1
|
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway. Molecules 2024; 29:2113. [PMID: 38731604 PMCID: PMC11085266 DOI: 10.3390/molecules29092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Edible grey oyster mushroom, Pleurotus sajor-caju, β (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom β-glucan using Hevea β-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.
Collapse
Affiliation(s)
- Purithat Rattajak
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
| | - Aratee Aroonkesorn
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Rapepun Wititsuwannakul
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Thanawat Pitakpornpreecha
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| |
Collapse
|
2
|
Sushytskyi L, Synytsya A, Čopíková J, Lukáč P, Rajsiglová L, Tenti P, Vannucci LE. Perspectives in the Application of High, Medium, and Low Molecular Weight Oat β-d-Glucans in Dietary Nutrition and Food Technology-A Short Overview. Foods 2023; 12:foods12061121. [PMID: 36981048 PMCID: PMC10048208 DOI: 10.3390/foods12061121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively well soluble in water and responsible for various biological effects: the regulation of the blood cholesterol level, as well as being anti-inflammatory, prebiotic, antioxidant, and tumor-preventing. Numerous studies, especially in the last two decades, highlight the differences in the biological properties of the oat β-d-glucan fractions of low, medium, and high molecular weight. These fractions differ in their features due to variations in bioavailability related to the rheological properties of these polysaccharides, and their association with food matrices, purity, and mode of preparation or modification. There is strong evidence that, under different conditions, the molecular weight may determine the potency of oat-extracted β-d-glucans. In this review, we intend to give a concise overview of the properties and studies of the biological activities of oat β-d-glucan preparations depending on their molecular weight and how they represent a prospective ingredient of functional food with the potential to prevent or modulate various pathological conditions.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Pavol Lukáč
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Lenka Rajsiglová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Paolo Tenti
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Luca E Vannucci
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
3
|
Agrawal D, Kaur B, Kaur Brar K, Chadha BS. An innovative approach of priming lignocellulosics with lytic polysaccharide mono-oxygenases prior to saccharification with glycosyl hydrolases can economize second generation ethanol process. BIORESOURCE TECHNOLOGY 2020; 308:123257. [PMID: 32244131 DOI: 10.1016/j.biortech.2020.123257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Two Lytic polysaccharide Mono-Oxygenases (LPMOs), non-modular (PMO_08942) and modular (PMO_07920), from thermotolerant fungus Aspergillus terreus 9DR cloned and expressed in Pichia pastoris X33 and purified to homogeneity using ion-exchange chromatography were found to be of ~29 and ~40 kDa, respectively. Both LPMOs were optimally active at 50 °C; PMO_08942 was active under acidic condition (pH 5.0) and PMO_07920 at pH 7.0. Modular LPMO (PMO_07920) tethered to CBM-1 was found to be versatile as it showed appreciable activity on complex polysaccharide (both cellulose and xylans) as compared to non-modular (PMO_08942). The t1/2 of PMO_08942 (~192 h, pH 5.0) and PMO_0792 (~192 h, pH 7.0) at 50 °C, suggests highly stable nature of these LPMOs. Fluorescently tagged modular AA9 was studied microscopically to understand interaction with pretreated biomass. Priming of biomass for up to 6 h with LPMOs prior to initiating hydrolysis with core cellulase enzyme resulted in significantly higher saccharification.
Collapse
Affiliation(s)
- Dhruv Agrawal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kamalpreet Kaur Brar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | | |
Collapse
|
4
|
Wang W, Chen W, Kahraman O, Chantapakul T, Ding T, Liu D, Feng H. Manothermosonication (MTS) treatment by a continuous-flow system: Effects on the degradation kinetics and microstructural characteristics of citrus pectin. ULTRASONICS SONOCHEMISTRY 2020; 63:104973. [PMID: 31986328 DOI: 10.1016/j.ultsonch.2020.104973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 05/18/2023]
Abstract
Modified pectin (MP) was reported to have increased bioactivities compared with the original one. However, traditional modification methods such as using an acidic solvent with heating are not only costly but causing severe pollution as well. In this study, manothermosonication (MTS) with a continuous-flow system was utilized to modify citrus pectin. The citrus pectin (5 g/L) treated by MTS (3.23 W/mL, 400 kPa, 45 °C) exhibited lower molecular weight (Mw, 248.17 kDa) and PDI (2.76). The pectin treated by MTS (400 KPa, 45 °C, 5 min) exhibited a narrower Mw distribution and lowered more Mw (48.8%) than the ultrasound(US)-treated (23.8%). Pectin degradation data fitted well to kinetic model of 1/Mwt -1/Mw0 = kt (45-65 °C). A lower activation energy of 13.33 kJ/mol was observed in the MTS treatment compared with the US-treated (16.38 kJ/mol). The MTS-treated pectin lowered the degree of methoxylation (DM), mol% of rhamnose and galacturonic acid (GalA) while increased mol% of galactose (Gal), xylose (Xyl), and arabinose (Ara). The 1H and 13C nuclear magnetic resonance showed that MTS could not alter the primary structures of citrus pectin. However, an elevated (Gal + Ara)/Rha and reduced GalA/(Rha + Ara + Gal + Xyl) molar ratios after MTS suggested that MTS resulted in more significant degradation on the main chains and less on the side chains of pectin, in agreement with the result of atomic force microscope. Moreover, the MTS-treated pectin exhibited a higher 1,1-diphenyl-2picryl hydrazyl radical scavenging capacity compared with original pectin.
Collapse
Affiliation(s)
- Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Weijun Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ozan Kahraman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Thunthacha Chantapakul
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
5
|
Yuan H, Lan P, He Y, Li C, Ma X. Effect of the Modifications on the Physicochemical and Biological Properties of β-Glucan-A Critical Review. Molecules 2019; 25:E57. [PMID: 31877995 PMCID: PMC6983044 DOI: 10.3390/molecules25010057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
β-Glucan exhibits many biological activities and functions such as stimulation of the immune system and anti-inflammatory, anti-microbial, anti-infective, anti-viral, anti-tumor, anti-oxidant, anti-coagulant, cholesterol-lowering, radio protective, and wound healing effects. It has a wide variety of uses in pharmaceutical, cosmetic, and chemical industries as well as in food processing units. However, due to its dense triple helix structure, formed by the interaction of polyhydroxy groups in the β-d-glucan molecule, it features poor solubility, which not only constrains its applications, but also inhibits its physiological function in vivo. One aim is to expand the applications for modified β-glucan with potential to prevent disease, various therapeutic purposes and as health-improving ingredients in functional foods and cosmetics. This review introduces the major modification methods required to understand the bioactivity of β-glucan and critically provides a literature survey on the structural features of this molecule and reported biological activity. We also discuss a new method to create novel opportunities to exploit maximally various properties of β-glucan, namely ultrasound-assisted enzymatic modification.
Collapse
Affiliation(s)
- Hongjie Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| | - Chengliang Li
- LB Cosmeceutical Technology Co., Ltd., Shanghai 201499, China;
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| |
Collapse
|
6
|
Abstract
Β-glucan is a strongly hydrophilic non-starchy polysaccharide, which, when incorporated in food, is renowned for its ability to alter functional characteristics such as viscosity, rheology, texture, and sensory properties of the food product. The functional properties of β-glucans are directly linked to their origin/source, molecular weight, and structural features. The molecular weight and structural/conformational features are in turn influenced by method of extraction and modification of the β-glucan. For example, whereas physical modification techniques influence only the spatial structures, modification by chemical agents, enzyme hydrolysis, mechanical treatment, and irradiation affect both spatial conformation and primary structures of β-glucan. Consequently, β-glucan can be modified (via one or more of the aforementioned techniques) into forms that have desired morphological, rheological, and (bio)functional properties. This review describes how various modification techniques affect the structure, properties, and applications of β-glucans in the food industry.
Collapse
|
7
|
Du B, Meenu M, Liu H, Xu B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int J Mol Sci 2019; 20:E4032. [PMID: 31426608 PMCID: PMC6720260 DOI: 10.3390/ijms20164032] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
β-glucan is a non-starch soluble polysaccharide widely present in yeast, mushrooms, bacteria, algae, barley, and oat. β-Glucan is regarded as a functional food ingredient due to its various health benefits. The high molecular weight (Mw) and high viscosity of β-glucan are responsible for its hypocholesterolemic and hypoglycemic properties. Thus, β-glucan is also used in the food industry for the production of functional food products. The inherent gel-forming property and high viscosity of β-glucan lead to the production of low-fat foods with improved textural properties. Various studies have reported the relationship between the molecular structure of β-glucan and its functionality. The structural characteristics of β-glucan, including specific glycosidic linkages, monosaccharide compositions, Mw, and chain conformation, were reported to affect its physiochemical and biological properties. Researchers have also reported some chemical, physical, and enzymatic treatments can successfully alter the molecular structure and functionalities of β-glucan. This review article attempts to review the available literature on the relationship of the molecular structure of β-glucan with its functionalities, and future perspectives in this area.
Collapse
Affiliation(s)
- Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Maninder Meenu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Hongzhi Liu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
8
|
HPAEC-PAD and Q-TOF-MS/MS analysis reveal a novel mode of action of endo-β-1,3(4)-d-glucanase Eng16A from coprinopsis cinerea on barley β-glucan. Food Chem 2019; 287:160-166. [DOI: 10.1016/j.foodchem.2019.02.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022]
|
9
|
Long NT, Anh NTN, Giang BL, Son HN, Luan LQ. Radiation Degradation of β-Glucan with a Potential for Reduction of Lipids and Glucose in the Blood of Mice. Polymers (Basel) 2019; 11:E955. [PMID: 31159434 PMCID: PMC6630287 DOI: 10.3390/polym11060955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022] Open
Abstract
: Water-soluble and low molecular weight (Mw) β-glucans were successfully prepared by γ-irradiation of water-insoluble yeast β-glucans. The radiation dose used for the degradation of yeast β-glucan was remarkably reduced by increasing the pH of the sample or combining with hydrogen peroxide treatment. Radiation-degraded β-glucans with molecular weights in the range of 11-48 kDa reduced the total cholesterol, triglyceride, low density lipoprotein (LDL) cholesterol, and glucose levels in the blood of administered mice. The decreasing levels of both lipid and glucose indexes in the blood of tested mice strongly depended on the molecular weight of the β-glucan, and the radiation-degraded β-glucan with a molecular weight of about 25 kDa was found to be the most effective for the reduction of blood lipid and glucose levels. Particularly, the oral administration of 25 kDa β-glucan, with a daily dose of about 2 mg per head, reduced the total cholesterol, triglyceride, LDL-cholesterol, and glucose levels in the blood of tested mice to about 47.4%, 48.5%, 45.7%, and 47.2%, respectively. The effects on the reduction of blood lipid and glucose levels were also found to be stable after 20 days of stopping administration. These results indicate that the degraded β-glucan with a molecular weight of about 25 kDa prepared by γ-ray irradiation is a very promising ingredient that can be used in nutraceutical food for therapeutics of diabetic and dyslipidemia.
Collapse
Affiliation(s)
- Nguyen Thanh Long
- Nha Trang Vaccines and Biological Products Joint-Stock Company, Khanh Hoa, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.
| | | | | | - Hoang Nghia Son
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.
| | - Le Quang Luan
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Hochiminh University of Natural Resource and Environment, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Radiation Degradation of β-Glucan Extracted from Brewer’s Yeast for Enhancing Growth Promotion and Immunostimulant Activities on Broilers. INT J POLYM SCI 2019. [DOI: 10.1155/2019/8901824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water-soluble low molecular weight β-glucan (WSLMG) was successfully prepared via γ-irradiation of insoluble β-glucan extracted from brewer’s yeast cell walls. The WSLMG content in an irradiated sample increased as the irradiation dose increased. The WSLMGs with a molecular weight (Mw) of 49, 25, and 11 kDa, obtained at correlative doses of 100, 200, and 300 kGy, respectively, were tested using growth promotion and immune stimulant effects in broilers. Supplementation with 500 ppm WSLMGs not only increased the survival rate (33.3%) and average body weight (40%) but also reduced the feed conversion rate (35.4%) in tested broilers. In addition, WSLMGs enhanced both nonspecific and specific immune components in the blood of supplemented broilers. The WSLMG with Mw ~25 kDa showed the highest effect on the growth performance and immunomodulatory capability in the immune systems of the tested broilers. In conclusion, this product demonstrates substantial promise as an immunostimulant and growth-promoting additive for poultry.
Collapse
|
11
|
Wu J, Zhao L, Li J, Jin S, Wu S. Aggregation and gelation of oat β -glucan in aqueous solution probed by NMR relaxometry. Carbohydr Polym 2017; 163:170-180. [DOI: 10.1016/j.carbpol.2017.01.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/08/2017] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
|
12
|
Wang Q, Sheng X, Shi A, Hu H, Yang Y, Liu L, Fei L, Liu H. β-Glucans: Relationships between Modification, Conformation and Functional Activities. Molecules 2017; 22:E257. [PMID: 28208790 PMCID: PMC6155770 DOI: 10.3390/molecules22020257] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/17/2017] [Indexed: 11/27/2022] Open
Abstract
β-glucan is a type of polysaccharide which widely exists in bacteria, fungi, algae, and plants, and has been well known for its biological activities such as enhancing immunity, antitumor, antibacterial, antiviral, and wound healing activities. The conformation of β-glucan plays a crucial role on its biological activities. Therefore, β-glucans obtained from different sources, while sharing the same basic structures, often show different bioactivities. The basic structure and inter-molecular forces of polysaccharides can be changed by modification, which leads to the conformational transformation in solution that can directly affect bioactivity. In this review, we will first determine different ways to modify β-glucan molecules including physical methods, chemical methods, and biological methods, and then reveal the relationship of the flexible helix form of the molecule chain and the helix conformation to their bioactivities. Last, we summarize the scientific challenges to modifying β-glucan's conformation and functional activity, and discuss its potential future development.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Xiaojing Sheng
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Ying Yang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Li Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Ling Fei
- Cornell University, Robert Frederick Smith School of Chemical and Biomolecular Engineering, Ithaca, NY 14850, USA.
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Ma X, Wang W, Wang D, Ding T, Ye X, Liu D. Degradation kinetics and structural characteristics of pectin under simultaneous sonochemical-enzymatic functions. Carbohydr Polym 2016; 154:176-85. [DOI: 10.1016/j.carbpol.2016.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/17/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023]
|
14
|
Wu J, Li L, Wu X, Dai Q, Zhang R, Zhang Y. Characterization of Oat (Avena nuda L.) β-Glucan Cryogelation Process by Low-Field NMR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:310-319. [PMID: 26653669 DOI: 10.1021/acs.jafc.5b03948] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Low-field nuclear magnetic resonance (LF-NMR) is a useful method in studying the water distribution and mobility in heterogeneous systems. This technique was used to characterize water in an oat β-glucan aqueous system during cryogelation by repeated freeze-thaw treatments. The results indicated that microphase separation occurred during cryogelation, and three water components were determined in the cryostructure. The spin-spin relaxation time was analyzed on the basis of chemical exchange and diffusion exchange theory. The location of each water component was identified in the porous microstructure of the cryogel. The pore size measured from the SEM image is in accordance with that estimated from relaxation time. The formation of cryogel is confirmed by rheological method. The results suggested that the cryogelation process of the polysaccharide could be monitored by LF-NMR through the evolution of spin-spin relaxation characteristics.
Collapse
Affiliation(s)
- Jia Wu
- College of Biological Science and Engineering, Fuzhou University , Fuzhou, Fujian 350116, People's Republic of China
| | - Linlin Li
- College of Biological Science and Engineering, Fuzhou University , Fuzhou, Fujian 350116, People's Republic of China
| | - Xiaoyan Wu
- College of Biological Science and Engineering, Fuzhou University , Fuzhou, Fujian 350116, People's Republic of China
| | - Qiaoling Dai
- College of Biological Science and Engineering, Fuzhou University , Fuzhou, Fujian 350116, People's Republic of China
| | - Ru Zhang
- College of Biological Science and Engineering, Fuzhou University , Fuzhou, Fujian 350116, People's Republic of China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
15
|
Lee SH, Jang GY, Hwang IG, Kim HY, Woo KS, Kim KJ, Lee MJ, Kim TJ, Lee J, Jeong HS. Physicochemical Properties of β-Glucan from Acid Hydrolyzed Barley. Prev Nutr Food Sci 2015; 20:110-8. [PMID: 26175998 PMCID: PMC4500513 DOI: 10.3746/pnf.2015.20.2.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/23/2015] [Indexed: 12/05/2022] Open
Abstract
This study was performed to investigate changes in the content and purity, as well as physical characteristics of β-glucan extracted from acid hydrolyzed whole grain barleys. Waxy and non-waxy barleys (Hordeum vulgare) were hydrolyzed with different concentrations of HCl (0.1~0.5 N) for 1 h. As the HCl concentration increased, the contents of total and soluble β-glucan from acid hydrolyzed barley decreased. However the ratio of soluble/total β-glucan content and purities of β-glucan significantly increased. The ratio of β-(1→4)/β-(1→3) linkages, molecular weight, and viscosity of soluble β-glucan of raw barleys were 2.28~2.52, 6.0~7.0×10(5) g/mol, and 12.8~32.8 centipoise (cP). Those of isolated soluble β-glucan were significantly decreased to 2.05~2.15, 6.6~7.8×10(3) g/mol, and 3.6~4.2 cP, respectively, with increasing acid concentration. The re-solubility of raw barley β-glucan was about 50%, but increased to 97% with increasing acid concentration. Acid hydrolysis was shown to be an effective method to produce β-glucan with high ratio of soluble β-glucan content, purity, water solubility, and low viscosity.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 361-763,
Korea
| | - Gwi Yeong Jang
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 361-763,
Korea
| | - In Guk Hwang
- Department of Agrofood Resources, National Academy of Agricultural Science, Gyeonggi 441-857,
Korea
| | - Hyun Young Kim
- Department of Functional Crop, National Institute of Crop Science, Gyeongnam 627-803,
Korea
| | - Koan Sik Woo
- Department of Functional Crop, National Institute of Crop Science, Gyeongnam 627-803,
Korea
| | - Kee Jong Kim
- Division of Rice and Winter Cereal Crop, National Institute of Crop Science, Jeonbuk 570-080,
Korea
| | - Mi Ja Lee
- Division of Rice and Winter Cereal Crop, National Institute of Crop Science, Jeonbuk 570-080,
Korea
| | - Tae Jip Kim
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 361-763,
Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 361-763,
Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 361-763,
Korea
| |
Collapse
|
16
|
Radiation degradation of (1 → 3)-β-d-glucan from yeast with a potential application as a plant growth promoter. Int J Biol Macromol 2014; 69:165-70. [DOI: 10.1016/j.ijbiomac.2014.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 11/22/2022]
|
17
|
Abdulbari HA, Shabirin A, Abdurrahman H. Bio-polymers for improving liquid flow in pipelines—A review and future work opportunities. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.07.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Wang T, Salazar A, Zabotina OA, Hong M. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy. Biochemistry 2014; 53:2840-54. [PMID: 24720372 DOI: 10.1021/bi500231b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The polysaccharide structure and dynamics in the primary cell wall of the model grass Brachypodium distachyon are investigated for the first time using solid-state nuclear magnetic resonance (NMR). While both grass and non-grass cell walls contain cellulose as the main structural scaffold, the former contains xylan with arabinose and glucuronic acid substitutions as the main hemicellulose, with a small amount of xyloglucan (XyG) and pectins, while the latter contains XyG as the main hemicellulose and significant amounts of pectins. We labeled the Brachypodium cell wall with (13)C to allow two-dimensional (2D) (13)C correlation NMR experiments under magic-angle spinning. Well-resolved 2D spectra are obtained in which the (13)C signals of cellulose, glucuronoarabinoxylan (GAX), and other matrix polysaccharides can be assigned. The assigned (13)C chemical shifts indicate that there are a large number of arabinose and xylose linkages in the wall, and GAX is significantly branched at the developmental stage of 2 weeks. 2D (13)C-(13)C correlation spectra measured with long spin diffusion mixing times indicate that the branched GAX approaches cellulose microfibrils on the nanometer scale, contrary to the conventional model in which only unbranched GAX can bind cellulose. The GAX chains are highly dynamic, with average order parameters of ~0.4. Biexponential (13)C T1 and (1)H T1ρ relaxation indicates that there are two dynamically distinct domains in GAX: the more rigid domain may be responsible for cross-linking cellulose microfibrils, while the more mobile domain may fill the interfibrillar space. This dynamic heterogeneity is more pronounced than that of the non-grass hemicellulose, XyG, suggesting that GAX adopts the mixed characteristics of XyG and pectins. Moderate differences in cellulose rigidity are observed between the Brachypodium and Arabidopsis cell walls, suggesting different effects of the matrix polysaccharides on cellulose. These data provide the first molecular-level structural information about the three-dimensional organization of the polysaccharides in the grass primary wall.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry and Ames Laboratory and ‡Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | | | | | | |
Collapse
|
19
|
Rigouin C, Delbarre-Ladrat C, Ratiskol J, Sinquin C, Colliec-Jouault S, Dion M. Screening of enzymatic activities for the depolymerisation of the marine bacterial exopolysaccharide HE800. Appl Microbiol Biotechnol 2012; 96:143-51. [DOI: 10.1007/s00253-011-3822-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/19/2022]
|
20
|
|
21
|
Li W, Cui SW, Wang Q, Yada RY. Studies of aggregation behaviours of cereal β-glucans in dilute aqueous solutions by light scattering: Part I. Structure effects. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2010.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Abu-Huwaij R, Obaidat RM, Sweidan K, Al-Hiari Y. Formulation and in vitro evaluation of xanthan gum or carbopol 934-based mucoadhesive patches, loaded with nicotine. AAPS PharmSciTech 2011; 12:21-7. [PMID: 21161460 PMCID: PMC3066338 DOI: 10.1208/s12249-010-9534-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/22/2010] [Indexed: 11/30/2022] Open
Abstract
Bilayer nicotine mucoadhesive patches were prepared and evaluated to determine the feasibility of the formulation as a nicotine replacement product to aid in smoking cessation. Nicotine patches were prepared using xanthan gum or carbopol 934 as a mucoadhesive polymers and ethyl cellulose as a backing layer. The patches were evaluated for their thickness, weight and content uniformity, swelling behavior, drug-polymers interaction, adhesive properties, and drug release. The physicochemical interactions between nicotine and the polymers were investigated by Fourier transform infrared (FTIR) spectroscopy. Mucoadhesion was assessed using two-arm balance method, and the in vitro release was studied using the Franz cell. FTIR revealed that there was an acid base interaction between nicotine and carbopol as well as nicotine and xanthan. Interestingly, the mucoadhesion and in vitro release studies indicated that this interaction was strong between the drug and carbopol whereas it was weak between the drug and xanthan. Loading nicotine concentration to non-medicated patches showed a significant decrease in the mucoadhesion strength of carbopol patches and no significant effect on the mucoadhesion strength of xanthan patches. In vitro release studies of the xanthan patches showed a reasonable fast initial release profile followed by controlled drug release over a 10-h period.
Collapse
Affiliation(s)
| | - Rana M. Obaidat
- />Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
23
|
Immerstrand T, Bergenståhl B, Trägårdh C, Nyman M, Cui S, Öste R. Extraction of β-Glucan from Oat Bran in Laboratory Scale. Cereal Chem 2009. [DOI: 10.1094/cchem-86-6-0601] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tina Immerstrand
- Dept. Food Technology, Engineering and Nutrition, Lund University, Sweden
- Corresponding author. Phone: +46 46 222 47 68. Fax: + 46 46 222 45 32. E-mail:
| | - Björn Bergenståhl
- Dept. Food Technology, Engineering and Nutrition, Lund University, Sweden
| | - Christian Trägårdh
- Dept. Food Technology, Engineering and Nutrition, Lund University, Sweden
| | - Margareta Nyman
- Dept. Food Technology, Engineering and Nutrition, Lund University, Sweden
| | - Steve Cui
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON
| | - Rickard Öste
- Dept. Food Technology, Engineering and Nutrition, Lund University, Sweden
| |
Collapse
|
24
|
Tasakorn P, Amatyakul W. Photochemical reduction of molecular weight and number of double bonds in natural rubber film. KOREAN J CHEM ENG 2008. [DOI: 10.1007/s11814-008-0252-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Lazaridou A, Biliaderis C. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. J Cereal Sci 2007. [DOI: 10.1016/j.jcs.2007.05.003] [Citation(s) in RCA: 429] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
The content of water-soluble and water-insoluble β-d-glucans in selected oats and barley varieties. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Wach MJ, Krasnoff SB, Loria R, Gibson DM. Effect of carbohydrates on the production of thaxtomin A by Streptomyces acidiscabies. Arch Microbiol 2007; 188:81-8. [PMID: 17340119 DOI: 10.1007/s00203-007-0225-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 01/22/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
Several Streptomyces species cause plant diseases, including S. scabies, S. acidiscabies and S. turgidiscabies, which produce common scab of potato and similar diseases of root crops. These species produce thaxtomins, dipeptide phytotoxins that are responsible for disease symptoms. Thaxtomins are produced in vivo on diseased potato tissue and in vitro in oat-based culture media, but the regulation of thaxtomin biosynthesis is not understood. S. acidiscabies was grown in a variety of media to assess the impact of medium components on thaxtomin A (ThxA) production. ThxA biosynthesis was not correlated with bacterial biomass, nor was it stimulated by alpha-solanine or alpha-chaconine, the two most prevalent potato glycoalkaloids. ThxA production was stimulated by oat bran broth, even after exhaustive extraction, suggesting that specific carbohydrates may influence ThxA biosynthesis. Oat bran contains high levels of xylans and glucans, and both of these carbohydrates, as well as xylans from wheat and tamarind, stimulated ThxA production, but not to the same extent as oat bran. Starches and simple sugars did not induce ThxA production. The data indicate that complex carbohydrates may act as environmental signals to plant pathogenic Streptomyces, allowing production of thaxtomin and enabling bacteria to colonize its host.
Collapse
Affiliation(s)
- Michael J Wach
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
28
|
Johansson L, Virkki L, Anttila H, Esselström H, Tuomainen P, Sontag-Strohm T. Hydrolysis of β-glucan. Food Chem 2006. [DOI: 10.1016/j.foodchem.2005.03.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Richard A, Margaritis A. Kinetics of molecular weight reduction of poly(glutamic acid) by in situ depolymerization in cell-free broth of Bacillus subtilis. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Li W, Cui SW, Wang Q. Solution and conformational properties of wheat beta-D-glucans studied by light scattering and viscometry. Biomacromolecules 2006; 7:446-52. [PMID: 16471915 DOI: 10.1021/bm050625v] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solution properties of wheat beta-glucan were investigated by light scattering and viscometric methods. The hydrodynamic radius (R(h)), weight average molecular weight (M(w)), radius of gyration (R(g)), and the second virial coefficient (A(2)) of wheat beta-glucan were determined by both dynamic and static light scattering methods, whereas the critical concentrations (c) of the solution were derived from [eta] via viscometric method. The structure sensitive parameters, rho (1.52-1.62), the conformation parameter nu (0.62), and the Mark-Houwink-Sakurada exponents alpha (0.78) confirmed the random coil conformation of wheat beta-glucan in 0.5 M NaOH solution. The characteristic ratio (4.97) was obtained by the random flight model, and the statistical segment length (8.83 nm) was derived from the wormlike cylinder model. It was found that the wormlike cylinder model could explain the chain stiffness better than the random flight model, which suggested an extended random coil conformation of wheat beta-glucan in 0.5 M NaOH solution. The study also revealed that the structure feature of wheat beta-glucan; that is, the higher trisaccharide-to-tetrasaccharide ratio contributed to the stiffer chain conformation compared with other cereal beta-glucans.
Collapse
Affiliation(s)
- Wei Li
- Food Research Program, Agriculture and Agri-Food Canada, Guelph, N1G 5C9 Ontario, Canada
| | | | | |
Collapse
|
31
|
Ajithkumar A, Andersson R, Siika-aho M, Tenkanen M, Åman P. Isolation of cellotriosyl blocks from barley β-glucan with endo-1,4-β-glucanase from Trichoderma reesei. Carbohydr Polym 2006. [DOI: 10.1016/j.carbpol.2005.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|