1
|
Sharma HS, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Li C, Zhang Z, Wiklund L, Sharma A. Cerebrolysin restores balance between excitatory and inhibitory amino acids in brain following concussive head injury. Superior neuroprotective effects of TiO 2 nanowired drug delivery. PROGRESS IN BRAIN RESEARCH 2021; 266:211-267. [PMID: 34689860 DOI: 10.1016/bs.pbr.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Concussive head injury (CHI) often associated with military personnel, soccer players and related sports personnel leads to serious clinical situation causing lifetime disabilities. About 3-4k head injury per 100k populations are recorded in the United States since 2000-2014. The annual incidence of concussion has now reached to 1.2% of population in recent years. Thus, CHI inflicts a huge financial burden on the society for rehabilitation. Thus, new efforts are needed to explore novel therapeutic strategies to treat CHI cases to enhance quality of life of the victims. CHI is well known to alter endogenous balance of excitatory and inhibitory amino acid neurotransmitters in the central nervous system (CNS) leading to brain pathology. Thus, a possibility exists that restoring the balance of amino acids in the CNS following CHI using therapeutic measures may benefit the victims in improving their quality of life. In this investigation, we used a multimodal drug Cerebrolysin (Ever NeuroPharma, Austria) that is a well-balanced composition of several neurotrophic factors and active peptide fragments in exploring its effects on CHI induced alterations in key excitatory (Glutamate, Aspartate) and inhibitory (GABA, Glycine) amino acids in the CNS in relation brain pathology in dose and time-dependent manner. CHI was produced in anesthetized rats by dropping a weight of 114.6g over the right exposed parietal skull from a distance of 20cm height (0.224N impact) and blood-brain barrier (BBB), brain edema, neuronal injuries and behavioral dysfunctions were measured 8, 24, 48 and 72h after injury. Cerebrolysin (CBL) was administered (2.5, 5 or 10mL/kg, i.v.) after 4-72h following injury. Our observations show that repeated CBL induced a dose-dependent neuroprotection in CHI (5-10mL/kg) and also improved behavioral functions. Interestingly when CBL is delivered through TiO2 nanowires superior neuroprotective effects were observed in CHI even at a lower doses (2.5-5mL/kg). These observations are the first to demonstrate that CBL is effectively capable to attenuate CHI induced brain pathology and behavioral disturbances in a dose dependent manner, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Zhiquiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Melanson B, Lapointe T, Leri F. Impact of impaired glucose metabolism on responses to a psychophysical stressor: modulation by ketamine. Psychopharmacology (Berl) 2021; 238:1005-1015. [PMID: 33404733 DOI: 10.1007/s00213-020-05748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE There is evidence that hypoglycemia, a metabolic stressor, can negatively impact mood and motivation, and can interact with other stressors to potentiate their effects on behavior and physiology. OBJECTIVES/METHODS The current study in male Sprague-Dawley rats explored the interaction between impaired glucose metabolism induced by 0, 200, or 300 mg/kg 2-deoxy-D-glucose (2-DG) and a psychophysical stressor induced by forced swimming stress (FSS; 6 sessions, 10 min/session). The endpoints of interest were blood glucose levels, progressive behavioral immobility, and saccharin preference (2-bottle choice test). Furthermore, it was investigated whether pre-treatment with 0, 10, or 20 mg/kg ketamine could modify the interaction between 2-DG and FSS on these endpoints. RESULTS It was found that 2-DG increased blood glucose levels equally in all experimental groups, accelerated the immobile response to FSS, and suppressed saccharin preference 1 week following termination of stress exposure. As well, pre-treatment with ketamine blocked the effects of combined 2-DG and FSS on immobility and saccharin preference without affecting blood glucose levels and produced an anti-immobility effect that was observed during a drug-free test swim 1 week following administration. CONCLUSIONS Overall, these findings demonstrate that impaired glucose metabolism can potentiate the effects of a psychophysical stressor, and that this interaction can be modulated pharmacologically by ketamine.
Collapse
Affiliation(s)
- Brett Melanson
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Thomas Lapointe
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Zestos AG, Kennedy RT. Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical Monitoring. AAPS JOURNAL 2017; 19:1284-1293. [PMID: 28660399 DOI: 10.1208/s12248-017-0114-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
Microdialysis is a powerful sampling technique used to monitor small molecules in vivo. Despite the many applications of microdialysis sampling, it is limited by the method of analyzing the resulting samples. An emerging technique for analysis of microdialysis samples is liquid chromatography-tandem mass spectrometry (LC-MS/MS). This technique is highly versatile, allowing multiplexed analysis of neurotransmitters, metabolites, and neuropeptides. Using LC-MS/MS for polar neurotransmitters is hampered by weak retention reverse phase LC columns. Several derivatization reagents have been utilized to enhance separation and resolution of neurochemicals in dialysate samples including benzoyl chloride (BzCl), dansyl chloride, formaldehyde, ethylchloroformate, and propionic anhydride. BzCl reacts with amine and phenol groups so that many neurotransmitters can be labeled. Besides improving separation on reverse phase columns, this reagent also increases sensitivity. It is available in a heavy form so that it can be used to make stable-isotope labeled internal standard for improved quantification. Using BzCl with LC-MS/MS has allowed for measuring as many as 70 neurochemicals in a single assay. With slightly different conditions, LC-MS/MS has also been used for monitoring endocannabinoids. LC-MS/MS is also useful for neuropeptide assay because it allows for highly sensitive, sequence specific measurement of most peptides. These advances have allowed for multiplexed neurotransmitter measurements in behavioral, circuit analysis, and drug effect studies.
Collapse
Affiliation(s)
- Alexander G Zestos
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan, 48109-1055, USA.,Department of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109-1055, USA.,Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, District of Columbia, 20016, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan, 48109-1055, USA. .,Department of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109-1055, USA.
| |
Collapse
|
4
|
Anderzhanova E, Wotjak CT. Brain microdialysis and its applications in experimental neurochemistry. Cell Tissue Res 2014; 354:27-39. [PMID: 24022232 DOI: 10.1007/s00441-013-1709-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/19/2013] [Indexed: 12/20/2022]
Abstract
Abstract Microdialysis is one of the most powerful neurochemistry techniques, which allows the monitoring of changes in the extracellular content of endogenous and exogenous substances in the brain of living animals. The strength as well as wide applicability of this experimental approach are based on the bulk theory of brain neurotransmission. This methodological review introduces basic principles of chemical neurotransmission and emphasizes the difference in neurotransmission types.Clear understanding of their significance and degree of engagement in regulation of physiological processes is an ultimate prerequisite not only for choosing an appropriate method of monitoring for interneuronal communication via chemical messengers but also for accurate data interpretation. The focus on the processes of synthesis/metabolism, receptor interaction/neuronal signaling or the behavioral relevance of neurochemical events sculpts the experiment design. Brain microdialysis is an important method for examining changes in the content of any substances, irrespective of their origin, in living animals. This article compares contemporary approaches and techniques that are used for monitoring neurotransmission (including in vivo brain microdialysis, voltammetric methods, etc). We highlight practical aspects of microdialysis experiments in particular to those researchers who are seeking to increase the repertoire of their experimental techniques with brain microdialysis.
Collapse
|
5
|
Villar-Cerviño V, Fernández-López B, Celina Rodicio M, Anadón R. Aspartate-containing neurons of the brainstem and rostral spinal cord of the sea lampreyPetromyzon marinus: Distribution and comparison with γ-aminobutyric acid. J Comp Neurol 2014; 522:1209-31. [DOI: 10.1002/cne.23493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Blanca Fernández-López
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - María Celina Rodicio
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Ramón Anadón
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| |
Collapse
|
6
|
Lee WH, Slaney TR, Hower RW, Kennedy RT. Microfabricated sampling probes for in vivo monitoring of neurotransmitters. Anal Chem 2013; 85:3828-31. [PMID: 23547793 PMCID: PMC3642770 DOI: 10.1021/ac400579x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microfabricated fluidic systems have emerged as a powerful approach for chemical analysis. Relatively unexplored is the use of microfabrication to create sampling probes. We have developed a sampling probe microfabricated in Si by bulk micromachining and lithography. The probe is 70 μm wide by 85 μm thick by 11 mm long and incorporates two buried channels that are 20 μm in diameter. The tip of the probe has two 20 μm holes where fluid is ejected or collected for sampling. Utility of the probe was demonstrated by sampling from the brain of live rats. For sampling, artificial cerebral spinal fluid was infused in through one channel at 50 nL/min while sample was withdrawn at the same flow rate from the other channel. Analysis of resulting fractions collected every 20 min from the striatum of rats by liquid chromatography with mass spectrometry demonstrated reliable detection of 17 neurotransmitters and metabolites. The small probe dimensions suggest it is less perturbing to tissue and can be used to sample smaller brain nuclei than larger sampling devices, such as microdialysis probes. This sampling probe may have other applications such as sampling from cells in culture. The use of microfabrication may also enable incorporation of electrodes for electrochemical or electrophysiological recording and other channels that enable more complex sample preparation on the device.
Collapse
Affiliation(s)
- Woong Hee Lee
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Thomas R. Slaney
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Robert W. Hower
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Zachar G, Wagner Z, Tábi T, Bálint E, Szökő É, Csillag A. Differential Changes of Extracellular Aspartate and Glutamate in the Striatum of Domestic Chicken Evoked by High Potassium or Distress: An In Vivo Microdialysis Study. Neurochem Res 2012; 37:1730-7. [DOI: 10.1007/s11064-012-0783-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/01/2012] [Accepted: 04/12/2012] [Indexed: 02/03/2023]
|
8
|
Herrera-Marschitz M, Arbuthnott G, Ungerstedt U. The rotational model and microdialysis: Significance for dopamine signalling, clinical studies, and beyond. Prog Neurobiol 2010; 90:176-89. [DOI: 10.1016/j.pneurobio.2009.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/25/2008] [Accepted: 01/06/2009] [Indexed: 11/28/2022]
|
9
|
Villar-Cerviño V, Barreiro-Iglesias A, Anadón R, Rodicio MC. Aspartate immunoreactivity in the telencephalon of the adult sea lamprey: Comparison with GABA immunoreactivity. Brain Res Bull 2008; 75:246-50. [DOI: 10.1016/j.brainresbull.2007.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/17/2007] [Indexed: 11/29/2022]
|
10
|
Herrera-Marschitz M, Bustamante D, Morales P, Goiny M. Exploring neurocircuitries of the basal ganglia by intracerebral administration of selective neurotoxins. Neurotox Res 2007; 11:169-82. [PMID: 17449458 DOI: 10.1007/bf03033566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The detailed anatomy of the monoamine pathways of the rat, first described by the students of Nils Ake Hillarp in Sweden, provided the basis for a neurocircuitry targeted pharmacology, leading to important therapeutic breakthroughs. Progress was achieved by the introduction of accurate lesion techniques based on selective neurotoxins. Systematic intracerebral injections of 6-hydroxydopamine let Urban Ungerstedt at the Karolinska Institutet, Stockholm, Sweden, to propose the first stereotaxic mapping of the monoamine pathways in the rat brain; and the 'Rotational Behaviour', as a classical model for screening drugs useful for alleviating Parkinson's disease and other neuropathologies. The direction of the rotational behaviour induced by drugs administrated to unilaterally 6-hydroxydopamine-lesioned rats reveals their mechanism of action at dopamine synapses, as demonstrated when rotational behaviour was combined with microdialysis. The model was useful for proposing a role for dopamine receptors in the gating of the flow of information integrated and/or modulated by the basal ganglia, through different efferent pathways; notably the striatopallidal system, via D(2) receptors, and the striatonigral system, via D(1) receptors. The role of other dopamine receptor subtypes on rotational behaviour has not yet been clarified.
Collapse
Affiliation(s)
- Mario Herrera-Marschitz
- Programme of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
11
|
Rabouan S, Olivier JC, Guillemin H, Barthes D. Validation of HPLC Analysis of Aspartate and Glutamate Neurotransmitters Following o ‐Phthaldialdehyde‐Mercaptoethanol Derivatization. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120021286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- S. Rabouan
- a Laboratoire de Chimie Analytique , UFR Médecine et Pharmacie , BP 199, Poitiers , CEDEX , 86005 , France
| | - J. C. Olivier
- b Laboratoire de Pharmacie Galénique et Biopharmacie , UFR Médecine et Pharmacie , Poitiers , France
| | - H. Guillemin
- a Laboratoire de Chimie Analytique , UFR Médecine et Pharmacie , BP 199, Poitiers , CEDEX , 86005 , France
| | - D. Barthes
- a Laboratoire de Chimie Analytique , UFR Médecine et Pharmacie , BP 199, Poitiers , CEDEX , 86005 , France
| |
Collapse
|
12
|
Cooper JD, Heppert KE, Davies MI, Lunte SM. Evaluation of an osmotic pump for microdialysis sampling in an awake and untethered rat. J Neurosci Methods 2006; 160:269-75. [PMID: 17079021 PMCID: PMC1945051 DOI: 10.1016/j.jneumeth.2006.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/09/2006] [Accepted: 09/21/2006] [Indexed: 12/21/2022]
Abstract
The feasibility of using an osmotic pump in place of a syringe pump for microdialysis sampling in rat brain was investigated. The use of an osmotic pump permits the rat to be free from the constraints of the standard tethered system. The in vitro flow rates of a microdialysis syringe pump (set at 10.80 microl/h) and the osmotic pump (pump specifications were 11.35 microl/h) with no probe attached were compared, yielding results of 10.87 microl/h+/-1.7% and 10.95 microl/h+/-8.0%, respectively. The average of four flow rate experiments in vivo yielded R.S.D.s less than 10% and an average flow rate of 11.1 microl/h. Following the flow rate studies, in vivo sampling of neurotransmitters was accomplished with the osmotic pump coupled to a microdialysis probe implanted in the brain. Finally, after determination of basal levels of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) in the rats, the rats were dosed with benserazide followed by l-3,4-dihydroxyphenylalanine (l-DOPA). The results from the dosing study showed at least a 10-fold increase in compounds in the l-DOPA metabolic pathway (DOPAC and HVA) and a slight or no increase in 5-HIAA (serotonin metabolic pathway.) These results indicate that the osmotic pump is a viable alternative to the syringe pump for use in microdialysis sampling.
Collapse
Affiliation(s)
- Joshua D Cooper
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
13
|
Frantz K, Harte M, Ungerstedt U, O' Connor WT. A dual probe characterization of dialysate amino acid levels in the medial prefrontal cortex and ventral tegmental area of the awake freely moving rat. J Neurosci Methods 2002; 119:109-19. [PMID: 12323414 DOI: 10.1016/s0165-0270(02)00169-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dual probe microdialysis was employed to characterize the origins of dialysate glutamate, aspartate and gamma-aminobutyric acid (GABA) in the medial prefrontal cortex (mPfc) and to investigate functional interactions between the mPfc and ventral tegmental area (VTA) in awake, freely moving rats. Perfusion with elevated potassium (K(+); KCl, 100 mM, 20 min), low Ca(2+) (0.1 mM, 60 min) or tetrodotoxin (TTX, 10 microM, 100 min) was performed in the mPfc and dialysate levels of glutamate, aspartate and GABA were measured locally and in the VTA. Elevated K(+) in the mPfc rapidly increased dialysate glutamate and aspartate locally (+90+/-10 and +41+/-9% from basal, respectively) and in the VTA (+71+/-14 and +42+/-14%, respectively). MPfc GABA was also rapidly increased (+241+/-62%) while VTA GABA was not affected. Perfusion with low Ca(2+) in the mPfc decreased local glutamate, aspartate and GABA (-26+/-8; -35+/-7 and -45+/-8%, respectively) and decreased only GABA (-40+/-5%) in the VTA. Intra-mPfc TTX increased glutamate and aspartate locally (+82+/-23 and +54+/-27%, respectively) and in the VTA (+84+/-18 and +38+/-17%, respectively). In contrast, intra-mPfc TTX decreased local GABA (-33+6%) while VTA GABA levels were not affected. Taken together, these data confirm the influence of the mPfc upon the ipsilateral VTA and provide evidence for two neuronal pools which contribute to basal extracellular mPfc and VTA glutamate, aspartate and GABA levels, the first pool derived from Na(+)- and Ca(2+)-dependent release and the second derived from voltage-dependent reuptake.
Collapse
Affiliation(s)
- Kyle Frantz
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
14
|
Abarca J, Bustos G. Differential regulation of glutamate, aspartate and gamma-amino-butyrate release by N-methyl-D-aspartate receptors in rat striatum after partial and extensive lesions to the nigro-striatal dopamine pathway. Neurochem Int 1999; 35:19-33. [PMID: 10403427 DOI: 10.1016/s0197-0186(99)00029-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The in vivo microdialysis methodology was used to assess the effect of N-methyl-D-aspartate (NMDA) receptor ligands on glutamate (GLU), aspartate (ASP) and gamma-aminobutyrate (GABA) extracellular levels in the striatum of anaesthetized rats, after damage to the dopamine (DA) nigrostriatal pathway by injections of different doses of 6-hydroxydopamine (6-OH-DA) seven days earlier. The 6-OH-DA treated rats were divided into two groups, corresponding to animals with 20-80% (partial) and 85-99% (extensive) striatal DA tissue depletion, respectively. In rats with partial DA depletion, the striatal extracellular ASP levels significantly increased after intrastriatal dialysis perfusion with MK-801 (100 microM), an antagonist of NMDA receptors. In addition, a change in the pattern of local NMDA (500 microM)- induced efflux of ASP was observed in the striatum of these rats. However, in these partially DA-depleted striata no changes were found in basal extracellular levels of GLU, ASP and GABA or in NMDA- and MK-801-mediated effluxes of GLU and GABA relative to striata from sham rats. In contrast, rats with extensive striatal DA depletion exhibited a significant increase in ASP and GABA extracellular striatal levels, after intrastriatal dialysis perfusion with NMDA. In addition, the MK-801-mediated stimulation of extracellular ASP levels was accentuated along with the appearance of a MK-801 mediated increase in extracellular striatal GLU. Finally, basal extracellular levels of ASP, but not of GLU and GABA, were found to increase in extensive DA-depleted striata when compared to sham and partially DA-depleted striata. Thus, a differential regulation of basal and NMDA receptor-mediated release of transmitter amino acids occur seven days after partial and extensive DA-depleted striatum by 6-OH-DA-induced lesions of the nigrostriatal DA pathway. These findings may have implications as regards the participation of NMDA receptors in the compensatory mechanisms associated with the progress of Parkinson's disease, as well as in the treatment of this neurological disorder.
Collapse
Affiliation(s)
- J Abarca
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago
| | | |
Collapse
|
15
|
Rodríguez-Puertas R, Herrera-Marschitz M, Koistinaho J, Hökfelt T. Dopamine D1 receptor modulation of glutamate receptor messenger RNA levels in the neocortex and neostriatum of unilaterally 6-hydroxydopamine-lesioned rats. Neuroscience 1999; 89:781-97. [PMID: 10199613 DOI: 10.1016/s0306-4522(98)00370-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of treatment with the D1 dopamine receptor agonist SKF 38393 on the expression of metabotropic glutamate receptor 1, 3, 4 and 5 receptor subtypes and of the glutamate N-methyl-D-aspartate ionotropic receptor subunits NRI, NR2A and NR2B was analysed using in situ hybridization. We studied the neocortex and neostriatum of normal rats and of rats unilaterally treated with 6-hydroxydopamine, a neurotoxin that, after intracerebral injection into the ventral tegmental area, causes selective degeneration of the ascending dopamine pathway. In the 6-hydroxydopamine-lesioned rats, metabotropic glutamate receptor subtype 3 messenger RNA levels were ipsilaterally increased in the neocortex and neostriatum, while the levels of metabotropic glutamate receptor subtype 4 messenger RNA were bilaterally increased in both regions. When administered to the 6-hydroxydopamine-lesioned rats, the D1 receptor agonist SKF 38393 (3 x 20 mg/kg, s.c.) produced a bilateral decrease in the expression of the metabotropic glutamate receptor subtype 1 and 5 receptor messenger RNA levels in the neocortex and neostriatum. In the neostriatum, SKF 38393 attenuated the ipsilateral increase in the expression of striatal metabotropic glutamate receptor subtype 3 messenger RNA produced by the 6-hydroxydopamine lesion. Furthermore, SKF 38393 produced a bilateral decrease in the levels of NRI receptor subunit messenger RNA and, in contrast, an increase in the striatal NR2B messenger RNA levels. All of these effects were abolished by the D1 receptor antagonist SCH 23360. These results indicate a differential D1 receptor-mediated modulation of the expression of some glutamate receptor subtypes in the neostriatum and neocortex, in agreement with the idea of a functional coupling between dopamine and excitatory amino acid systems in both regions. Thus, pharmacological targeting of excitatory amino acid systems could provide alternative or complementary treatment strategies for diseases involving dopaminergic systems in the striatum (e.g., Parkinson's disease) and cortex (e.g., schizophrenia).
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dopamine/physiology
- Dopamine Agonists/pharmacology
- Drug Design
- Gene Expression Regulation/drug effects
- Glutamic Acid/physiology
- In Situ Hybridization
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Neocortex/drug effects
- Neocortex/metabolism
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurotoxins/toxicity
- Oxidopamine/toxicity
- Parkinson Disease/drug therapy
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/physiology
- Receptors, Metabotropic Glutamate/biosynthesis
- Receptors, Metabotropic Glutamate/genetics
- Schizophrenia/drug therapy
- Stereotyped Behavior/drug effects
- Sympatholytics/toxicity
- Tegmentum Mesencephali/drug effects
- Tegmentum Mesencephali/metabolism
Collapse
|
16
|
Cacabelos R, Takeda M, Winblad B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease. Int J Geriatr Psychiatry 1999; 14:3-47. [PMID: 10029935 DOI: 10.1002/(sici)1099-1166(199901)14:1<3::aid-gps897>3.0.co;2-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Cacabelos
- Institute for CNS Disorders, EuroEspes Biomedical Research Center, La Coruña, Spain.
| | | | | |
Collapse
|
17
|
Chen Y, Engidawork E, Loidl F, Dell'Anna E, Goiny M, Lubec G, Andersson K, Herrera-Marschitz M. Short- and long-term effects of perinatal asphyxia on monoamine, amino acid and glycolysis product levels measured in the basal ganglia of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 104:19-30. [PMID: 9466704 DOI: 10.1016/s0165-3806(97)00131-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of perinatal asphyxia on levels of dopamine (DA) and its metabolites, amino acids and glycolysis products, measured in tissue samples from substantia nigra (SN), striatum, ventral tegmental area (VTA), and nucleus accumbens (Acb), were studied 80 min to 8 days after birth with high performance liquid chromatography (HPLC). Furthermore, extracellular levels of DA, amino acids and glycolysis products were measured with in vivo microdialysis in the striatum 40-140 min and 4 weeks after birth. Asphyxia was induced by immersing foetus-containing uterus horns, removed from ready-to-deliver Sprague-Dawley rats, in a water bath at 37 degrees C for various time periods (0-22 min). Spontaneous- and caesarean-delivered pups were used as controls. Perinatal asphyxia led to a decrease in the rate of survival, depending upon the length of the insult. In parallel, lactate (LACT) levels were increased with the length of the insult in all examined brain regions, monitored ex vivo or in vivo immediately after birth. DA, glutamate (GLU) and aspartate (ASP) levels were also increased, mainly in tissue samples taken from the mesencephalon. Only minor changes were observed in tissue samples taken from the telencephalon. However, in experiments with in vivo microdialysis, DA and GLU levels were increased following 20-21 and 21-22 min of perinatal asphyxia, but the effect of K+ depolarisation on extracellular DA and ASP levels was strongly diminished. DA and metabolites increased with development in SN and striatum, with no clear differences between control and asphyctic rats. However, 8 days after birth, it was found that DA levels were increased, alternatively decreased in mesencephalic and telencephalic regions following 20-21 and 21-22 min of perinatal asphyxia, periods associated with 60% and 90% of perinatal mortality, respectively. Furthermore, in microdialysis experiments performed 4 weeks after birth, extracellular DA and its metabolites levels were also increased, alternatively decreased in rats exposed to a 20-21 and 21-22 min perinatal asphyctic insult. In this last group, GLU and ASP levels were also decreased. Furthermore, the effect of K+ depolarisation on DA and ASP levels was strongly decreased in both asphyctic groups. Thus, perinatal asphyxia produces short- and long-term consequences in general metabolism, and induces region-specific changes in several neurotransmitter systems, mainly affecting meso-telencephalic DA systems.
Collapse
Affiliation(s)
- Y Chen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Biggs CS, Fowler LJ, Whitton PS, Starr MS. Extracellular levels of glutamate and aspartate in the entopeduncular nucleus of the rat determined by microdialysis: regulation by striatal dopamine D2 receptors via the indirect striatal output pathway? Brain Res 1997; 753:163-75. [PMID: 9125444 DOI: 10.1016/s0006-8993(97)00033-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study used intracerebral microdialysis to monitor the outputs of excitatory amino acids in the entopeduncular nucleus (EPN) of conscious or halothane-anaesthetized rats, in an attempt to obtain direct biochemical evidence for the theory that neuronal inputs to the EPN by the indirect striatal output pathway are glutamatergic and regulated primarily by dopamine D2 receptors in the striatum. In dopamine-intact animals, both glutamate and asparate were readily detectable in EPN dialysates. Recoveries of both amino acids were increased bilaterally by local perfusion with veratridine (100 microM, given under halothane anaesthesia), pretreatment with reserpine (4 mg/kg, i.p., 24 h beforehand), unilateral pretreatment of the medial forebrain bundle with 6-OHDA (8 microg/4 microl), and by the systemic (1 mg/kg, i.p.) or bilateral intrastriatal (7 microg/0.5 microl under halothane anaesthesia) administration of the dopamine D2 receptor antagonist haloperidol, but not raclopride (2 mg/kg, i.p.). The dopamine D1 receptor antagonist SCH 23390 was ineffective both systemically (0.25 mg/kg, i.p.) and intrastriatally (0.125 microg/0.5 microl/side), as also were control intrastriatal injections of saline (0.5 microl/side). By contrast, the dopamine D2/3 receptor agonist quinpirole (4 mg/kg, i.p.) lowered the outputs of glutamate and aspartate in the EPN of reserpine-treated and normal individuals, whilst the dopamine D1 receptor agonist SKF 38393 (30 mg/kg, i.p.) was inactive; however, both drugs caused behavioural arousal. The dopamine D2/3 receptor agonist RU 24213 reversed reserpine-induced akinesia, yet paradoxically increased glutamate (not aspartate) output in the EPN still further. The combination of benserazide (30 mg/kg, i.p.) and L-DOPA (50 mg/kg, i.p.) evoked intense contraversive circling in unilaterally 6-OHDA-lesioned rats, together with a drop in EPN glutamate (but not aspartate) output in the intact but not lesioned hemisphere. These results offer biochemical support for the hypothesis that excitatory neurones innervating the EPN via the indirect striatal output pathway, may utilise glutamate and/or aspartate as their neurotransmitter. They further endorse the view that the EPN receives information from striatal D2 and not D1 receptors via excitatory synapses, which become hyperactive following dopamine depletion or inactivation, and which are subject to control by the contralateral as well as by the ipsilateral hemisphere. The results obtained with RU 24213 and L-DOPA, however, indicate that dopaminergic behaviours can also occur independently of glutamate or aspartate release in the EPN.
Collapse
Affiliation(s)
- C S Biggs
- Department of Pharmacology, School of Pharmacy, London, UK
| | | | | | | |
Collapse
|