1
|
Li P, Han M, Zhao X, Ren G, Mei S, Zhong C. Abnormal Epigenetic Regulations in the Immunocytes of Sjögren's Syndrome Patients and Therapeutic Potentials. Cells 2022; 11:1767. [PMID: 35681462 PMCID: PMC9179300 DOI: 10.3390/cells11111767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Sjögren's syndrome (SjS), characterized by keratoconjunctivitis sicca and dry mouth, is a common autoimmune disease, especially in middle-aged women. The immunopathogenesis of SjS is caused by the sequential infiltration of T and B cells into exocrine glands, including salivary and lacrimal glands. Effector cytokines produced by these immunocytes, such as interferons (IFNs), IL-17, IL-22, IL-21, IL-4, TNF-α, BAFF and APRIL, play critical roles in promoting autoimmune responses and inducing tissue damages. Epigenetic regulations, including DNA methylation, histone modification and non-coding RNAs, have recently been comprehensively studied during the activation of various immunocytes. The deficiency of key epigenetic enzymes usually leads to aberrant immune activation. Epigenetic modifications in T and B cells are usually found to be altered during the immunopathogenesis of SjS, and they are closely correlated with autoimmune responses. In particular, the important role of methylation in activating IFN pathways during SjS progression has been revealed. Thus, according to the involvement of epigenetic regulations in SjS, target therapies to reverse the altered epigenetic modifications in auto-responsive T and B cells are worthy of being considered as a potential therapeutic strategy for SjS.
Collapse
Affiliation(s)
- Peng Li
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Mengwei Han
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Xingyu Zhao
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Guanqun Ren
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Si Mei
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Chao Zhong
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| |
Collapse
|
2
|
Roy RK, Yadav R, Jain A, Tripathi V, Jain M, Singh S, Prakash H. Yin and yang of immunological memory in controlling infections: Overriding self defence mechanisms. Int Rev Immunol 2021; 41:240-252. [PMID: 33872093 DOI: 10.1080/08830185.2021.1912037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological memory is critical for host immunity and decisive for individual to respond exponentially to previously encountered infection. Both T and B cell memory are known to orchestrate immunological memory with their central and effector memory arms contributing in prolonged immunity/defence mechanisms of host. While central memory helps in maintaining prolonged immunity for a particular infection, effector memory helps in keeping local/seasonal infection in control. In addition to this, generation of long-lived plasma cells is pivotal for generating neutralizing antibodies which can enhance recall and B cell memory to control re-infection. In view of this, scaling up memory response is one of the major objectives for the expected outcome of vaccination. In this line, this review deals with the significance of memory cells, molecular pathways of their development, maintenance, epigenetic regulation and negative regulation in various infections. We have also highlighted the significance of both T and B cell memory responses in the vaccination approaches against range of infections which is not fully explored so far.[Box: see text].
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Gautam Buddha Nagar, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Sandhya Singh
- Amity Institute of Physiology and Allied Sciences, Amity University, Noida, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| |
Collapse
|
3
|
Tsai DY, Hung KH, Chang CW, Lin KI. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J Biomed Sci 2019; 26:64. [PMID: 31472685 PMCID: PMC6717636 DOI: 10.1186/s12929-019-0558-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Terminally differentiated B cell, the plasma cell, is the sole cell type capable of producing antibodies in our body. Over the past 30 years, the identification of many key molecules controlling B cell activation and differentiation has elucidated the molecular pathways for generating antibody-producing plasma cells. Several types of regulation modulating the functions of the important key molecules in B cell activation and differentiation add other layers of complexity in shaping B cell responses following antigen exposure in the absence or presence of T cell help. Further understanding of the mechanisms contributing to the proper activation and differentiation of B cells into antibody-secreting plasma cells may enable us to develop new strategies for managing antibody humoral responses during health and disease. Herein, we reviewed the effect of different types of regulation, including transcriptional regulation, post-transcriptional regulation and epigenetic regulation, on B cell activation, and on mounting memory B cell and antibody responses. We also discussed the link between the dysregulation of the abovementioned regulatory mechanisms and B cell-related disorders.
Collapse
Affiliation(s)
- Dong-Yan Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Kuo-Hsuan Hung
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Chia-Wei Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan. .,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Annunziata I, van de Vlekkert D, Wolf E, Finkelstein D, Neale G, Machado E, Mosca R, Campos Y, Tillman H, Roussel MF, Andrew Weesner J, Ellen Fremuth L, Qiu X, Han MJ, Grosveld GC, d'Azzo A. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nat Commun 2019; 10:3623. [PMID: 31399583 PMCID: PMC6689058 DOI: 10.1038/s41467-019-11568-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically. Genes related to lysosomal and autophagic systems are transcriptionally regulated by the Mit/TFE family of transcription factors. Here the authors show that MYC, in association with HDACs, suppresses the expression of lysosomal and autophagy genes by competing with the Mit/TFE transcription factors for occupancy of their target gene promoters.
Collapse
Affiliation(s)
- Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, 97074, Germany
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey Neale
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Eda Machado
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rosario Mosca
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yvan Campos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason Andrew Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Leigh Ellen Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xiaohui Qiu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Min-Joon Han
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Chang HC, Huang DY, Wu NL, Kannagi R, Wang LF, Lin WW. BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation. J Dermatol Sci 2018; 92:151-161. [DOI: 10.1016/j.jdermsci.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
|
6
|
Persky DO, Li H, Rimsza LM, Barr PM, Popplewell LL, Bane CL, Von Gehr A, LeBlanc M, Fisher RI, Smith SM, Friedberg JW. A phase I/II trial of vorinostat (SAHA) in combination with rituximab-CHOP in patients with newly diagnosed advanced stage diffuse large B-cell lymphoma (DLBCL): SWOG S0806. Am J Hematol 2018; 93:486-493. [PMID: 29266344 DOI: 10.1002/ajh.25010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023]
Abstract
Loss of major histocompatibility Class II expression (MHCII) in diffuse large B-cell lymphoma (DLBCL) correlates with decreased survival. MHCII transcription is in part regulated by histone acetylation. We tested the hypothesis that combination of histone deacetylase inhibitor (HDACI) with standard chemotherapy would improve outcomes in DLBCL in part through increased MHCII expression. S0806 was a single arm phase I/II trial of vorinostat given at 400 mg po daily on days 1-9 (subsequently amended to days 1-5 due to toxicity), combined with R-CHOP given on day 3 of a 21-day cycle for 8 cycles, with primary phase II endpoint of 2-year progression free survival (PFS). With 72 evaluable patients, at median follow up of 3 years, 2-year PFS estimate was 73%, and OS estimate was 86%. Considering that the regimen fell short of predefined efficacy improvement and was associated with high rates of febrile neutropenia (38%) and sepsis (19%), it cannot be recommended for general use. Consistent with our hypothesis, patients with low MCHII expression on S0806 had numerically superior outcomes compared to those from trial S0433 which did not use an HDACI, but the difference was not statistically significant. Current studies are focused on finding biomarkers of response to HDACI.
Collapse
Affiliation(s)
| | - Hongli Li
- SWOG Statistical Center; Seattle Washington
| | | | | | | | | | - Ann Von Gehr
- Kaiser Permanente NCORP/Kaiser Permanente San Jose; San Jose California
| | | | - Richard I. Fisher
- Fox Chase Cancer Center/Temple University School of Medicine; Philadelphia Pennsylvania
| | | | | |
Collapse
|
7
|
Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15:676-684. [PMID: 29375128 PMCID: PMC6123482 DOI: 10.1038/cmi.2017.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Collapse
|
8
|
Kim S, Lee Y, Kim S, Lee SJ, Heo PK, Kim S, Kwon YJ, Lee KW. Identification of Novel Human HDAC8 Inhibitors by Pharmacophore-based Virtual Screening and Density Functional Theory Approaches. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seokmin Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Yuno Lee
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Songmi Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Sang Jik Lee
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Phil Kyeong Heo
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Siu Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Yong Jung Kwon
- Department of Chemical Engineering; Kangwon National University; Chunchon 200-701 Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| |
Collapse
|
9
|
Roberts NA, Adams BD, McCarthy NI, Tooze RM, Parnell SM, Anderson G, Kaech SM, Horsley V. Prdm1 Regulates Thymic Epithelial Function To Prevent Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1250-1260. [PMID: 28701508 PMCID: PMC5544928 DOI: 10.4049/jimmunol.1600941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/10/2017] [Indexed: 01/10/2023]
Abstract
Autoimmunity is largely prevented by medullary thymic epithelial cells (TECs) through their expression and presentation of tissue-specific Ags to developing thymocytes, resulting in deletion of self-reactive T cells and supporting regulatory T cell development. The transcription factor Prdm1 has been implicated in autoimmune diseases in humans through genome-wide association studies and in mice using cell type-specific deletion of Prdm1 in T and dendritic cells. In this article, we demonstrate that Prdm1 functions in TECs to prevent autoimmunity in mice. Prdm1 is expressed by a subset of mouse TECs, and conditional deletion of Prdm1 in either Keratin 14- or Foxn1-expressing cells in mice resulted in multisymptom autoimmune pathology. Notably, the development of Foxp3+ regulatory T cells occurs normally in the absence of Blimp1. Importantly, nude mice developed anti-nuclear Abs when transplanted with Prdm1 null TECs, but not wild-type TECs, indicating that Prdm1 functions in TECs to regulate autoantibody production. We show that Prdm1 acts independently of Aire, a crucial transcription factor implicated in medullary TEC function. Collectively, our data highlight a previously unrecognized role for Prdm1 in regulating thymic epithelial function.
Collapse
Affiliation(s)
- Natalie A Roberts
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Brian D Adams
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Investigative Medicine Program, Yale University School of Medicine, New Haven, CT 06520
| | - Nicholas I McCarthy
- School of Immunity and Infection, Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Reuben M Tooze
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sonia M Parnell
- School of Immunity and Infection, Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- School of Immunity and Infection, Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Susan M Kaech
- Department of Immunobiology, Yale University, New Haven, CT 06520; and
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520;
- Department of Dermatology, Yale University, New Haven, CT 06520
| |
Collapse
|
10
|
Puvvada S, Li H, Rimsza LM, Bernstein SH, Fisher RI, LeBlanc M, Schmelz M, Glinsmann-Gibson B, Miller TP, Maddox AM, Friedberg JW, Smith SM, Persky DO. A phase II study of belinostat (PXD101) in relapsed and refractory aggressive B-cell lymphomas: SWOG S0520. Leuk Lymphoma 2016; 57:2359-69. [PMID: 26758422 PMCID: PMC5140034 DOI: 10.3109/10428194.2015.1135431] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in diffuse large B-cell lymphomas (DLBCL) have underscored the importance of tumor microenvironment in escaping host anti-tumor responses. One mechanism is loss of major histocompatibility Class II antigens (MHCII) associated with decreased tumor infiltrating T lymphocytes (TIL) and poor survival. Transcription of MHCII is controlled by CIITA which in turn is regulated by histone acetylation. In this study, we hypothesized that HDAC inhibition with belinostat increases MHCII, CIITA expression, TIL and improves patient outcomes. Primary objective was evaluation of toxicity and response. Twenty-two patients were enrolled for the study. Belinostat was well tolerated with mild toxicity. Two partial responses were observed at 5, 13 months after registration for an overall response rate (ORR) (95% CI) of 10.5% (1.3-33.1%), and three patients had stable disease for 4.7, 42.3+, and 68.4 + months with minimum 3-year follow-up. Included correlative studies support the hypothesis and serve as the basis for SWOG S0806 combining vorinostat with R-CHOP.
Collapse
Affiliation(s)
| | - Hongli Li
- SWOG Statistical Center, Seattle, WA
| | - Lisa M. Rimsza
- Department of Pathology, University of Arizona, Tucson, AZ
| | | | | | | | - Monika Schmelz
- Department of Pathology, University of Arizona, Tucson, AZ
| | | | | | | | | | | | | |
Collapse
|
11
|
Shen L, Orillion A, Pili R. Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 2016; 8:415-28. [PMID: 26950532 DOI: 10.2217/epi.15.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HDAC inhibitors (HDACIs) are anticancer agents being developed in preclinical and clinical settings due to their capacity to modulate gene expression involved in cell growth, differentiation and apoptosis, through modification of both chromatin histone and nonhistone proteins. Most HDACIs in clinical development have cytotoxic or cytostatic properties and their direct inhibitory effects on tumor cells are well documented. Numerous studies have revealed that HDACIs have potent immunomodulatory activity in tumor-bearing animals and cancer patients, providing guidance to apply these agents in cancer immunotherapies. Here, we summarize recent reports addressing the effects of HDACIs on tumor cell immunogenicity, and on different components of the host immune system. In addition, we discuss the complexity of the immunomodulatory activity of these agents, which depends on the class specificity of the HDACIs, different experimental settings and the target immune cell populations.
Collapse
Affiliation(s)
- Li Shen
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Ashley Orillion
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.,Genitourinary Program, Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Roberto Pili
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.,Genitourinary Program, Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
12
|
Kikuchi H, Nakayama M, Kawai C, Kuribayashi F, Mimuro H, Imajoh-Ohmi S, Nishitoh H, Takami Y, Nakayama T. Histone acetyltransferase p300/CBP-associated factor is an effective suppressor of secretory immunoglobulin synthesis in immature B cells. Microbiol Immunol 2016; 59:243-7. [PMID: 25644304 DOI: 10.1111/1348-0421.12237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/25/2015] [Accepted: 01/29/2015] [Indexed: 11/26/2022]
Abstract
The histone acetyltransferase p300/CBP-associated factor (PCAF) catalyzes acetylation of core histones and plays important roles in epigenetics by altering the chromatin structure in vertebrates. In this study, PCAF-deficient DT40 mutants were analyzed and it was found that PCAF participates in regulation of secretory IgM heavy chain (H-chain) synthesis. Remarkably, PCAF-deficiency causes an increase in the amount of secretory IgM H-chain mRNA, but not in that of IgM light chain and membrane-bound IgM H-chain mRNAs, resulting in dramatic up-regulation of the amount of secretory IgM protein. These findings suggest that PCAF regulates soluble antibody production and is thus an effective suppressor of secretory IgM H-chain synthesis.
Collapse
Affiliation(s)
- Hidehiko Kikuchi
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Smith SM, Carew NT, Milcarek C. RNA polymerases in plasma cells trav-ELL2 the beat of a different drum. World J Immunol 2015; 5:99-112. [DOI: 10.5411/wji.v5.i3.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
There is a major transformation in gene expression between mature B cells (including follicular, marginal zone, and germinal center cells) and antibody secreting cells (ASCs), i.e., ASCs, (including plasma blasts, splenic plasma cells, and long-lived bone marrow plasma cells). This significant change-over occurs to accommodate the massive amount of secretory-specific immunoglobulin that ASCs make and the export processes itself. It is well known that there is an up-regulation of a small number of ASC-specific transcription factors Prdm1 (B-lymphocyte-induced maturation protein 1), interferon regulatory factor 4, and Xbp1, and the reciprocal down-regulation of Pax5, Bcl6 and Bach2, which maintain the B cell program. Less well appreciated are the major alterations in transcription elongation and RNA processing occurring between B cells and ASCs. The three ELL family members ELL1, 2 and 3 have different protein sequences and potentially distinct cellular roles in transcription elongation. ELL1 is involved in DNA repair and small RNAs while ELL3 was previously described as either testis or stem-cell specific. After B cell stimulation to ASCs, ELL3 levels fall precipitously while ELL1 falls off slightly. ELL2 is induced at least 10-fold in ASCs relative to B cells. All of these changes cause the RNA Polymerase II in ASCs to acquire different properties, leading to differences in RNA processing and histone modifications.
Collapse
|
14
|
Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol 2015; 67:65-74. [DOI: 10.1016/j.biocel.2015.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 02/01/2023]
|
15
|
Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 2015; 562:8-15. [PMID: 25701602 DOI: 10.1016/j.gene.2015.02.045] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/25/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022]
Abstract
Nutrigenomics is an area of epigenomics that explores and defines the rapidly evolving field of diet-genome interactions. Lifestyle and diet can significantly influence epigenetic mechanisms, which cause heritable changes in gene expression without changes in DNA sequence. Nutrient-dependent epigenetic variations can significantly affect genome stability, mRNA and protein expression, and metabolic changes, which in turn influence food absorption and the activity of its constituents. Dietary bioactive compounds can affect epigenetic alterations, which are accumulated over time and are shown to be involved in the pathogenesis of age-related diseases such as diabetes, cancer, and cardiovascular disease. Histone acetylation is an epigenetic modification mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) critically involved in regulating affinity binding between the histones and DNA backbone. The HDAC-mediated increase in histone affinity to DNA causes DNA condensation, preventing transcription, whereas HAT-acetylated chromatin is transcriptionally active. HDAC and HAT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various diseases. The aim of this review was to evaluate the role of diet and dietary bioactive compounds on the regulation of HATs and HDACs in epigenetic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate, curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate can regulate HDAC and HAT activities and acetylation of histones and non-histone chromatin proteins, and their health benefits are thought to be attributed to these epigenetic mechanisms. The intake of dietary compounds that regulate epigenetic modifications can provide significant health effects and may prevent various pathological processes involved in the development of cancer and other life-threatening diseases.
Collapse
Affiliation(s)
- F Vahid
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - H Zand
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell and Molecular Science and Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E Nosrat-Mirshekarlou
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - R Najafi
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Hekmatdoost
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Good-Jacobson KL. Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifiers. Front Immunol 2014; 5:596. [PMID: 25477884 PMCID: PMC4237133 DOI: 10.3389/fimmu.2014.00596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/06/2014] [Indexed: 01/05/2023] Open
Abstract
Understanding the regulation of antibody production and B-cell memory formation and function is core to finding new treatments for B-cell-derived cancers, antibody-mediated autoimmune disorders, and immunodeficiencies. Progression from a small number of antigen-specific B-cells to the production of a large number of antibody-secreting cells is tightly regulated. Although much progress has been made in revealing the transcriptional regulation of B-cell differentiation that occurs during humoral immune responses, there are still many questions that remain unanswered. Recent work on the expression and roles of histone modifiers in lymphocytes has begun to shed light on this additional level of regulation. This review will discuss the recent advancements in understanding how humoral immune responses, in particular germinal centers and memory cells, are modulated by histone modifiers.
Collapse
Affiliation(s)
- Kim L Good-Jacobson
- Immunology Division, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
17
|
GCN5 is involved in regulation of immunoglobulin heavy chain gene expression in immature B cells. Gene 2014; 544:19-24. [PMID: 24746634 DOI: 10.1016/j.gene.2014.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/13/2014] [Accepted: 04/16/2014] [Indexed: 01/20/2023]
Abstract
GCN5 is involved in the acetylation of core histones, which is an important epigenetic event for transcriptional regulation through alterations in the chromatin structure in eukaryotes. To investigate physiological roles of GCN5, we have systematically analyzed phenotypes of homozygous GCN5-deficient DT40 mutants. Here, we report participation of GCN5 in regulation of IgM heavy chain (H-chain) gene expression. GCN5-deficiency down-regulates gene expressions of IgM H-chain (as whole, membrane-bound and secreted forms of its mRNA) but not light chain (L-chain), causing decreases in membrane-bound and secreted forms of IgM proteins. Chromatin immnoprecipitation assay revealed that GCN5 binds to the chicken IgM H-chain gene around its constant region but not L-chain gene, and acetylate Lys-9 residues of histone H3 within chromatin surrounding the constant region. These results suggest that GCN5 takes part in transcriptional regulation of the IgM H-chain gene via histone acetylation resulting in formation of relaxed chromatin arrangement around its coding region and plays a key role in epigenetic regulation of B cell functions.
Collapse
|
18
|
Li G, Zan H, Xu Z, Casali P. Epigenetics of the antibody response. Trends Immunol 2013; 34:460-70. [PMID: 23643790 PMCID: PMC3744588 DOI: 10.1016/j.it.2013.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/19/2022]
Abstract
Epigenetic marks, such as DNA methylation, histone post-translational modifications and miRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR), and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and miRNAs modulate the expression of critical elements of that machinery, such as activation-induced cytidine deaminase (AID), as well as factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1). These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such as those targeted in autoimmunity, and B cell neoplasia.
Collapse
Affiliation(s)
- Guideng Li
- Institute for Immunology and School of Medicine, University of California, Irvine, CA 92697-4120, USA
| | | | | | | |
Collapse
|
19
|
Vijayakumar B, Umamaheswari A, Puratchikody A, Velmurugan D. Selection of an improved HDAC8 inhibitor through structure-based drug design. Bioinformation 2011; 7:134-41. [PMID: 22125384 PMCID: PMC3218316 DOI: 10.6026/97320630007134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/14/2011] [Indexed: 01/05/2023] Open
Abstract
Histone deacetylases (HDACs) are enzymes, which catalyze the removal of acetyl moiety from acetyl-lysine within the histone proteins and promote gene repression and silencing resulting in several types of cancer. HDACs are important therapeutic targets for the treatment of cancer and related diseases. Hydroxamic acid inhibitors show promising results in clinical trials against carcinogenesis. 120 hydroxamic acid derivatives were designed as inhibitors based on hydrophobic pocket and the Zn (II) catalytic site of HDAC8 active site using Structure Based Drug Design (SBDD) approach. High Throughput Virtual screening (HTVs) was used to filter the effective inhibitors. Induced Fit Docking (IFD) studies were carried out for the screening of eight inhibitors using Glide software. Hydrogen bond, hydrophobic interactions and octahedral coordination geometry with Zn (II) were observed in the IFD complexes. Prime MM-GBSA calculation was carried out for the binding free energy, to observe the stability of docked complexes. The Lipinski's rule of five was analyzed for ADME/Tox drug likeliness using Qikprop simulation. These inhibitors have good inhibitory properties as they have favorable docking score, energy, emodel, hydrogen bond and hydrophobic interactions, binding free energy and ADME/Tox. However, one compound (Cmp22) successively satisfied all the studies among the eight compounds screened and seems to be a promising potent inhibitor against HDAC8.
Collapse
Affiliation(s)
- Balakrishnan Vijayakumar
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy campus, Chennai 600 025, India
| | - Appavoo Umamaheswari
- Department of Pharmaceutical Technology, Anna University of Technology, Tiruchirappalli 620 024, India
| | - Ayarivan Puratchikody
- Department of Pharmaceutical Technology, Anna University of Technology, Tiruchirappalli 620 024, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy campus, Chennai 600 025, India
- Bioinformatics Infrastructure Facility (BIF), University of Madras, Guindy campus, Chennai 600 025, India
| |
Collapse
|
20
|
Thangapandian S, John S, Sakkiah S, Lee KW. Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design. Eur J Med Chem 2010; 45:4409-17. [PMID: 20656379 DOI: 10.1016/j.ejmech.2010.06.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 11/17/2022]
Affiliation(s)
- Sundarapandian Thangapandian
- Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 900 Gazwa-dong, Jinju 660-701, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Desai S, Bolick SCE, Maurin M, Wright KL. PU.1 regulates positive regulatory domain I-binding factor 1/Blimp-1 transcription in lymphoma cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5778-87. [PMID: 19828640 DOI: 10.4049/jimmunol.0901120] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human positive regulatory domain I-binding factor 1 (PRDI-BF1) and its murine homolog Blimp-1 promote differentiation of mature B cells into Ab-secreting plasma cells. In contrast, ectopic expression of PRDI-BF1 in lymphoma cells can lead to inhibition of proliferation or apoptosis. However, little is currently known about the regulation of PRDM1, the gene encoding PRDI-BF1. This report establishes that in lymphoma cells stimulation through the BCR rapidly induces endogenous PRDM1 at the level of transcription with minor changes in mRNA stability. The induced PRDM1-encoded protein localizes to its target genes in vivo and suppresses their expression. In vivo genomic footprinting of the PRDM1 promoter in unstimulated lymphoma and myeloma cells reveals multiple common in vivo occupied elements throughout the promoter. Further functional and structural analysis of the promoter reveals that the promoter is preloaded and poised for activation in the B cell lines. The transcription factor PU.1 is shown to be required for the BCR-induced expression of PRDM1 in lymphoma cells and in PU.1-positive myeloma cells. Activation of PRDM1 is associated with loss of the corepressor transducin-like enhancer of split 4 from the PU.1 complex. These findings indicate that PRDM1 is poised for activation in lymphoma cells and therefore may be a potential therapeutic target to inhibit lymphoma cell proliferation and survival.
Collapse
Affiliation(s)
- Shruti Desai
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
22
|
Renaudineau Y, Garaud S, Le Dantec C, Alonso-Ramirez R, Daridon C, Youinou P. Autoreactive B Cells and Epigenetics. Clin Rev Allergy Immunol 2009; 39:85-94. [PMID: 19644775 DOI: 10.1007/s12016-009-8174-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Piotrowska H, Jagodzinski PP. Glucocorticoid receptor alpha and beta variant expression is associated with ASF/SF2 splicing factor upregulation in HT-29 colon cancer and MCF-7 breast carcinoma cells. Arch Med Res 2009; 40:156-62. [PMID: 19427965 DOI: 10.1016/j.arcmed.2009.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 01/26/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Transcriptional activity of NF-kappaB is inhibited by the liganded glucocorticoid receptor (GR), which exists mainly in two splice variants as functional GRalpha and nonfunctional GRbeta. We investigated the effect of 5-aza-2'-deoxycytidine (5-dAzaC), trichostatin A (TSA), and sodium butyrate (NaBu) on GRalpha,GRbeta and ASF/SF2 splicing factor expression in HT-29 colon and MCF-7 breast carcinoma cells. METHODS HT-29 and MCF-7 cells were cultured in the absence or in the presence of 5-dAzaC, TSA, and NaBu, followed by RNA and protein isolation. The transcript and protein levels of GRalpha, GRbeta ASF/SF2 were determined by reverse transcription, real-time quantitative PCR and Western blot analysis. RESULTS We found that 5-dAzaC, TSA, and NaBu lead to an increase in GRalpha and ASF/SF2 transcript levels and a decrease in GRbeta transcript levels in HT-29 and MCF-7 cells. The 5-dAzaC, TSA, and NaBu resulted in increased GRalpha and ASF/SF2 protein levels and GRbeta protein downregulation in HT-29 cells. The most increased GRalpha protein expression in MCF-7 cells was observed with NaBu. However, all of these compounds inhibited GRbeta protein expression in MCF-7 cells. The MCF-7 cells treated with NaBu demonstrated a remarkable increase in ASF/SF2 protein expression. CONCLUSIONS Because NF-kappaB is considered to be a factor in the augmentation of malignant properties of cells, treatment of tumors with 5-dAzaC, TSA, and NaBu may provide a novel approach to the enhancement of therapeutic effects of glucocorticoids in epithelial carcinomas.
Collapse
Affiliation(s)
- Hanna Piotrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
24
|
Yan C, Xiu Z, Li X, Li S, Hao C, Teng H. Comparative molecular dynamics simulations of histone deacetylase-like protein: Binding modes and free energy analysis to hydroxamic acid inhibitors. Proteins 2008; 73:134-49. [PMID: 18398905 DOI: 10.1002/prot.22047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chunli Yan
- Department of Bioscience and Biotechnology, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Transcriptional repression and silencing have been strongly associated with hypoacetylation of histones. Accordingly, histone deacetylases, which remove acetyl groups from histones, have been shown to participate in mechanisms of transcriptional repression. Therefore, current models of the role of acetylation in transcriptional regulation focus on the acetylation status of histones and designate histone acetyltransferases, which add acetyl groups to histones, as transcriptional coactivators and histone deacetylases as corepressors. In recent years, an accumulation of studies have shown that these enzymes also target non-histone proteins and that histone deacetylases have clear roles as coactivators at a variety of genes, some of which are key regulators of cell growth and survival. This review summarizes the evidence for histone deacetylases as coactivators and provides models of coactivation mechanisms, some of which integrate roles of acetylated histones and non-histone proteins in transcription.
Collapse
Affiliation(s)
- Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
26
|
Shell SA, Martincic K, Tran J, Milcarek C. Increased phosphorylation of the carboxyl-terminal domain of RNA polymerase II and loading of polyadenylation and cotranscriptional factors contribute to regulation of the ig heavy chain mRNA in plasma cells. THE JOURNAL OF IMMUNOLOGY 2008; 179:7663-73. [PMID: 18025212 DOI: 10.4049/jimmunol.179.11.7663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
B cells produce Ig H chain (IgH) mRNA and protein, primarily of the membrane-bound specific form. Plasma cells produce 20- to 50-fold higher amounts of IgH mRNA, most processed to the secretory specific form; this shift is mediated by substantial changes in RNA processing but only a small increase in IgH transcription rate. We investigated RNA polymerase II (RNAP-II) loading and phosphorylation of its C-terminal domain (CTD) on the IgG2a H chain gene, comparing two mouse cell lines representing B (A20) and plasma cells (AxJ) that express the identical H chain gene whose RNA is processed in different ways. Using chromatin immunoprecipitation and real-time PCR, we detected increased RNAP-II and Ser-2 and Ser-5 phosphorylation of RNAP-II CTD close to the IgH promoter in plasma cells. We detected increased association of several 3' end-processing factors, ELL2 and PC4, at the 5' end of the IgH gene in AxJ as compared with A20 cells. Polymerase progress and factor associations were inhibited by 5,6-dichlorobenzimidazole riboside, a drug that interferes with the addition of the Ser-2 to the CTD of RNAP-II. Taken together, these data indicate a role for CTD phosphorylation and polyadenylation/ELL2/PC4 factor loading on the polymerase in the choice of the secretory poly(A) site for the IgH gene.
Collapse
Affiliation(s)
- Scott A Shell
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
27
|
Ochiai K, Muto A, Tanaka H, Takahashi S, Igarashi K. Regulation of the plasma cell transcription factor Blimp-1 gene by Bach2 and Bcl6. Int Immunol 2008; 20:453-60. [DOI: 10.1093/intimm/dxn005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Zwollo P, Haines A, Rosato P, Gumulak-Smith J. Molecular and cellular analysis of B-cell populations in the rainbow trout using Pax5 and immunoglobulin markers. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1482-96. [PMID: 18616961 PMCID: PMC2637475 DOI: 10.1016/j.dci.2008.06.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/29/2008] [Accepted: 06/12/2008] [Indexed: 05/19/2023]
Abstract
To date, the trout B-cell is poorly defined, as many essential molecular markers are not yet available for this species. In mammalian systems, the transcription factor Pax5, expressed from pre-B through plasmablast stages, provides an important marker for B-cell differentiation. In a previous study we showed that Pax5 is expressed in the trout. Here we identify trout B-cell populations that vary in expression of Pax5, membrane and secreted Ig. Immune tissues were separated based on concentration of surface IgM, and analyzed by qPCR and flow cytometry. Results suggest that spleen and PBL contain mostly resting B cells, which lack secreted Ig. While the great majority of splenic B cells become strongly activated upon LPS stimulation, PBLs do not. Additionally, anterior kidney contains both developing B and Ig-secreting B-cell populations, but few resting, mature B cells. Lastly, posterior kidney contains multiple B-cell populations in various states of activation. We conclude that trout immune tissues contain multiple, developmentally diverse and tissue-specific B-cell populations as defined by their relative expression of Pax5, surface IgM, and secreted IgM.
Collapse
Affiliation(s)
- Patty Zwollo
- Department of Biology, The College of William and Mary, Millington Hall, Williamsburg, VA 23188, USA.
| | | | | | | |
Collapse
|
29
|
Piotrowska H, Jagodzinski PP. Trichostatin A, sodium butyrate, and 5-aza-2′-deoxycytidine alter the expression of glucocorticoid receptor α and β isoforms in Hut-78 T- and Raji B-lymphoma cell lines. Biomed Pharmacother 2007; 61:451-4. [PMID: 17498915 DOI: 10.1016/j.biopha.2007.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022] Open
Abstract
The glucocorticoid receptor (GR) is mainly expressed as nine-exon alternatively spliced variants, encoding functional GRalpha and nonfunctional GRbeta. Overexpression of GRbeta splice variant was found in glucocorticoid-resistant patients with some autoimmune diseases and hematological malignancies. Employing reverse transcription, real-time quantitative PCR, and western blot analysis, we determined an effect of trichostatin A (TSA), sodium butyrate (NaBu) and 5-aza-2'-deoxycytidine (5-dAzaC) on GRalpha and GRbeta expression in Hut-78 T- and Raji B-lymphoma cell lines. We found that TSA, NaBu, and 5-dAzaC significantly increase the expression of GRalpha transcript and protein, whereas GRbeta transcript and protein expression was profoundly decreased in Hut-78 T- and Raji B- lymphoma cell lines. Our observation suggests that changes of epigenetic milieu inside cells may alter the expression of GRalpha and GRbeta isoforms.
Collapse
Affiliation(s)
- H Piotrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland
| | | |
Collapse
|
30
|
Nakayama M, Suzuki H, Yamamoto-Nagamatsu N, Barman HK, Kikuchi H, Takami Y, Toyonaga K, Yamashita K, Nakayama T. HDAC2 controls IgM H- and L-chain gene expressions via EBF1, Pax5, Ikaros, Aiolos and E2A gene expressions. Genes Cells 2007; 12:359-73. [PMID: 17352740 DOI: 10.1111/j.1365-2443.2007.01059.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously reported that histone deacetylase-2 (HDAC2) controls the amount of IgM H-chain at the steps of transcription of its gene and alternative processing of its pre-mRNA in DT40 cells. Here, we showed not only that the HDAC2-deficiency caused repressions of gene expressions for HDAC7, EBF1, Pax5, Aiolos and Ikaros, and elevations of gene expressions for HDAC4, HDAC5, PCAF and E2A, but also that it caused altered acetylation levels of several Lys residues of core histones. Using gene targeting techniques, we generated three homozygous DT40 mutants: EBF1(-/-), Aiolos(-/-) and E2A(-/-), devoid of EBF1, Aiolos and E2A genes, respectively. Semiquantitative RT-PCR analysis of the resultant mutants revealed not only that EBF1 and Aiolos down-regulate expressions of IgM H- and L-chain genes, but also that E2A up-regulates expressions of these two genes. These results, together with others, indicate that HDAC2 controls indirectly expressions of IgM H- and L-chain genes through opposite transcriptional regulations of EBF1, Pax5, Aiolos plus Ikaros and E2A genes.
Collapse
Affiliation(s)
- Masami Nakayama
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao YM, Chen X, Sun H, Yuan ZG, Ren GL, Li XX, Lu J, Huang BQ. Effects of histone deacetylase inhibitors on transcriptional regulation of the hsp70 gene in Drosophila. Cell Res 2006; 16:566-76. [PMID: 16775628 DOI: 10.1038/sj.cr.7310074] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Histone acetyltransferases/deacetylases contribute to the activation or inactivation of transcription by modifying the structure of chromatin. Here we examined the effects of histone deacetylase inhibitors (HDIs), trichostatin A, and sodium butyrate on hsp70 gene transcriptional regulation in Drosophila. The chromatin immunoprecipitation assays revealed that HDI treatments induced the hyperacetylation of histone H3 at the promoter and the transcribing regions of hsp70 gene, increased the accessibility of heat-shock factor to target heat-shock element, and promoted the RNA polymerase II-mediated transcription. Moreover, the quantitative real-time PCR confirmed that the HDI-induced hyperacetylation of histone H3 enhanced both the basal and the inducible expression of hsp70 mRNA level. In addition, the acetylation level of histone H3 at the promoter exhibited a fluctuated change upon the time of heat shock. These experimental data implicated a causal link between histone acetylation and enhanced transcription initiation of hsp70 gene in Drosophila.
Collapse
Affiliation(s)
- Yan Mei Zhao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rui L, Healy JI, Blasioli J, Goodnow CC. ERK Signaling Is a Molecular Switch Integrating Opposing Inputs from B Cell Receptor and T Cell Cytokines to Control TLR4-Driven Plasma Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2006; 177:5337-46. [PMID: 17015719 DOI: 10.4049/jimmunol.177.8.5337] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of B cells into plasma cells represents a critical immunoregulatory checkpoint where neutralizing Abs against infectious agents must be selected whereas self-reactive Abs are suppressed. Bacterial LPS is a uniquely potent bacterial immunogen that can bypass self-tolerance within the T cell repertoire. We show here that during LPS-induced plasma cell differentiation, the ERK intracellular signaling pathway serves as a pivotal switch integrating opposing inputs from Ag via BCR and from the two best characterized B cell differentiation factors made by T cells, IL-2 and IL-5. Continuous Ag receptor signaling through the RAS/MEK/ERK pathway, as occurs in self-reactive B cells, inhibits LPS induction of Blimp-1 and the plasma cell differentiation program. Differentiation resumes after a transient pulse of Ag-ERK signaling, or upon inactivation of ERK by IL-2 and IL-5 through induction of dual-specificity phosphatase 5 (Dusp5). The architecture of this molecular switch provides a framework for understanding the specificity of antibacterial Ab responses and resistance to bacterially induced autoimmune diseases such as Guillain-Barré syndrome.
Collapse
Affiliation(s)
- Lixin Rui
- Australian Cancer Research Foundation Genetics Laboratory and Medical Genome Centre, John Curtin School of Medical Research, Australian Phenomics Facility, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
33
|
Horsley V, O'Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, Nussenzweig M, Tarakhovsky A, Fuchs E. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 2006; 126:597-609. [PMID: 16901790 PMCID: PMC2424190 DOI: 10.1016/j.cell.2006.06.048] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/03/2006] [Accepted: 06/08/2006] [Indexed: 12/17/2022]
Abstract
Epidermal lineage commitment occurs when multipotent stem cells are specified to three lineages: the epidermis, the hair follicle, and the sebaceous gland (SG). How and when a lineage becomes specified remains unknown. Here, we report the existence of a population of unipotent progenitor cells that reside in the SG and express the transcriptional repressor Blimp1. Using cell-culture studies and genetic lineage tracing, we demonstrate that Blimp1-expressing cells are upstream from other cells of the SG lineage. Blimp1 appears to govern cellular input into the gland since its loss leads to elevated c-myc expression, augmented cell proliferation, and SG hyperplasia. Finally, BrdU labeling experiments demonstrate that the SG defects associated with loss of Blimp1 lead to enhanced bulge stem cell activity, suggesting that when normal SG homeostasis is perturbed, multipotent stem cells in the bulge can be mobilized to correct this imbalance.
Collapse
Affiliation(s)
- Valerie Horsley
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Green MR, Yoon H, Boss JM. Epigenetic Regulation during B Cell Differentiation Controls CIITA Promoter Accessibility. THE JOURNAL OF IMMUNOLOGY 2006; 177:3865-73. [PMID: 16951349 DOI: 10.4049/jimmunol.177.6.3865] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell to plasma cell maturation is marked by the loss of MHC class II expression. This loss is due to the silencing of the MHC class II transcriptional coactivator CIITA. In this study, experiments to identify the molecular mechanism responsible for CIITA silencing were conducted. CIITA is expressed from four promoters in humans, of which promoter III (pIII) controls the majority of B cell-mediated expression. Chromatin immunoprecipitation assays were used to establish the histone code for pIII and determine the differences between B cells and plasma cells. Specific histone modifications associated with accessible promoters and transcriptionally active genes were observed at pIII in B cells but not in plasma cells. A reciprocal exchange of histone H3 lysine 9 acetylation to methylation was also observed between B cells and plasma cells. The lack of histone acetylation correlated with an absence of transcription factor binding to pIII, particularly that of Sp1, PU.1, CREB, and E47. Intriguingly, changes in chromatin architecture of the 13-kb region encompassing all CIITA promoters showed a remarkable deficit in histone H3 and H4 acetylation in plasma cells, suggesting that the mechanism of silencing is global. When primary B cells were differentiated ex vivo, most of the histone marks associated with pIII activation and expression were lost within 24 h. The results demonstrate that CIITA silencing occurs by controlling chromatin accessibility through a multistep mechanism that includes the loss of histone acetylation and transcription factor binding, and the acquisition of repressive histone methylation marks.
Collapse
Affiliation(s)
- Myesha R Green
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
35
|
Matthews SA, Liu P, Spitaler M, Olson EN, McKinsey TA, Cantrell DA, Scharenberg AM. Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol Cell Biol 2006; 26:1569-77. [PMID: 16449666 PMCID: PMC1367196 DOI: 10.1128/mcb.26.4.1569-1577.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have taken a knockout approach to interrogate the function of protein kinase D (PKD) serine/threonine kinases in lymphocytes. DT40 B cells express two PKD family members, PKD1 and PKD3, which are both rapidly activated by the B-cell antigen receptor (BCR). DT40 cells with single or dual deletions of PKD1 and/or PKD3 were viable, allowing the role of individual PKD isoforms in BCR signal transduction to be assessed. One proposed downstream target for PKD1 in lymphocytes is the class II histone deacetylases (HDACs). Regulation of chromatin accessibility via class II histone deacetylases is an important mechanism controlling gene expression patterns, but the molecules that control this key process in B cells are not known. Herein, we show that phosphorylation and nuclear export of the class II histone deacetylases HDAC5 and HDAC7 are rapidly induced following ligation of the BCR or after treatment with phorbol esters (a diacylglycerol mimetic). Loss of either PKD1 or PKD3 had no impact on HDAC phosphorylation, but loss of both PKD1 and PKD3 abrogated antigen receptor-induced class II HDAC5/7 phosphorylation and nuclear export. These studies reveal an essential and redundant role for PKD enzymes in controlling class II HDACs in B lymphocytes and suggest that PKD serine kinases are a critical link between the BCR and epigenetic control of chromatin.
Collapse
Affiliation(s)
- Sharon A Matthews
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lu ZP, Ju ZL, Shi GY, Zhang JW, Sun J. Histone deacetylase inhibitor Trichostatin A reduces anti-DNA autoantibody production and represses IgH gene transcription. Biochem Biophys Res Commun 2005; 330:204-9. [PMID: 15781251 DOI: 10.1016/j.bbrc.2005.02.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Indexed: 11/24/2022]
Abstract
Systemic lupus erythematosus is characterized by the presence of autoantibodies and hypergammaglobulinemia. To investigate the role of histone deacetylases (HDACs) in the production of autoantibody and immunoglobulin, we examined the effect of Trichostatin A (TSA), a specific inhibitor of HDACs, on anti-DNA autoantibody production and IgH gene transcription. Our results showed that inhibition of HDAC activity by TSA markedly reduced anti-DNA autoantibody production by T347 cells either by inducing apoptosis or in an apoptosis-independent manner, suggesting that TSA might be useful for treating certain autoimmune diseases. Moreover, we found that TSA strongly inhibited germline and post-switch immunoglobulin transcripts in T347 cells and in primary splenic B cells of MRL-lpr mice. Reporter gene analysis demonstrated that both Emu and 3'-IgH enhancer activities were repressed significantly by TSA-mediated HDAC inhibition. Furthermore, we observed that HDAC1 was recruited to the 3'-IgH enhancer hs1,2 as determined by chromatin immunoprecipitation assays. Over-expression of HDAC1 increased the activity of IgH enhancers, especially 3'-IgH enhancers. These findings implicate HDAC in the IgH gene transcription via activation of 3'-IgH enhancers.
Collapse
Affiliation(s)
- Zhong-Ping Lu
- Shanghai Institute of Immunology, Shanghai Second Medical University, Shanghai 200025, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Garrett FE, Emelyanov AV, Sepulveda MA, Flanagan P, Volpi S, Li F, Loukinov D, Eckhardt LA, Lobanenkov VV, Birshtein BK. Chromatin architecture near a potential 3' end of the igh locus involves modular regulation of histone modifications during B-Cell development and in vivo occupancy at CTCF sites. Mol Cell Biol 2005; 25:1511-25. [PMID: 15684400 PMCID: PMC548023 DOI: 10.1128/mcb.25.4.1511-1525.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The murine Igh locus has a 3' regulatory region (3' RR) containing four enhancers (hs3A, hs1,2, hs3B, and hs4) at DNase I-hypersensitive sites. The 3' RR exerts long-range effects on class switch recombination (CSR) to several isotypes through its control of germ line transcription. By measuring levels of acetylated histones H3 and H4 and of dimethylated H3 (K4) with chromatin immunoprecipitation assays, we found that early in B-cell development, chromatin encompassing the enhancers of the 3' RR began to attain stepwise modifications typical of an open conformation. The hs4 enhancer was associated with active chromatin initially in pro- and pre-B cells and then together with hs3A, hs1,2, and hs3B in B and plasma cells. Histone modifications were similar in resting splenic B cells and in splenic B cells induced by lipopolysaccharide to undergo CSR. From the pro-B-cell stage onward, the approximately 11-kb region immediately downstream of hs4 displayed H3 and H4 modifications indicative of open chromatin. This region contained newly identified DNase I-hypersensitive sites and several CTCF target sites, some of which were occupied in vivo in a developmentally regulated manner. The open chromatin environment of the extended 3' RR in mature B cells was flanked by regions associated with dimethylated K9 of histone H3. Together, these data suggest that 3' RR elements are located within a specific chromatin subdomain that contains CTCF binding sites and developmentally regulated modules.
Collapse
Affiliation(s)
- Francine E Garrett
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control.
Collapse
Affiliation(s)
- Tim C Roloff
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
| | | |
Collapse
|
39
|
Li H, Wu X. Histone deacetylase inhibitor, Trichostatin A, activates p21WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun 2004; 324:860-7. [PMID: 15474507 DOI: 10.1016/j.bbrc.2004.09.130] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have shown promise in clinical cancer therapy and to consistently induce p21WAF1/CIP1 expression in a p53-independent manner and via increased acetylation of the chromatin at the Sp1 sites in the p21WAF1/CIP1 promoter region. However, the exact mechanism by which HDAC inhibitors induce p21WAF1/CIP1 remains unclear. In this study, we observed that Trichostatin A (TSA), a HDAC inhibitor, induced strikingly p21WAF1/CIP1 expression in human cervical cancer (HeLa) cells, and this induction correlated with downregulation of c-myc expression. Coincident with this observation, knock down of c-myc with a c-myc specific small interfering RNA dramatically induced expression of p21WAF1/CIP1 in these cancer cells. These data suggest that c-myc may play a critical role in repression of p21WAF1/CIP1 expression in HeLa cells. More importantly, using chromatin immunoprecipitation assay, we observed for the first time that c-myc bound to the endogenous p21WAF1/CIP1 promoter in untreated HeLa cells, but not in TSA-treated cells. Taken together, TSA induced c-myc downregulation and release from the endogenous p21WAF1/CIP1 promoter contributes, at least partially, to transcriptional activation of the p21WAF1/CIP1 in HeLa cells.
Collapse
Affiliation(s)
- Hui Li
- Institute of Medical Virology, Wuhan University School of Medicine, Wuhan, Hubei 430071, PR China.
| | | |
Collapse
|
40
|
Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkühler C, Di Marco S. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 2004; 101:15064-9. [PMID: 15477595 PMCID: PMC524051 DOI: 10.1073/pnas.0404603101] [Citation(s) in RCA: 509] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylases (HDACs) are a family of enzymes involved in the regulation of gene expression, DNA repair, and stress response. These processes often are altered in tumors, and HDAC inhibitors have had pronounced antitumor activity with promising results in clinical trials. Here, we report the crystal structure of human HDAC8 in complex with a hydroxamic acid inhibitor. Such a structure of a eukaryotic zinc-dependent HDAC has not be described previously. Similar to bacterial HDAC-like protein, HDAC8 folds in a single alpha/beta domain. The inhibitor and the zinc-binding sites are similar in both proteins. However, significant differences are observed in the length and structure of the loops surrounding the active site, including the presence of two potassium ions in HDAC8 structure, one of which interacts with key catalytic residues. CD data suggest a direct role of potassium in the fold stabilization of HDAC8. Knockdown of HDAC8 by RNA interference inhibits growth of human lung, colon, and cervical cancer cell lines, highlighting the importance of this HDAC subtype for tumor cell proliferation. Our findings open the way for the design and development of selective inhibitors of HDAC8 as possible antitumor agents.
Collapse
Affiliation(s)
- Alessandro Vannini
- Department of Biochemistry, Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Transcriptional regulation in eukaryotes is a multilevel hierarchical process. It is becoming clear that higher-order chromatin structure, occurring via modifications of histones in their nucleosome structure, plays a crucial role in regulating gene expression, both in normal and pathological states. Deacetylation of histones by histone deacetylases (HDACs) modifies the chromatin from an open gene active euchromatin structure to a closed gene silenced heterochromatin structure. Several cancer promoting mutations and chromosomal translocations result in repression of transcription through abnormal recruitment and activation of HDACs, leading to neoplastic transformation. This is the rationale for the evolvement of HDAC inhibitors as a new class in cancer therapy. Trials have shown anti-proliferation effect of histone deacetylase inhibitors in cell culture, animal models and in human with both hematological and solid tumors. The exact mechanism by which histone deacetylase inhibitors exert their effect is still obscure. Reversal of the alteration in gene expression by fusion transcription factors or overexpressed repressors is just one of several possible explanations. The territory of heterochromatin in the vicinity of the nuclear periphery raised the possibility of involvement of nuclear envelope proteins in the regulation of transcription. Our laboratory is interested in the transcription repression mechanism induced by the nuclear envelope lamina associated polypeptide 2 (LAP2) family of proteins through chromatin modification. Here, we will describe the structure of the nucleosome, review regulation of gene expression by acetylation of histones and give an update on the current phase I and phase II clinical trials with histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Raz Somech
- Laboratory of Molecular Hemato-Oncology, Sheba Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Israel.
| | | | | |
Collapse
|
42
|
Tunyaplin C, Shaffer AL, Angelin-Duclos CD, Yu X, Staudt LM, Calame KL. Direct Repression ofprdm1by Bcl-6 Inhibits Plasmacytic Differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 173:1158-65. [PMID: 15240705 DOI: 10.4049/jimmunol.173.2.1158] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified two intronic regions of mouse prdm1, the gene encoding B lymphocyte-induced maturation protein-1 (Blimp-1), which confer transcriptional repression in response to Bcl-6. The Bcl-6 response element in intron 5, which is conserved between mice and humans, was studied in detail. It binds Bcl-6 in vitro and was shown by chromatin immunoprecipitation to be occupied by Bcl-6 in vivo. Neither Bcl-6 response element functions as a STAT3-response element, showing that STAT3 does not compete with Bcl-6 at these sites. Bcl-6(-/-) mice confirm the biological importance of Bcl-6-dependent repression of prdm1. These mice have elevated Ab response, increased Ig-secreting cells, and increased Blimp-1(+) cells in spleen following immunization and their splenic B cells show accelerated plasmacytic development in vitro.
Collapse
Affiliation(s)
- Chainarong Tunyaplin
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
43
|
Mariani MR, Carpaneto EM, Ulivi M, Allfrey VG, Boffa LC. Correlation between butyrate-induced histone hyperacetylation turn-over and c-myc expression. J Steroid Biochem Mol Biol 2003; 86:167-71. [PMID: 14568568 DOI: 10.1016/s0960-0760(03)00267-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptionally active chromatin has an high level of histone acetylation, a post-transcriptional modification known to alter nucleosomal conformation increasing the accessibility of transcription factors to DNA. Recent studies have led new interest in histone acetylase and deacetylase because of their role as transcription factors. Sodium butyrate, a known reversible inhibitor of histone deacetylase, modulates a large number of genes. This report is focused on the modulation of the c-myc oncogene expression by butyrate. In HeLa cells, treated with butyrate and then exposed to butyrate-free medium, we established a correlation between the reactivation kinetic of c-myc expression and the increase in level of histone H4 acetylation. Both parameters, in cells exposed to butyrate-free medium, after showing a rebound effect, return to the control level. This trend was confirmed by quantitative analysis of the level of histone acetylation and of c-myc expression in the three distinct class of nucleosomal fragments with different transcriptional activity. In this chase process, we also detected a concomitant enrichment in c-myc sequences in the "active" chromatin fractions and decreased presence in the inactive nucleosomal fragment. Therefore we here demonstrate an excellent correlation between histone hyperacetylation and reactivation of a specific gene (c-myc).
Collapse
Affiliation(s)
- Maria Rita Mariani
- SS of Epigenetic, Department of Etiology and Epidemiology, National Cancer Research Institute, IST, Lgo Rosanna Benzi 10, 16132 Genoa, Italy
| | | | | | | | | |
Collapse
|