1
|
Feng XL, Zheng Y, Hao SS, Zhou GF, Chen PY. The Inducing Role and Molecular Basis of Bursal Hexapeptide (BHP) on Avian Immature B Cell. Protein Pept Lett 2019; 26:348-356. [PMID: 30816077 DOI: 10.2174/0929866526666190228141650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Bursa of Fabricius is an acknowledged central humoral immune organ unique to birds, which provides an ideal research model on the immature B cell development. OBJECTIVE In this article, our motivation is to study the role on sIgM and establish the molecular basis and functional processes of Bursal Hexapeptide (BHP) in avian immature B cells DT40 cell lines. METHODS In this article, we detected the expressions of sIgM mRNA with qPCR in DT40 cells with BHP treatment, and investigated the gene expression profiles of BHP-treated DT40 cells, employing microarray analyses. Also, to validate the differentially expressed genes, we performed KEGG pathway and Gene Ontology analysis in the BHP-treated DT40 cells. Finally, we comparatively analyzed the similar regulated genes and their involved immune functional processes between DT40 cell and mouse immature B cell line WEHI231 cell with BHP treatment. RESULTS Following the proposed framework, we proved that the BHP enhanced the mRNA expression levels of IgM in DT40 cells, and induced 460 upregulated genes and 460 downregulated genes in BHP-treated DT40 cells. The pathway analysis showed that the differentially regulated genes in DT40 cell line with BHP treatment were involved in 12 enrichment pathways, in which Toll-like receptor signaling pathway was the vital pathways, and cytokine-cytokine receptor interaction and Jak-STAT signaling pathway were another two important pathways in BHP-treated DT40 cells. Moreover, BHP induced the immune related biological processes in BHP-treated DT40 cells, including T cell related, cytokine related, lymphocyte related, and innate immune response GO terms. Finally, the comparatively analysis showed that there were two downregulated genes GATA3 and IFNG to be found co-existed among the differentially expressed genes in BHP-treated DT40 cell and WEHI231 cells, which shared some same immune related functional processes in both cell lines. CONCLUSION After the applying the framework, we proved the inducing roles and the gene expression profiles of BHP on avian immature B cells, and verified some molecular basis from the KEGG and GO analysis. These results provided the insight for mechanism on immature B cell differentiation, and offer the essential direction for the vaccine improvement.
Collapse
Affiliation(s)
- Xiu Li Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zheng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Shan Hao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang Fang Zhou
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Pu Yan Chen
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Varney ME, Boehm DT, DeRoos K, Nowak ES, Wong TY, Sen-Kilic E, Bradford SD, Elkins C, Epperly MS, Witt WT, Barbier M, Damron FH. Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics Naïve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice. Front Immunol 2018; 9:2376. [PMID: 30405604 PMCID: PMC6200895 DOI: 10.3389/fimmu.2018.02376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response.
Collapse
Affiliation(s)
- Melinda E Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Katherine DeRoos
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Evan S Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Shebly D Bradford
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Cody Elkins
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S Epperly
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
3
|
PBEF/NAMPT/visfatin: a promising drug target for treating rheumatoid arthritis? Future Med Chem 2012; 4:751-69. [PMID: 22530639 DOI: 10.4155/fmc.12.34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NAMPT, also known as pre-B-cell colony-enhancing factor and visfatin, has been proposed to be involved in preventing apoptosis in cancer cells and, as such, has received a great deal of attention in recent years and stimulated the development to specific inhibitors for treating cancer. The role of NAMPT inhibitors as potential therapeutic agents for other diseases has not been studied extensively. Here, we describe their applicability for treating rheumatoid arthritis. We summarize current knowledge of NAMPT expression in healthy and diseased tissues, thereafter, we focus on pathological mechanisms relevant to rheumatoid arthritis that involve the NAMPT pathway and review the current status of NAMPT inhibitors being evaluated in clinical trials.
Collapse
|
4
|
Bienertová-Vašků J, Bienert P, Zlámal F, Tomandl J, Tomandlová M, Dostálová Z, Vašků A. Visfatin is secreted into the breast milk and is correlated with weight changes of the infant after the birth. Diabetes Res Clin Pract 2012; 96:355-61. [PMID: 21741723 DOI: 10.1016/j.diabres.2011.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/24/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Visfatin is a recently identified adipokine with numerous metabolic and immunoregulatory properties that has been implicated in the regulation of the white adipose tissue (WAT) and significant changes in visfatin levels were reported during pregnancy. The aim of the study was to investigate dynamics of visfatin levels in maternal serum and human breast milk during a 180-d period after the delivery. MATERIALS AND METHODS : Breast milk and venous blood samples were obtained from 24 healthy lactating women with uncomplicated, physiological pregnancy and appropriate-for-gestational age neonates and serum-milk sample duos were collected at the time of birth, at the 1-3, 12-14, 28-30, 88-90 and 178-180 postpartum. RESULTS Our study demonstrates that (1) visfatin is abundantly secreted into breast milk in humans, reaching approx. 100× higher concentrations compared to maternal serum; (2) visfatin concentrations in maternal serum show significant variations after the delivery and (3) visfatin concentration in colostrum could be used for prediction of the subsequent weight development (less/more severe weight loss during first 3 days after the birth) of the infant. DISCUSSION Our data suggest that visfatin could play an important role in regulation of adiposity of the infant after the birth.
Collapse
|
5
|
Zhang LQ, Heruth DP, Ye SQ. Nicotinamide Phosphoribosyltransferase in Human Diseases. ACTA ACUST UNITED AC 2011; 3:13-25. [PMID: 22140607 DOI: 10.4172/1948-593x.1000038] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) was first reported as a pre-B-cell colony enhancing factor in 1994 with little notice, but it has received increasing attention in recent years due to accumulating evidence indicating that NAMPT is a pleiotropic protein such as a growth factor, a cytokine, an enzyme and a visfatin. Now, NAMPT has been accepted as an official name of this protein. Because of NAMPT's multiple functions in a variety of physiological processes, their dysregulations have been implicated in the pathogenesis of a number of human diseases or conditions such as acute lung injury, aging, atherosclerosis, cancer, diabetes, rheumatoid arthritis and sepsis. This review will cover the current understanding of NAMPT's structure and functions with an emphasis on recent progress of nicotinamide phosphoribosyltransferase's pathological roles in various human diseases and conditions. Future directions on exploring its Terra incognita will be offered in the end.
Collapse
Affiliation(s)
- Li Qin Zhang
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, University of Missouri School of Medicine, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
6
|
Autocrine Regulation of Interferon γ in Mesenchymal Stem Cells Plays a Role in Early Osteoblastogenesis. Stem Cells 2009; 27:550-8. [DOI: 10.1634/stemcells.2008-0886] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Hong SB, Huang Y, Moreno-Vinasco L, Sammani S, Moitra J, Barnard JW, Ma SF, Mirzapoiazova T, Evenoski C, Reeves RR, Chiang ET, Lang GD, Husain AN, Dudek SM, Jacobson JR, Ye SQ, Lussier YA, Garcia JGN. Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury. Am J Respir Crit Care Med 2008; 178:605-17. [PMID: 18658108 DOI: 10.1164/rccm.200712-1822oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE We previously demonstrated pre-B-cell colony enhancing factor (PBEF) as a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility. OBJECTIVES To explore mechanistic participation of PBEF in ALI and ventilator-induced lung injury (VILI). METHODS Two models of VILI were utilized to explore the role of PBEF using either recombinant PBEF or PBEF(+/-) mice. MEASUREMENTS AND MAIN RESULTS Initial in vitro studies demonstrated recombinant human PBEF (rhPBEF) as a direct rat neutrophil chemotactic factor with in vivo studies demonstrating marked increases in bronchoalveolar lavage (BAL) leukocytes (PMNs) after intratracheal injection in C57BL/6J mice. These changes were accompanied by increased BAL levels of PMN chemoattractants (KC and MIP-2) and modest increases in lung vascular and alveolar permeability. We next explored the potential synergism between rhPBEF challenge (intratracheal) and a model of limited VILI (4 h, 30 ml/kg tidal volume) and observed dramatic increases in BAL PMNs, BAL protein, and cytokine levels (IL-6, TNF-alpha, KC) compared with either challenge alone. Gene expression profiling identified induction of ALI- and VILI-associated gene modules (nuclear factor-kappaB, leukocyte extravasation, apoptosis, Toll receptor pathways). Heterozygous PBEF(+/-) mice were significantly protected (reduced BAL protein, BAL IL-6 levels, peak inspiratory pressures) when exposed to a model of severe VILI (4 h, 40 ml/kg tidal volume) and exhibited significantly reduced expression of VILI-associated gene expression modules. Finally, strategies to reduce PBEF availability (neutralizing antibody) resulted in significant protection from VILI. CONCLUSIONS These studies implicate PBEF as a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.
Collapse
Affiliation(s)
- Sang-Bum Hong
- Department of Medicine, University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, W604, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ludlow LE, Purton LE, Klarmann K, Gough DJ, Hii LL, Trapani JA, Keller JR, Clarke CJ, Johnstone RW. The Role of p202 in Regulating Hematopoietic Cell Proliferation and Differentiation. J Interferon Cytokine Res 2008; 28:5-11. [DOI: 10.1089/jir.2007.0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Louise E. Ludlow
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
- Current address: Department of Medicine and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, and Department of Medicine, Evanston Northwestern Healthcare, Evanston, IL, 60208
| | - Louise E. Purton
- Stem Cell Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Current address: Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114
| | - Kim Klarmann
- Basic Research Program, SAIC-Inc. Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201
| | - Daniel J. Gough
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
- Current address: New York University School of Medicine, New York, NY 10016
| | - Linda L. Hii
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Joseph A. Trapani
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Jonathan R. Keller
- Basic Research Program, SAIC-Inc. Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201
| | - Christopher J.P. Clarke
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Ricky W. Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
9
|
MacLaren R, Cui W, Cianflone K. Visfatin expression is hormonally regulated by metabolic and sex hormones in 3T3-L1 pre-adipocytes and adipocytes. Diabetes Obes Metab 2007; 9:490-7. [PMID: 17587391 DOI: 10.1111/j.1463-1326.2006.00625.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM The novel adipokine visfatin has 'insulin-mimicking' effects and is increased in models of diet-induced obesity, but factors that regulate visfatin have not been fully elucidated. METHODS In order to determine visfatin regulation in adipocyte development and metabolism, as well as in pathophysiological conditions related to metabolic syndrome, endogenous visfatin expression was measured in 3T3-L1 pre-adipocytes and adipocytes using real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR). RESULTS A marked increase in visfatin expression was observed during differentiation, with a 2.2-fold increase between preconfluent and 2-day confluent cells even before differentiation was initiated. A further 4.1-fold increase was induced from day 0 to day 9 of differentiation (overall ninefold). Overnight incubation with dexamethasone (10(-8) to 10(-2) M) increased visfatin expression in both pre-adipocytes (1.5- to 3.3-fold, p < 0.05) and adipocytes (1.9-fold, p < 0.01). All other treatments decreased visfatin expression. In pre-adipocytes, visfatin expression decreased by 23% at a concentration of 1 microM insulin, 15% at 1-15 nM T3, 15% at 10 nM-1 microM progesterone, 33-44% at 10 nM-1 microM testosterone, 50% with palmitate and 30% with oleate (p < 0.05 for all). In adipocytes, insulin had a much greater effect, decreasing visfatin by 77% at 100 nM (p < 0.01), whereas oleate and sex hormones did not affect visfatin expression. However, tumor necrosis factor alpha, which had no effect on pre-adipocytes, significantly decreased visfatin in adipocytes by 26% at 10 ng/ml (p < 0.05). Interestingly, the thiazolidinedione (TZD) rosiglitizone also decreased visfatin by 28% at a concentration of 1 microM (p < 0.01). CONCLUSION In summary, while the mechanism of visfatin action remains to be elucidated, the clear effects of multiple hormones on visfatin expression support a physiological role.
Collapse
Affiliation(s)
- R MacLaren
- Mike Rosenbloom Laboratory for Cardiovascular Research, McGill University Health Centre, Montreal, Canada
| | | | | |
Collapse
|
10
|
Wang X, Rosa AJM, Oliverira HN, Rosa GJM, Guo X, Travnicek M, Girshick T. Transcriptome of local innate and adaptive immunity during early phase of infectious bronchitis viral infection. Viral Immunol 2007; 19:768-74. [PMID: 17201672 DOI: 10.1089/vim.2006.19.768] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To understand the mechanistic basis of local innate and adaptive immunity against infectious bronchitis virus (IBV) at the molecular level, we examined the gene transcription profile of tracheal epithelial layers 3 d after infection of chickens with an attenuated IBV-Massachusetts strain. Results suggested that the transcription levels of 365 genes were either upregulated or downregulated (2-fold and higher) after IBV infection. Among the upregulated 250 genes, 25 were directly immune-related genes. These upregulated immune response genes included TLR2, TLR3, interferon-induced antiviral genes (Mx), and genes responsible for cytotoxic T cell killing such as Fas antigen and granzyme-A. Overall, a diversity of innate immunity and helper T cell type 1 (Th1)-biased adaptive immunity are activated in the host's early defense against IBV invasion, and they are responsible for the rapid clearance of virus from the local infection.
Collapse
Affiliation(s)
- Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Pilz S, Mangge H, Obermayer-Pietsch B, März W. Visfatin/pre-B-cell colony-enhancing factor: a protein with various suggested functions. J Endocrinol Invest 2007; 30:138-44. [PMID: 17392604 DOI: 10.1007/bf03347412] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pre-B-cell colony-enhancing factor (PBEF) was recently found in high levels in visceral fat, and was therefore renamed visfatin. This new adipocytokine exerts insulin-mimetic effects in mice and in cultured cells by binding to and activating the insulin receptor. Despite some recent studies on this topic, the proposed role of visfatin in metabolism remains largely unknown. Initially, PBEF/visfatin was discovered as a cytokine for the differentiation of B-cells. Pre-B-cell colony-enhancing factor was also shown to inhibit apoptosis of neutrophils in sepsis and was discussed as a novel biomarker for acute lung injury (ALI). Although PBEF is missing a signal sequence, its secretion and function as a molecule involved in the regulation of inflammatory processes was reported in several studies. Investigations of PBEF/visfatin in gestational membranes suggest a function in the physiologic and pathologic pathways leading to labor. Furthermore, it was found upregulated in colorectal cancer and was brought into connection with the regulation of the cell cycle. Intra-cellular, PBEF/visfatin acts as a cytosolic enzyme involved in nicotinamide adenine dinucleotide (NAD) synthesis. This activity was shown to be important for vascular smooth muscle cell (SMC) maturation, indicating a possible involvement in vascular pathology. The important physiologic role of PBEF/visfatin is also underlined by its evolutionary highly conserved gene in different species. This review summarizes the current knowledge of the various functions of PBEF/visfatin towards involvements in pathophysiology of several diseases.
Collapse
Affiliation(s)
- S Pilz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.
| | | | | | | |
Collapse
|
12
|
Bourdeau A, Dubé N, Heinonen KM, Théberge JF, Doody KM, Tremblay ML. TC-PTP-deficient bone marrow stromal cells fail to support normal B lymphopoiesis due to abnormal secretion of interferon-{gamma}. Blood 2007; 109:4220-8. [PMID: 17234741 DOI: 10.1182/blood-2006-08-044370] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of the Jak/Stat cytokine signaling pathway. Our study shows that the absence of TC-PTP leads to an early bone marrow B-cell deficiency characterized by hindered transition from the pre-B cell to immature B-cell stage. This phenotype is intrinsic to the B cells but most importantly due to bone marrow stroma abnormalities. We found that bone marrow stromal cells from TC-PTP(-/-) mice have the unique property of secreting 232-890 pg/mL IFN-gamma. These high levels of IFN-gamma result in 2-fold reduction in mitotic index on IL-7 stimulation of TC-PTP(-/-) pre-B cells and lower responsiveness of IL-7 receptor downstream Jak/Stat signaling molecules. Moreover, we noted constitutive phosphorylation of Stat1 in those pre-B cells and demonstrated that this was due to soluble IFN-gamma secreted by TC-PTP(-/-) bone marrow stromal cells. Interestingly, culturing murine early pre-B leukemic cells within a TC-PTP-deficient bone marrow stroma environment leads to a 40% increase in apoptosis in these malignant cells. Our results unraveled a new role for TC-PTP in normal B lymphopoiesis and suggest that modulation of bone marrow microenvironment is a potential therapeutic approach for selected B-cell leukemia.
Collapse
Affiliation(s)
- Annie Bourdeau
- McGill Cancer Centre, McGill University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Nowell MA, Richards PJ, Fielding CA, Ognjanovic S, Topley N, Williams AS, Bryant-Greenwood G, Jones SA. Regulation of pre-B cell colony-enhancing factor by STAT-3-dependent interleukin-6 trans-signaling: implications in the pathogenesis of rheumatoid arthritis. ACTA ACUST UNITED AC 2006; 54:2084-95. [PMID: 16802343 DOI: 10.1002/art.21942] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To determine whether interleukin-6 (IL-6) trans-signaling directs the expression of pre-B cell colony-enhancing factor (PBEF) in vitro and in vivo. METHODS Complementary DNA from rheumatoid arthritis (RA) synovial fibroblasts treated with IL-6 and soluble IL-6 receptor (sIL-6R) was used to probe a cytokine microarray. PBEF regulation by the IL-6-related cytokines, IL-6, sIL-6R, oncostatin M (OSM), IL-11, and leukemia inhibitory factor (LIF) was determined by reverse transcription-polymerase chain reaction analysis. IL-6-mediated STAT-3 regulation of PBEF was determined using a cell-permeable STAT-3 inhibitor peptide. Antigen-induced arthritis (AIA) was induced in wild-type (IL-6(+/+)) and IL-6-deficient (IL-6(-/-)) mice. PBEF and STAT were detected by immunohistochemistry, immunoblotting, and electrophoretic mobility shift assay. Synovial levels of PBEF were quantified by enzyme immunoassay. RESULTS IL-6 trans-signaling regulated PBEF in a STAT-3-dependent manner. In addition, PBEF was regulated by the IL-6-related cytokine OSM, but not IL-11 or LIF. Flow cytometric analysis of the IL-6-related cognate receptors suggested that OSM regulates PBEF via its OSM receptor beta and not its LIF receptor. The involvement of PBEF in arthritis progression was confirmed in vivo, where induction of AIA resulted in a 4-fold increase in the synovial expression of PBEF. In contrast, little or no change was observed in IL-6(-/-) mice, in which the inflammatory infiltrate was markedly reduced and synovial STAT-1/3 activity was also impaired. Analysis of human RA synovial tissue confirmed that PBEF immunolocalized in apical synovial membrane cells, endothelial cells, adipocytes, and lymphoid aggregates. Synovial fluid levels of PBEF were significantly higher in RA patients than in osteoarthritis patients. CONCLUSION Experiments presented herein demonstrate that PBEF is regulated via IL-6 trans-signaling and the IL-6-related cytokine OSM. PBEF is also actively expressed during arthritis. Although these data confirm an involvement of PBEF in disease progression, the consequence of its action remains to be determined.
Collapse
Affiliation(s)
- Mari A Nowell
- Medical Biochemistry and Immunology, Tenovus Building, School of Medicine, Heath Park Campus, Cardiff University, Cardiff CF14 4XN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kang JH, Kim HT, Choi MS, Lee WH, Huh TL, Park YB, Moon BJ, Kwon OS. Proteome analysis of human monocytic THP-1 cells primed with oxidized low-density lipoproteins. Proteomics 2006; 6:1261-73. [PMID: 16402358 DOI: 10.1002/pmic.200500290] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Native low-density lipoprotein (LDL) and oxidized LDL (oxLDL) possess a wide variety of biological properties, and play a central role in atherogenesis. In this study, we used a proteomic analysis of human monocyte THP-1 cells induced with oxLDL or with LDL, to identify proteins potentially involved in atherosclerotic processes. Of the 2500 proteins detected, 93 were differentially expressed as a result of priming with LDL or oxLDL. The proteins were unambiguously identified by comparing the masses of their tryptic peptides with those of all known proteins using MALDI-TOF MS and the NCBI database. The largest differences in expression were observed for vimentin (94-fold increase), meningioma-expressed antigen 6 (48-fold increase), serine/threonine protein phosphatase 2A (40-fold increase), and beta-1,3-galactosyltransferase (15-fold increase). In contrast, the abundance of an unnamed protein product and phosphogluconate dehydrogenase decreased 30-fold and 25-fold, respectively. The expression of some selected proteins was confirmed by Western blot and RT-PCR analyses. The proteins identified in this study are attractive candidates for further biomarker research. This description of the altered protein profiles induced by oxLDL in human monocytes will support functional studies of the macrophage-derived foam cells involved in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jeong Han Kang
- Department of Biochemistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L, Higuchi ML, Koyama NS, Silva JS, Kalil J, Liew CC. Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas' disease cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:305-13. [PMID: 16049318 PMCID: PMC1603558 DOI: 10.1016/s0002-9440(10)62976-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2005] [Indexed: 01/23/2023]
Abstract
Chronic Chagas' disease cardiomyopathy is a leading cause of congestive heart failure in Latin America, affecting more than 3 million people. Chagas' cardiomyopathy is more aggressive than other cardiomyopathies, but little is known of the molecular mechanisms responsible for its severity. We characterized gene expression profiles of human Chagas' cardiomyopathy and dilated cardiomyopathy to identify selective disease pathways and potential therapeutic targets. Both our customized cDNA microarray (Cardiochip) and real-time reverse transcriptase-polymerase chain reaction analysis showed that immune response, lipid metabolism, and mitochondrial oxidative phosphorylation genes were selectively up-regulated in myocardial tissue of the tested Chagas' cardiomyopathy patients. Interferon (IFN)-gamma-inducible genes represented 15% of genes specifically up-regulated in Chagas' cardiomyopathy myocardial tissue, indicating the importance of IFN-gamma signaling. To assess whether IFN-gamma can directly modulate cardio-myocyte gene expression, we exposed fetal murine cardiomyocytes to IFN-gamma and the IFN-gamma-inducible chemokine monocyte chemoattractant protein-1. Atrial natriuretic factor expression increased 15-fold in response to IFN-gamma whereas combined IFN-gamma and monocyte chemoattractant protein-1 increased atrial natriuretic factor expression 400-fold. Our results suggest IFN-gamma and chemokine signaling may directly up-regulate cardiomyocyte expression of genes involved in pathological hypertrophy, which may lead to heart failure. IFN-gamma and other cytokine pathways may thus be novel therapeutic targets in Chagas' cardiomyopathy.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Harashima A, Matsuo Y, Drexler HG, Okochi A, Motoda R, Tanimoto M, Orita K. Transcription factor expression in B-cell precursor-leukemia cell lines: preferential expression of T-bet. Leuk Res 2005; 29:841-8. [PMID: 15927679 DOI: 10.1016/j.leukres.2004.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
A number of transcription factors (TFs) have been reported that play crucial roles in hematopoiesis. However, only little is known about how these factors are involved in the mechanisms of hematopoietic development and lineage commitment. To investigate the roles of TFs in human B-cell precursors (BCPs), the present study analyzed the expression of the following 16 hematopoietic TFs: AML1, C/EBPalpha, C/EBPbeta, C/EBPgamma, C/EBPepsilon, E2A, Ets-1, GATA-1, GATA-2, GATA-3, Ikaros, IRF-1, Pax5, PU.1, T-bet and TCF-1 in 30 human BCP-leukemia cell lines. All BCP-leukemia cell lines were found to be positive for the expression of AML1, C/EBPgamma, E2A, Ets-1, IRF-1, Pax5 and PU.1 at the mRNA level. The mRNA expression of C/EBPalpha, C/EBPbeta, C/EBPepsilon, GATA-2, Ikaros, T-bet and TCF-1 was detected in 2 to 29 of the cell lines. Eight BCP-cell lines showed positivity for the dominant negative Ikaros isoform Ik6, while others were positive for expression of Ik1, 2, 3 and 4. GATA-1 and GATA-3 were universally negative. The expression of C/EBPalpha, PU.1 and T-bet was positive at the protein level in five, 29 and four out of 30 BCP-cell lines, respectively. Cell lines were stimulated with interleukin (IL)-7 and/or interferon (IFN)-gamma to investigate the regulation of TF expression. T-bet was clearly induced in the two cell lines NALM-19 and NALM-29 after stimulation. C/EBPbeta and IRF-1 were up-regulated in both cell lines and TCF-1 was down-regulated in NALM-19. No significant changes were observed for the other 12 TFs. The present report could provide useful information in the study of the role of TFs on normal and malignant human BCPs.
Collapse
Affiliation(s)
- Akira Harashima
- Fujisaki Cell Center, Hayashibara Biochemical Labs Inc., 675-1 Fujisaki, Okayama 702-8006, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ye SQ, Simon BA, Maloney JP, Zambelli-Weiner A, Gao L, Grant A, Easley RB, McVerry BJ, Tuder RM, Standiford T, Brower RG, Barnes KC, Garcia JGN. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med 2004; 171:361-70. [PMID: 15579727 DOI: 10.1164/rccm.200404-563oc] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although the pathogenic and genetic basis of acute lung injury (ALI) remains incompletely understood, the identification of novel ALI biomarkers holds promise for unique insights. Expression profiling in animal models of ALI (canine and murine) and human ALI detected significant expression of pre-B-cell colony-enhancing factor (PBEF), a gene not previously associated with lung pathophysiology. These results were validated by real-time polymerase chain reaction and immunohistochemistry studies, with PBEF protein levels significantly increased in both bronchoalveolar lavage fluid and serum of ALI models and in cytokine- or cyclic stretch-activated lung microvascular endothelium. We genotyped two PBEF single-nucleotide polymorphisms (SNPs) in a well characterized sample of white patients with sepsis-associated ALI, patients with severe sepsis, and healthy subjects and observed that carriers of the haplotype GC from SNPs T-1001G and C-1543T had a 7.7-fold higher risk of ALI (95% confidence interval 3.01-19.75, p < 0.001). The T variant from the SNP C-1543T resulted in a significant decrease in the transcription rate (1.8-fold; p < 0.01) by the reporter gene assay. Together, these results strongly indicate that PBEF is a potential novel biomarker in ALI and demonstrate the successful application of robust genomic technologies in the identification of candidate genes in complex lung disease.
Collapse
Affiliation(s)
- Shui Q Ye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, MFL Building/Center Tower #664, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
By eliciting host antimicrobial programs in nearly all nucleated cells interferons (IFNs) help orchestrate the innate immune response of mammals to a diverse array of microbial pathogens. Recent work has highlighted the complexity of this transcriptional repertoire and the emergence of several families of IFN-inducible guanosine 5' triphosphatases (GTPases)--p47, guanylate-binding protein (GBP), Mx and very large inducible GTPases (VLIG)--that subsume pathogen-specific roles. Such specificity arises from a combination of both the type and timing of inductive stimuli, target-cell population, subcellular binding partners and the infectious agent encountered. Evolution of different GTPase families to combat compartmentalized versus cytosolic pathogens reveals a hitherto unexpected level of intracellular discrimination during vertebrate host defense.
Collapse
Affiliation(s)
- John D MacMicking
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
19
|
Fellenberg F, Hartmann TB, Dummer R, Usener D, Schadendorf D, Eichmüller S. GBP-5 Splicing Variants: New Guanylate-Binding Proteins with Tumor-Associated Expression and Antigenicity. J Invest Dermatol 2004; 122:1510-7. [PMID: 15175044 DOI: 10.1111/j.0022-202x.2004.22613.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have identified a new gene, gbp-5, with high homology to the guanylate binding proteins (GBP) belonging to the GTPase superfamily including the ras gene. gbp-5 is transcribed at least into three splicing variants (gbp-5a, -5b, and -5ta) leading to two different proteins (GBP-5a/b, GBP-5ta). GBP-5ta is C-terminally truncated by 97aa and has therefore lost its isoprenylation site. Although RT-PCR results indicated expression of GBP-5 members in selected normal tissues, western blotting using two newly generated antibodies revealed that expression of both proteins is restricted to peripheral blood monocytes with GBP-5ta at lower levels. In contrast, cutaneous T-cell lymphoma (CTCL) tumor tissues (seven of seven) were positive solely for GBP-5ta, and four of four CTCL cell lines expressed both proteins. Eight of nine melanoma cell lines expressed GBP-5a/b and four of nine additionally low levels of GBP-5ta. SEREX retesting using CTCL sera indicated a higher immunogenicity for GBP-5ta (nine of 16) than for GBP-5a/b (two of 11). Treatment of CTCL cell lines with interferon-gamma did not alter protein expression of GBP-5ta or GBP-5a/b. The restricted expression pattern of both GBP-5ta and GBP-5a/b and the pivotal role of many known members of the GTP-binding proteins in proliferation and differentiation suggest possible cancer-related functions of gbp-5.
Collapse
|
20
|
Banno T, Adachi M, Mukkamala L, Blumenberg M. Unique Keratinocyte-Specific Effects of Interferon-γ that Protect Skin from Viruses, Identified Using Transcriptional Profiling. Antivir Ther 2003. [DOI: 10.1177/135965350300800616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interferon (IFN)-γ, is a multifunctional, immunomodulatory cytokine with cell type-specific antiviral activities, particularly important in skin, where it is implicated in many diseases ranging from warts to psoriasis and cancer. Since epidermis is our first line of defence against many viruses, we investigated the molecular processes regulated by IFN-γ in keratinocytes using DNA microarrays. We identified the IFN-γ-regulated keratinocyte-specific genes and antiviral processes. Exclusively in keratinocytes, IFN-γ-induced tight junction proteins, presumably to deny viruses paracellular routes of infection. Furthermore, differing from published data, we find that IFN-γ suppressed the expression of keratinocytes differentiation markers including desmosomal proteins, cornified envelope components and suprabasal cytokeratins. Inhibition of differentiation may interfere with the epidermal tropism of viruses that require differentiating cells for growth, for example, papillomaviruses. As in other cell types, IFN-γ induced HLA, cell adhesion and proteasome proteins, facilitating leukocyte attraction and antigen-presentation by keratinocytes. IFN-γ also induced chemokine/cytokines specific for mononuclear cells. IFN-γ suppressed the expression of over 100 genes responsible for cell cycle, DNA replication and RNA metabolism, thereby shutting down many nuclear processes and denying viruses a healthy cell in which to replicate. Thus, uniquely in keratinocytes, IFN-γ initiates a well-organized molecular programme boosting host antiviral defences, obstructing viral entry, suppressing cell proliferation and impeding differentiation.
Collapse
Affiliation(s)
- Tomohiro Banno
- Departments of Dermatology, Tsukuba University, Tennodai, Ibaraki, Japan
- Dermatology Departments, the Institute of Clinical Medicine, Tsukuba University, Tennodai, Ibaraki, Japan
| | - Makoto Adachi
- Departments of Dermatology, Tsukuba University, Tennodai, Ibaraki, Japan
- Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Lakshmi Mukkamala
- Departments of Dermatology, Tsukuba University, Tennodai, Ibaraki, Japan
| | - Miroslav Blumenberg
- Departments of Dermatology, Tsukuba University, Tennodai, Ibaraki, Japan
- Biochemistry, NYU School of Medicine, New York, NY, USA
- The Cancer Institute, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Wieland SF, Vega RG, Müller R, Evans CF, Hilbush B, Guidotti LG, Sutcliffe JG, Schultz PG, Chisari FV. Searching for interferon-induced genes that inhibit hepatitis B virus replication in transgenic mouse hepatocytes. J Virol 2003; 77:1227-36. [PMID: 12502840 PMCID: PMC140855 DOI: 10.1128/jvi.77.2.1227-1236.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously shown that alpha/beta interferon (IFN-alpha/beta) and IFN-gamma inhibit hepatitis B virus (HBV) replication noncytopathically in the livers of HBV transgenic mice and in hepatocyte cell lines derived from these mice. The present study was designed to identify transcriptionally controlled hepatocellular genes that are tightly associated with the inhibition of HBV replication and that might, therefore, mediate the antiviral effect of these cytokines. Twenty-nine genes were identified, many of which have known or potential antiviral activity. Notably, multiple components of the immunoproteasome and ubiquitin-like proteins were strongly induced by both IFN-alpha/beta and IFN-gamma, as were a number of GTP-binding proteins, including GTPases with known antiviral activity, chemokines, signaling molecules, and miscellaneous genes associated with antigen processing, DNA-binding, or cochaperone activity and several expressed sequence tags. The results suggest that one or more members of this relatively small subset of genes may mediate the antiviral effect of IFN-alpha/beta and IFN-gamma against HBV. We have already exploited this information by demonstrating that the antiviral activity of IFN-alpha/beta and IFN-gamma is proteasome dependent.
Collapse
Affiliation(s)
- Stefan F Wieland
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Van Beijnum JR, Moerkerk PTM, Gerbers AJ, De Bruïne AP, Arends JW, Hoogenboom HR, Hufton SE. Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer. Int J Cancer 2002; 101:118-27. [PMID: 12209988 DOI: 10.1002/ijc.10584] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Genomic approaches are providing a wealth of information on differential gene expression in cancer. To identify the most interesting genes amongst the many identified, high-throughput methods for analysis of genes at the translational level are required. We have used a rapid method for the in vitro selection of antibodies to peptide antigens for the generation of probes to 5 gene products that we have found to be overexpressed in colorectal cancer. The rationale of our study was to select a non-immune phage displayed human antibody library on peptides designed from the coding regions of the gene sequences and to verify whether such antibodies would be suitable probes for the parental protein in immunohistochemical and Western blot analysis. After the generation of a profile of genes overexpressed in primary colorectal cancer (CRC) we selected 5 genes, Ese-3b, Fls353, PBEF, SPARC and Smad5 for a more detailed analysis using phage display-derived antibodies. For these 5 antigens we designed 14-20 amino acid peptides predicted to be exposed on the surface of the parental protein. Selection of a large phage displayed antibody library resulted in specific antibodies for 6 of 8 different peptides with between 2 and 15 different antibodies isolated per peptide. Of 20 antibodies tested, 2 antibodies recognized the putative parental protein from primary CRC tissue. An antibody specific for a PBEF-derived peptide (Fab/PBEF-D4) was shown to recognize a protein product of the expected molecular weight in Western blotting and showed overexpression in n = 6/8 matched tumor/normal protein lysates. Furthermore, in immunohistochemistry this antibody showed restricted staining of the tumor stromal compartment with no detectable staining of epithelial cells. The discovery that PBEF is overexpressed in cancer is unexpected given that the normal function of PBEF is as a cytokine required for the maturation of B cell precursors. We also report on the isolation of an antibody (Fab/SMAD-50) specific for a Smad5-derived peptide that showed cytoplasmic staining of epithelial cells in both CRC tumor and matched normal mucosa. Fab/SMAD-50 also bound to a group of proteins in Western blotting with molecular weights consistent with belonging to the Smad family. These antibodies may be suitable probes for further investigation of the roles of PBEF and Smad5 in cancer. The amenability of phage display to automation suggests that this approach may be developed for implementation on a genomics scale. Indeed, the large-scale generation of antibody probes that can be used to study protein expression in situ would be of great value in target validation for functional genomics.
Collapse
Affiliation(s)
- Judy R Van Beijnum
- Department of Pathology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Lacetera N, Franci O, Scalia D, Bernabucci U, Ronchi B, Nardone A. Effects on functions of ovine blood mononuclear cells for each of several fatty acids at concentrations found in plasma of healthy and ketotic ewes. Am J Vet Res 2002; 63:958-62. [PMID: 12118675 DOI: 10.2460/ajvr.2002.63.958] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess effects on functions of peripheral blood mononuclear cells (PBMC) obtained from ewes for each of several fatty acids represented in ovine plasma at concentrations mimicking those of ketotic or healthy ewes. SAMPLE POPULATION Blood samples obtained from 6 Sardinian ewes. PROCEDURE The PBMC were cultured in media that contained oleic (OA), palmitic (PA), stearic (SA), linoleic (LA), or palmitoleic (POA) acid at concentrations similar to those of ketotic or healthy ewes. Synthesis of DNA was stimulated by use of concanavalin A or pokeweed mitogen (PWM). Secretion of IgM was stimulated by use of PWM. RESULTS High concentrations (900, 450, and 225 micromol/L) of OA significantly inhibited DNA synthesis and IgM secretion of PBMC. Conversely, low concentrations (56 or 28 micromol/L) of OA significantly enhanced DNA synthesis of PBMC. High concentrations of PA (600, 300, 150, 75, 375, or 18.7 micromol/L) and SA (300, 150, or 75 micromol/L) significantly inhibited DNA synthesis of PBMC. High concentrations of PA (600, 300, 150, 75, 375, or 18.7 micromol/L) and SA (300, 150, 75, or 38 micromol/L) also significantly inhibited IgM secretion of PBMC. None of the concentrations of LA and POA affected PBMC functions. CONCLUSION AND CLINICAL RELEVANCE Impaired immunoresponsiveness of ketotic ewes is likely associated with an increase of plasma concentrations of OA, PA, or SA and not with that of LA or POA. At physiologic concentrations, single fatty acids are likely to participate in modulation of immunoresponsiveness by exerting suppressive or stimulatory effects on immune cells.
Collapse
Affiliation(s)
- Nicola Lacetera
- Dipartimento di Produzioni Animali, Università degli Studi della Tuscia, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|