeficiency virus (HIV) envelope glycoprotein, gp160 bound transiently to calreticulin with a peak at 10 min after its synthesis. Binding of gp120 to calreticulin was not detected because proteolytic cleavage of gp160 occurs in the trans-Golgi. Nonglycosylated HIV envelope protein was not associated with calreticulin, suggesting a requirement for N-linked oligosaccharides on newly synthesized proteins as has been reported for calnexin. The in vivo binding kinetics of calnexin and calreticulin to gp160 were very similar. Sequential immunoprecipitations provided evidence for the existence of ternary complexes of gp160, calreticulin, and calnexin. The data suggested that most of the gp160 associated with calreticulin was also bound to calnexin but that only a portion of the gp160 associated with calnexin was also bound to calreticulin.
Collapse
Affiliation(s)
- A Otteken
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
19
|
Peterson JR, Ora A, Van PN, Helenius A. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 1995; 6:1173-84. [PMID: 8534914 PMCID: PMC301275 DOI: 10.1091/mbc.6.9.1173] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The soluble, calcium-binding protein calreticulin shares high sequence homology with calnexin, a transmembrane chaperone of glycoprotein folding. Our experiments demonstrated that calreticulin, like calnexin, associated transiently with numerous newly synthesized proteins in the endoplasmic reticulum. The population of proteins that bound to calreticulin was partially overlapping with those that bound to calnexin. Hemagglutinin (HA) of influenza virus was shown to associate with both calreticulin and calnexin. Using HA as a model substrate, it was found that both calreticulin- and calnexin-bound HA corresponded primarily to incompletely disulfide-bonded folding intermediates and conformationally trapped forms. Binding of all substrates was oligosaccharide-dependent and required the trimming of glucose residues from asparagine-linked core glycans by glucosidases I and II. In vitro, alpha-mannosidase digestion of calreticulin-bound HA indicated that calreticulin was specific for monoglucosylated glycans. Thus, calreticulin appeared to be a lectin with similar oligosaccharide specificity as its membrane-bound homologue, calnexin. Both are therefore likely to play an important role in glycoprotein maturation and quality control in the endoplasmic reticulum.
Collapse
Affiliation(s)
- J R Peterson
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|