1
|
Gargano C, Mauro M, Martino C, Queiroz V, Vizzini A, Luparello C, Badalamenti R, Bellistrì F, Cuttitta A, Kondo H, Longo F, Arizza V, Vazzana M. Shark immune system: A review about their immunoglobulin repertoire. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110187. [PMID: 39947340 DOI: 10.1016/j.fsi.2025.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
In the past few decades, the literature about the immune system of vertebrates has increased thanks to the research about new therapies and new biomolecules able to treat or eradicate many human autoimmune diseases. Researchers found that immunoglobulins (Igs) are the most versatile biomolecules able to recognize almost every existing epitope with their binding domains. Phylogenetically, the most recent vertebrates exhibit the greatest sequence diversification in their Igs to extend their ability to distinguish different antigens. Among cartilaginous fishes, the most ancient vertebrates on phylogenetic history, sharks possess four types of Igs with similar pathways to extend sequence diversity and binding domains variability. Their Ig new antigen receptor (IgNAR) represents one of the most versatile and small Ig type upon all other species. The shark species are fundamental sources of new therapeutic receptors lending a further step to treatments against several human diseases. The aim of this review is to analyze sharks Igs, focusing on IgNARs for each species.
Collapse
Affiliation(s)
- C Gargano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - M Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.
| | - C Martino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - V Queiroz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sala 300, Rua do Matão, Travessa 14, n° 101, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - A Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - C Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - R Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Bellistrì
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - A Cuttitta
- National Research Council (CNR-ISMed), Institute for Studies on the Mediterranean, Via Filippo Parlatore, 65, 90145, Palermo, Italy
| | - H Kondo
- Laboratory of Genome Science, Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - F Longo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - V Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
2
|
Gschwandtner M, Derler R, Talker E, Trojacher C, Gubensäk N, Becker W, Gerlza T, Klaus Z, Stocki P, Walsh FS, Rutkowski JL, Kungl A. A Single-Domain VNAR Nanobody Binds with High-Affinity and Selectivity to the Heparin Pentasaccharide Fondaparinux. Int J Mol Sci 2025; 26:4045. [PMID: 40362285 PMCID: PMC12071740 DOI: 10.3390/ijms26094045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Glycosaminoglycans (GAGs) are key ligands for proteins involved in physiological and pathological processes. Specific GAG-binding patterns are rarely identified, with the heparin pentasaccharide as an Antithrombin-III ligand being the best characterized. Generating glycan-specific antibodies is difficult due to their size, pattern dispersion, and flexibility. Single-domain variable new antigen receptors (VNAR nanobodies) from nurse sharks are highly soluble, stable, and versatile. Their unique properties suggest advantages over conventional antibodies, particularly for challenging biotherapeutic targets. Here we have used VNAR semi-synthetic phage libraries to select high-affinity fondaparinux-binding VNARs that did not show cross-reactivity with other GAG species. Competition ELISA and surface plasmon resonance identified a single fondaparinux-selective VNAR clone. This VNAR exhibited an extraordinarily stable protein fold: the beta-strands are stabilized by a robust hydrophobic network, as revealed by heteronuclear NMR. Docking fondaparinux to the VNAR structure revealed a large contact surface area between the CDR3 loop of the antibody and the glycan. Fusing the VNAR with a human Fc domain resulted in a stable product with a high affinity for fondaparinux (Kd = 9.3 × 10-8 M) that could efficiently discriminate between fondaparinux and other glycosaminoglycans. This novel glycan-targeting screening technology represents a promising therapeutic strategy for addressing GAG-related diseases.
Collapse
Affiliation(s)
- Martha Gschwandtner
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, A-8010 Graz, Austria (E.T.); (C.T.); (T.G.)
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, A-8010 Graz, Austria (E.T.); (C.T.); (T.G.)
| | - Elisa Talker
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, A-8010 Graz, Austria (E.T.); (C.T.); (T.G.)
| | - Christina Trojacher
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, A-8010 Graz, Austria (E.T.); (C.T.); (T.G.)
| | - Nina Gubensäk
- Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstraße 28, A-8010 Graz, Austria; (N.G.); (W.B.); (Z.K.)
| | - Walter Becker
- Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstraße 28, A-8010 Graz, Austria; (N.G.); (W.B.); (Z.K.)
| | - Tanja Gerlza
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, A-8010 Graz, Austria (E.T.); (C.T.); (T.G.)
| | - Zangger Klaus
- Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstraße 28, A-8010 Graz, Austria; (N.G.); (W.B.); (Z.K.)
| | - Pawel Stocki
- Ossianix, Inc., Stevenage Bioscience Catalyst, Gunnels Wood Rd, Stevenage, Herts SG1 2FX, UK; (P.S.); (F.S.W.); (J.L.R.)
| | - Frank S. Walsh
- Ossianix, Inc., Stevenage Bioscience Catalyst, Gunnels Wood Rd, Stevenage, Herts SG1 2FX, UK; (P.S.); (F.S.W.); (J.L.R.)
| | - Julia Lynn Rutkowski
- Ossianix, Inc., Stevenage Bioscience Catalyst, Gunnels Wood Rd, Stevenage, Herts SG1 2FX, UK; (P.S.); (F.S.W.); (J.L.R.)
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, A-8010 Graz, Austria (E.T.); (C.T.); (T.G.)
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, A-8045 Graz, Austria
| |
Collapse
|
3
|
Lei WH, Liu ZY, Xie XX, Zhong N, Zhang LJ, Cao MJ, Lin D, Jin T, Zhang C, Chen YL. High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis. Int J Biol Macromol 2025; 299:140290. [PMID: 39863199 DOI: 10.1016/j.ijbiomac.2025.140290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy. Consequently, it is necessary to develop hemoglobin-specific antibodies characterized by high specificity and affinity to enhance detection accuracy. The variable domain of the new antigen receptor (VNAR) from sharks, the smallest antigen-binding unit, is ideal for disease diagnosis and treatment due to its small size, stability, and high affinity. In this study, Chiloscyllium plagiosum was immunized with human hemoglobin protein. Nine VNAR immune libraries with sizes ranging from 1 × 108 to 1.82 × 109 colony-forming units (CFU) were constructed and biopanned using phage display, resulting in three hemoglobin-specific VNAR sequences (5-10C, 7-11A, T-12-4D). These sequences were inserted into pTT5-TEV-Fc vectors and transfected into HEK 293F cells. The resulting VNAR-Fc fusion proteins were purified from the cell culture supernatants. Binding activity, cross-reactivity, physicochemical stability, and epitope competition were evaluated using non-competitive enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). T-12-4D-Fc exhibited the highest affinity with a KD value of 7.59 nM and superior physicochemical stability. It maintained over 80 % binding activity at 90 °C, over 51 % in extreme pH conditions (pH 2 and 12), and above 65 % in urea concentrations up to 8 mol/L. Its binding activity remained largely unaffected after 6 h of incubation in human plasma-like medium (HPLM). The binding epitope competition results showed that 5-10C-Fc and T-12-4D-Fc targeted the same hemoglobin epitope. Molecular dynamics simulations revealed hydrogen bonds as the primary interaction force between VNARs and hemoglobin. Furthermore, a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) method was established for the detection of human hemoglobin, utilizing T-12-4D-Fc as the coating antibody. This technique demonstrated high accuracy, reproducibility and specificity when applied to human whole blood samples. Hence, the identified VNARs, particularly T-12-4D, demonstrated good stability, specificity, and high affinity, filling the gap of hemoglobin-targeting shark-derived single-domain antibodies and offering a foundation for diagnosing and monitoring hemoglobin-related diseases.
Collapse
Affiliation(s)
- Wen-Hui Lei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zu-Ying Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Xiao Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | | | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
4
|
Lyu X, Yamano-Adachi N, Koga Y, Omasa T. COP II-mediated ER-to-Golgi transport is a bottleneck for IgNAR-Fc production in the Chinese hamster ovary cell expression system. J Biosci Bioeng 2025; 139:133-140. [PMID: 39586758 DOI: 10.1016/j.jbiosc.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The novel heavy-chain antibody known as immunoglobulin new antigen receptor (IgNAR) is derived from cartilaginous fishes such as sharks. IgNAR, which binds to antigens with the high specificity and affinity of a conventional IgG antibody and exhibits high resistance to denaturation, has potential as a next-generation antibody in biopharmaceutical and biotechnological applications. High-level expression of recombinant IgNAR in animal cells has been challenging. In our previous study, IgNAR was expressed as a fusion protein with a human IgG Fc region (IgNAR-Fc) in Chinese hamster ovary (CHO) cells, but did not meet the production level required for further research and application. In this study, we sought to identify the production bottleneck in CHO cells as a first step toward achieving abundant production of IgNAR. Using an established IgG high-production CHO cell line as a comparator, we found that the amounts of intracellular dimeric IgNAR-Fc produced in CHO cells were similar to those of intracellular dimeric IgG. Furthermore, the majority of intracellular IgNAR-Fc was retained in the endoplasmic reticulum (ER) and strongly colocalized to ERGIC-53, the cargo receptor for coat protein complex II (COP II)-coated vesicles. These findings suggest that COP II-mediated ER-to-Golgi transport may represent a bottleneck for IgNAR-Fc production in the CHO cell expression system.
Collapse
Affiliation(s)
- Xiaofang Lyu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Faculty of Applied Chemistry, Department of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Okayama 700-0005, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Shen M, Ni C, Yuan J, Zhou X. Phage-ELISA for ultrasensitive detection of Salmonella enteritidis. Analyst 2025; 150:567-575. [PMID: 39817488 DOI: 10.1039/d4an01121j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with Salmonella enteritidis (strain C50041) to induce diverse antibodies. The variable region sequences were subsequently amplified by PCR using genome extracted from the mice's splenic cells and fused to the pIII protein to construct the scFv phage display library (C50041-M13-scFv). Through biopanning with the C50041-M13-scFv library, a phage clone (C50041-scFv-4) exhibiting high affinity for the target bacteria was successfully obtained. Moreover, the scFv antibody (scFv-4) derived from C50041-scFv-4 was expressed in a prokaryotic expression system and validated to possess high specificity and affinity for C50041 through in vitro adsorption assays. Additionally, a phage-ELISA method was established: initially, bacteria were immobilized on the bottom surface of a 96-well plate. Next, the positive clone C50041-scFv-4 was introduced to specifically bind to the host cells. Finally, horseradish peroxidase (HRP)-conjugated anti-pVIII antibodies were used to detect the pVIII proteins of the bound phage clones. Owing to the capacity of multiple C50041-scFv-4 probes to simultaneously bind to a single target Salmonella and each phage clone's ability to accommodate hundreds of HRP-labeled antibodies, the proposed phage-ELISA demonstrated remarkable sensitivity (104 CFU mL-1) for detecting Salmonella enteritidis samples. This sensitivity surpasses that of traditional ELISA by one order of magnitude in this study. Our phage-ELISA technology exhibits broad applicability across various biological species and provides an improved and robust platform for pathogen detection including bacteria and viruses.
Collapse
Affiliation(s)
- Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Chang Ni
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Jiasheng Yuan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Manzanares-Guzmán A, Alfonseca-Ladrón de Guevara AC, Reza-Escobar E, Burciaga-Flores M, Canales-Aguirre A, Esquivel-Solís H, Lugo-Fabres PH, Camacho-Villegas TA. Isolation and Characterization of the First Antigen-Specific EGFRvIII vNAR from Freshwater Stingray ( Potamotrygon spp.) as a Drug Carrier in Glioblastoma Cancer Cells. Int J Mol Sci 2025; 26:876. [PMID: 39940647 PMCID: PMC11817625 DOI: 10.3390/ijms26030876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Glioblastoma is the most common and highly malignant brain tumor in adults. New targeted therapeutic approaches are imperative. EGFRvIII has appealing therapeutic targets using monoclonal antibodies. Thus, endeavors toward developing new mAbs therapies for GBM capable of targeting the tumor EGFRvIII biomarker must prevail to improve the patient's prognosis. Here, we isolated and characterized an anti-EGFRvIII vNAR from a non-immune freshwater stingray mixed library, termed vNAR R426. The vNAR R426 and pEGFRvIII interaction was demonstrated by molecular docking and molecular dynamics, and the recognition of EGFRvIII in vitro was further confirmed by cell immunofluorescence staining. Moreover, the vNAR R426 was shown to be an effective cisplatin drug carrier in the U87-MG glioma cell line. The cisplatin-coupled vNAR demonstrated highly significant differences when compared to free CDDP at 72 h. Notably, the cisplatin-vNAR carrier achieved better efficacy in the U87-MG cell line. Thus, we described the vNAR R426 internalization by receptor-mediated endocytosis and the subsequent COPI-mediated nuclear translocation of EGFRvIII and highlighted the importance of this shuttle mechanism to enhance the targeted delivery of cisplatin within the glioma cell's nucleus and improved cytotoxic effect. In conclusion, vNAR R426 could be a potential therapeutic carrier for EGFRvIII-targeted glioblastoma and cancer therapies.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Andrea C. Alfonseca-Ladrón de Guevara
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Elia Reza-Escobar
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Mirna Burciaga-Flores
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Carretera Tijuana-Ensenada km107, Ensenada C.P. 22860, Baja California, Mexico;
| | - Alejandro Canales-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Hugo Esquivel-Solís
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Pavel H. Lugo-Fabres
- CONAHCYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico;
| | - Tanya A. Camacho-Villegas
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| |
Collapse
|
7
|
Uemura R, Tanimura S, Yamaguchi N, Kuroiwa R, Andrés Tsutsumi GT, Fujikawa T, Soyano K, Takeda K, Tanaka Y. Expression Analysis of Heavy-Chain-Only Antibodies in Cloudy Catshark and Japanese Bullhead Shark. Mar Drugs 2025; 23:28. [PMID: 39852530 PMCID: PMC11767079 DOI: 10.3390/md23010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Heavy chain-only antibodies in sharks are called immunoglobulin new antigen receptors (IgNAR), consisting of one variable region (VNAR) and five constant regions (C1-C5). The variable region of IgNAR can be expressed as a monomer composed of a single domain, which has antigen specificity and is thus gaining attention as a next-generation antibody drug modality. In this study, we analyzed IgNAR of the cloudy catshark and Japanese bullhead shark, small demersal sharks available in the coastal waters of Japan. By analyzing the IgNAR gene sequence and comparing it with the constant regions of five other known shark species, high homology was observed in the C4 region. Consequently, we expressed the recombinant protein of the C4 domain from the cloudy catshark in E. coli, immunized rats, and produced antibodies. The obtained antiserum and mAbs recognized the C4 recombinant protein of the cloudy catshark, but reacted minimally with the plasma of non-immunized cloudy catsharks and instead reacted with the plasma of Japanese bullhead sharks. The results of this study imply that the protein expression levels of IgNAR in cloudy catsharks may be relatively lower compared to those in Japanese bullhead sharks, however, this interpretation remains to be determined through further studies.
Collapse
Grants
- JPMJST2281 Japan Science and Technology Agency
- JP16K08844 Ministry of Education, Culture, Sports, Science and Technology
- JP23K06677 Ministry of Education, Culture, Sports, Science and Technology
- JP23H02898 Ministry of Education, Culture, Sports, Science and Technology
- A48 Japan Agency for Medical Research and Development
- A90 Japan Agency for Medical Research and Development
- 23-A-19 Japan Agency for Medical Research and Development
- 24fk0310518h0003 Japan Agency for Medical Research and Development
- JP223fa627004 Japan Agency for Medical Research and Development
- 24ama121032j0003 Japan Agency for Medical Research and Development
- JP23K06117 Ministry of Education, Culture, Sports, Science and Technology
- 2023houga SHIONOGI INFECTIOUS DISEASE RESEARCH PROMOTION FOUNDATION
- YT Research Funding granted by Nagasaki University President Shigeru Kohno
Collapse
Affiliation(s)
- Reo Uemura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan (K.T.)
| | - Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan (K.T.)
| | - Nao Yamaguchi
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan (K.T.)
| | - Ryuichi Kuroiwa
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan (K.T.)
| | - Gabriel Takashi Andrés Tsutsumi
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan (K.T.)
| | - Toshiaki Fujikawa
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, 1551-7, Taira-machi, Nagasaki 851-2213, Japan; (T.F.); (K.S.)
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, 1551-7, Taira-machi, Nagasaki 851-2213, Japan; (T.F.); (K.S.)
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan (K.T.)
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| |
Collapse
|
8
|
Yu T, Zheng F, He W, Muyldermans S, Wen Y. Single domain antibody: Development and application in biotechnology and biopharma. Immunol Rev 2024; 328:98-112. [PMID: 39166870 PMCID: PMC11659936 DOI: 10.1111/imr.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heavy-chain antibodies (HCAbs) are a unique type of antibodies devoid of light chains, and comprised of two heavy chains-only that recognize their cognate antigen by virtue of a single variable domain also referred to as VHH, single domain antibody (sdAb), or nanobody (Nb). These functional HCAbs, serendipitous discovered about three decades ago, are exclusively found in camelids, comprising dromedaries, camels, llamas, and vicugnas. Nanobodies have become an essential tool in biomedical research and medicine, both in diagnostics and therapeutics due to their beneficial properties: small size, high stability, strong antigen-binding affinity, low immunogenicity, low production cost, and straightforward engineering into more potent affinity reagents. The occurrence of HCAbs in camelids remains intriguing. It is believed to be an evolutionary adaptation, equipping camelids with a robust adaptive immune defense suitable to respond to the pressure from a pathogenic invasion necessitating a more profound antigen recognition and neutralization. This evolutionary innovation led to a simplified HCAb structure, possibly supported by genetic mutations and drift, allowing adaptive mutation and diversification in the heavy chain variable gene and constant gene regions. Beyond understanding their origins, the application of nanobodies has significantly advanced over the past 30 years. Alongside expanding laboratory research, there has been a rapid increase in patent application for nanobodies. The introduction of commercial nanobody drugs such as Cablivi, Nanozora, Envafolimab, and Carvykti has boosted confidence among in their potential. This review explores the evolutionary history of HCAbs, their ontogeny, and applications in biotechnology and pharmaceuticals, focusing on approved and ongoing medical research pipelines.
Collapse
Affiliation(s)
- Ting Yu
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Wenbo He
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Yurong Wen
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
9
|
Shoemaker RL, Larsen RJ, Larsen PA. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front Immunol 2024; 15:1426656. [PMID: 39238639 PMCID: PMC11374656 DOI: 10.3389/fimmu.2024.1426656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability. This has led to a burgeoning interest in alternative immunotherapeutic avenues. Notably, single-domain antibodies (or nanobodies) and aptamers have emerged as promising candidates, as their reduced size facilitates high affinity antigen binding and they exhibit superior biophysical stability compared to mAbs. Aptamers, synthetic molecules generated from DNA or RNA ligands, present both rapid production times and cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities suitable for ND research and therapeutic development. Cross-seeding events must be considered in both traditional and small-molecule-based immunodiagnostic and therapeutic approaches, as well as subsequent neurotoxic impacts and complications beyond protein aggregates. This review delineates the challenges traditional immunological methods pose in ND research and underscores the potential of nanobodies and aptamers in advancing next-generation ND diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rachel L Shoemaker
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Roxanne J Larsen
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
- Priogen Corp., St. Paul, MN, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| |
Collapse
|
10
|
Manzanares-Guzmán A, Lugo-Fabres PH, Camacho-Villegas TA. vNARs as Neutralizing Intracellular Therapeutic Agents: Glioblastoma as a Target. Antibodies (Basel) 2024; 13:25. [PMID: 38534215 DOI: 10.3390/antib13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Glioblastoma is the most prevalent and fatal form of primary brain tumors. New targeted therapeutic strategies for this type of tumor are imperative given the dire prognosis for glioblastoma patients and the poor results of current multimodal therapy. Previously reported drawbacks of antibody-based therapeutics include the inability to translocate across the blood-brain barrier and reach intracellular targets due to their molecular weight. These disadvantages translate into poor target neutralization and cancer maintenance. Unlike conventional antibodies, vNARs can permeate tissues and recognize conformational or cryptic epitopes due to their stability, CDR3 amino acid sequence, and smaller molecular weight. Thus, vNARs represent a potential antibody format to use as intrabodies or soluble immunocarriers. This review comprehensively summarizes key intracellular pathways in glioblastoma cells that induce proliferation, progression, and cancer survival to determine a new potential targeted glioblastoma therapy based on previously reported vNARs. The results seek to support the next application of vNARs as single-domain antibody drug-conjugated therapies, which could overcome the disadvantages of conventional monoclonal antibodies and provide an innovative approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Pavel H Lugo-Fabres
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Tanya A Camacho-Villegas
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
11
|
Wang Z, Xie X, He Z, Sun Z, Zhang Y, Mao F, Pei H, Zhang S, Hammock BD, Liu X. Development of Shark Single Domain Antibodies Specific for Human α-Fetoprotein and the Multimerization Strategy in Serum Detection. Anal Chem 2024; 96:4242-4250. [PMID: 38408370 DOI: 10.1021/acs.analchem.3c05675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Sensitive detection of cancer biomarkers can contribute to the timely diagnosis and treatment of diseases. In this study, the whitespotted bamboo sharks were immunized with human α-fetoprotein (AFP), and a phage-displayed variable new antigen receptor (VNAR) single domain antibody library was constructed. Then four unique VNARs (VNAR1, VNAR11, VNAR21, and VNAR25) against AFP were isolated from the library by biopanning for the first time. All of the sequences belong to type II of VNAR, and the VNAR11 was much different from the rest of the three sequences. Then VNAR1 and VNAR11 were selected to fuse with the C4-binding protein α chain (C4bpα) sequence and efficiently expressed in the Escherichia coli system. Furthermore, a VNAR-C4bpα-mediated sandwich chemiluminescence immunoassay (VSCLIA) was developed for the detection of AFP in human serum samples. After optimization, the VSCLIA showed a limit of detection of 0.74 ng/mL with good selectivity and accuracy. Moreover, the results of clinical serum samples detected by the VSCLIA were confirmed by an automatic immunoanalyzer in the hospital, indicating its practical application in actual samples. In conclusion, the novel antibody element VNAR exhibits great potential for immunodiagnosis, and this study also provides a new direction and experimental basis for AFP detection.
Collapse
Affiliation(s)
- Zheming Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Ludwig SD, Zhu A, Maremanda AP, Dooley HM, Spangler JB. Design and Construction of Antibody Fusion Proteins Incorporating Variable New Antigen Receptor (VNAR) Domains. Methods Mol Biol 2024; 2720:17-33. [PMID: 37775655 DOI: 10.1007/978-1-0716-3469-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Antibody therapeutics have become a cornerstone of the pharmaceutical market due to their precise molecular targeting, favorable pharmacokinetic properties, and multitiered mechanisms of action. Since the first monoclonal antibody was clinically approved 35 years ago, there have been considerable advances in antibody technology. A major breakthrough has been the design of multispecific antibodies and antibody fusion proteins, which introduce the possibility of recognizing two or more targets with a single molecule. However, despite tremendous progress in the antibody engineering field, challenges in formulation, stability, and tissue penetration necessitate the design of novel antibody formats with improved pharmaceutical properties. There is a growing interest in development of single-domain antibodies, which harbor advantages such as high solubility, robust thermostability, and unique geometries that allow for access to cryptic epitopes. Chondrichthyes such as sharks and rays provide a source of single-domain antibody fragments known as variable new antigen receptors (VNARs), which have been exploited as molecular targeting agents. Here, we describe methods to engineer antibody fusion proteins that incorporate VNARs. We present multiple fusion topologies, and detail the design, expression, and purification for each format. These novel antibody fusion proteins hold great promise for a range of applications in biomedical research and therapeutic design.
Collapse
Affiliation(s)
- Seth D Ludwig
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Angela Zhu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Helen M Dooley
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology (IMET), Baltimore, MD, USA
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Smyth P, Ferguson L, Burrows JF, Burden RE, Tracey SR, Herron ÚM, Kovaleva M, Williams R, Porter AJ, Longley DB, Barelle CJ, Scott CJ. Evaluation of variable new antigen receptors (vNARs) as a novel cathepsin S (CTSS) targeting strategy. Front Pharmacol 2023; 14:1296567. [PMID: 38116078 PMCID: PMC10728302 DOI: 10.3389/fphar.2023.1296567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Aberrant activity of the cysteine protease Cathepsin S (CTSS) has been implicated across a wide range of pathologies. Notably in cancer, CTSS has been shown to promote tumour progression, primarily through facilitating invasion and migration of tumour cells and augmenting angiogenesis. Whilst an attractive therapeutic target, more efficacious CTSS inhibitors are required. Here, we investigated the potential application of Variable New Antigen Receptors (vNARs) as a novel inhibitory strategy. A panel of potential vNAR binders were identified following a phage display panning process against human recombinant proCTSS. These were subsequently expressed, purified and binding affinity confirmed by ELISA and SPR based approaches. Selected lead clones were taken forward and were shown to inhibit CTSS activity in recombinant enzyme activity assays. Further assessment demonstrated that our lead clones functioned by a novel inhibitory mechanism, by preventing the activation of proCTSS to the mature enzyme. Moreover, using an intrabody approach, we exhibited the ability to express these clones intracellularly and inhibit CTSS activity whilst lead clones were also noted to impede cell invasion in a tumour cell invasion assay. Collectively, these findings illustrate a novel mechanistic approach for inhibiting CTSS activity, with anti-CTSS vNAR clones possessing therapeutic potential in combating deleterious CTSS activity. Furthermore, this study exemplifies the potential of vNARs in targeting intracellular proteins, opening a range of previously "undruggable" targets for biologic-based therapy.
Collapse
Affiliation(s)
- P. Smyth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - J. F. Burrows
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - R. E. Burden
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - S. R. Tracey
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Ú. M. Herron
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - R. Williams
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - A. J. Porter
- Elasmogen Ltd., Aberdeen, United Kingdom
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - D. B. Longley
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - C. J. Scott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
14
|
Nakada-Masuta T, Takeda H, Uchida K. Novel Approach for Obtaining Variable Domain of New Antigen Receptor with Different Physicochemical Properties from Japanese Topeshark ( Hemitriakis japanica). Mar Drugs 2023; 21:550. [PMID: 37999374 PMCID: PMC10672104 DOI: 10.3390/md21110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Diverse candidate antibodies are needed to successfully identify therapeutic and diagnostic applications. The variable domain of IgNAR (VNAR), a shark single-domain antibody, has attracted attention owing to its favorable physicochemical properties. The phage display method used to screen for optimal VNARs loses sequence diversity because of the bias caused by the differential ease of protein expression in Escherichia coli. Here, we investigated a VNAR selection method that combined panning with various selection pressures and next-generation sequencing (NGS) analyses to obtain additional candidates. Drawing inspiration from the physiological conditions of sharks and the physicochemical properties of VNARs, we examined the effects of NaCl and urea concentrations, low temperature, and preheating at the binding step of panning. VNAR phage libraries generated from Japanese topeshark (Hemitriakis japanica) were enriched under these conditions. We then performed NGS analysis and attempted to select clones that were specifically enriched under each panning condition. The identified VNARs exhibited higher reactivity than those obtained by panning without selection pressure. Additionally, they possess physicochemical properties that reflect their respective selection pressures. These results can greatly enhance our understanding of VNAR properties and offer guidance for the screening of high-quality VNAR clones that are present at low frequencies.
Collapse
Affiliation(s)
- Tomofumi Nakada-Masuta
- Graduate School of Science, Technology and Innovation, Kobe University, 7-1-49 Minatojimaminamimachi Chuo-ku, Kobe 650-0047, Japan;
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, 4-3-2 Nishi-ku Takatsukadai, Kobe 651-2271, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Ehime University Proteo-Science Center, Bunkyocho 3, Matsuyama 790-8577, Japan;
| | - Kazuhisa Uchida
- Graduate School of Science, Technology and Innovation, Kobe University, 7-1-49 Minatojimaminamimachi Chuo-ku, Kobe 650-0047, Japan;
| |
Collapse
|
15
|
Jiang X, Sun L, Hu C, Zheng F, Lyu Z, Shao J. Shark IgNAR: The Next Broad Application Antibody in Clinical Diagnoses and Tumor Therapies? Mar Drugs 2023; 21:496. [PMID: 37755109 PMCID: PMC10532743 DOI: 10.3390/md21090496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Antibodies represent a relatively mature detection means and serve as therapeutic drug carriers in the clinical diagnosis and treatment of cancer-among which monoclonal antibodies (mAbs) currently occupy a dominant position. However, the emergence and development of small-molecule monodomain antibodies are inevitable due to the many limitations of mAbs, such as their large size, complex structure, and sensitivity to extreme temperature, and tumor microenvironments. Thus, since first discovered in Chondroid fish in 1995, IgNAR has become an alternative therapeutic strategy through which to replace monoclonal antibodies, thus entailing that this novel type of immunoglobulin has received wide attention with respect to clinical diagnoses and tumor therapies. The variable new antigen receptor (VNAR) of IgNAR provides an advantage for the development of new antitumor drugs due to its small size, high stability, high affinity, as well as other structural and functional characteristics. In that respect, a better understanding of the unique characteristics and therapeutic potential of IgNAR/VNAR in clinical and anti-tumor treatment is needed. This article reviews the advantages of its unique biochemical conditions and molecular structure for clinical diagnoses and novel anti-tumor drugs. At the same time, the main advantages of the existing conjugated drugs, which are based on single-domain antibodies, are introduced here, thereby providing new ideas and methods for the development of clinical diagnoses and anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Jiangsu Baiying Biotech Co., Ltd., Taizhou 225300, China;
| | - Ling Sun
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengwu Hu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feijian Zheng
- Jiangsu Baiying Biotech Co., Ltd., Taizhou 225300, China;
| | - Zhengbing Lyu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Takeda H, Ozawa T, Zenke H, Ohnuki Y, Umeda Y, Zhou W, Tomoda H, Takechi A, Narita K, Shimizu T, Miyakawa T, Ito Y, Sawasaki T. VNAR development through antigen immunization of Japanese topeshark ( Hemitriakis japanica). Front Bioeng Biotechnol 2023; 11:1265582. [PMID: 37771574 PMCID: PMC10522858 DOI: 10.3389/fbioe.2023.1265582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
The VNAR (Variable New Antigen Receptor) is the smallest single-domain antibody derived from the variable domain of IgNAR of cartilaginous fishes. Despite its biomedical and diagnostic potential, research on VNAR has been limited due to the difficulties in obtaining and maintaining immune animals and the lack of research tools. In this study, we investigated the Japanese topeshark as a promising immune animal for the development of VNAR. This shark is an underutilized fishery resource readily available in East Asia coastal waters and can be safely handled without sharp teeth or venomous stingers. The administration of Venus fluorescent protein to Japanese topesharks markedly increased antigen-specific IgM and IgNAR antibodies in the blood. Both the phage-display library and the yeast-display library were constructed using RNA from immunized shark splenocytes. Each library was enriched by biopanning, and multiple antigen-specific VNARs were acquired. The obtained antibodies had affinities of 1 × 10-8 M order and showed high plasticity, retaining their binding activity even after high-temperature or reducing-agent treatment. The dissociation rate of a low-affinity VNAR was significantly improved via dimerization. These results demonstrate the potential utility of the Japanese topeshark for the development of VNAR. Furthermore, we conducted deep sequencing analysis to reveal the quantitative changes in the CDR3-coding sequences, revealing distinct enrichment bias between libraries. VNARs that were primarily enriched in the phage display had CDR3 coding sequences with fewer E. coli rare codons, suggesting translation machinery on the selection and enrichment process during biopanning.
Collapse
Affiliation(s)
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Center for Advanced Antibody Drug Development, University of Toyama, Toyama, Japan
| | - Hiroki Zenke
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yoh Ohnuki
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuri Umeda
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Wei Zhou
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Honoka Tomoda
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Akihiko Takechi
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Kimiyoshi Narita
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Takaaki Shimizu
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | | |
Collapse
|
17
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
18
|
Lim HT, Kok BH, Leow CY, Leow CH. Exploring shark VNAR antibody against infectious diseases using phage display technology. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108986. [PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
Collapse
Affiliation(s)
- Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
19
|
Chen YL, Xie XX, Zheng P, Zhu C, Ma H, Khalid Z, Xie YJ, Dang YZ, Ye Y, Sheng N, Zhong N, Lei WH, Zhang C, Zhang LJ, Jin T, Cao MJ. Selection, identification and crystal structure of shark-derived single-domain antibodies against a green fluorescent protein. Int J Biol Macromol 2023; 247:125852. [PMID: 37460076 DOI: 10.1016/j.ijbiomac.2023.125852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Shark variable domain of new antigen receptors (VNARs) are the smallest naturally occurring binding domains with properties of low complexity, small size, cytoplasmic expression, and ease of engineering. Green fluorescent protein (GFP) molecules have been analyzed in conventional microscopy, but their spectral characteristics preclude their use in techniques offering substantially higher resolution. Besides, the GFP molecules can be quenched in acidic environment, which makes it necessary to develop anti-GFP antibody to solve these problems. In view of the diverse applications of GFP and unique physicochemical features of VNAR, the present study aims to generate VNARs against GFP. Here, we identified 36 VNARs targeting eCGP123, an extremely stable GFP, by phage display from three immunized sharks. These VNARs bound to eCGP123 with affinity constant KD values ranging from 6.76 to 605 nM. Among them, two lead VNARs named aGFP-14 and aGFP-15 with nanomolar eCGP123-binding affinity were selected for in-depth characterization. aGFP-14 and aGFP-15 recognized similar epitopes on eCGP123. X-ray crystallography studies clarified the mechanism by which aGFP14 interacts with eCGP123. aGFP-14 also showed cross-reaction with EGFP, with KD values of 47.2 nM. Finally, immunostaining analyses demonstrated that aGFP-14 was able to bind effectively to the EGFP expressed in both cultured cells and mouse brain tissues, and can be used as a fluorescence amplifier for EGFP. Our research demonstrates a feasible idea for the screening and production of shark-derived VNARs. The two high-affinity VNARs developed in the study contribute to the diversity of GFP sdAbs and may enhance the applications of GFP.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xin-Xin Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Peiyi Zheng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Chenchen Zhu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Huan Ma
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Zunera Khalid
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Yang-Jie Xie
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yi-Zhao Dang
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yaxin Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wen-Hui Lei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | | | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China.
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
20
|
Liu C, Yang Q, Lin H, Cao L, Wang K, Sui J. Biopanning, Heterologous Expression, and Characterization of a Shark-Derived Single-Domain Antibody Fusion Protein against Pancreatic Lipase. ACS Biomater Sci Eng 2023. [PMID: 37257170 DOI: 10.1021/acsbiomaterials.2c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nowadays, obesity severely impacts human health and is the fifth leading risk factor that leads to death globally. Pancreatic lipase (PL) inhibitors have attracted extensive attention owing to their role in effective prevention and treatment of obesity. Here, a shark-derived single-domain antibody fusion protein was used to inhibit PL for the first time. After biopanning, the heterologous expression system pET28a-SUMO-D2 was constructed using the method of double restriction enzyme digestion and T4 ligase to achieve the soluble expression of the PL-specific antibody gene D2. According to the calculation of protein concentration, the final expression of fusion protein PL-D2S was 1.183 mg per liter of Luria Bertani broth. The binding ability of the soluble fusion protein PL-D2S to PL was identified. Enzyme-linked immunosorbent assay results showed that the fusion protein PL-D2S exhibited a strong binding affinity to PL. The experimental results of PL inhibition of PL-D2S in vitro showed that the fusion protein could significantly inhibit the activity of PL, with an IC50 of 404 μg/mL. Our study shows that the fusion protein PL-D2S is a potential PL inhibitor to prevent and treat obesity.
Collapse
Affiliation(s)
- Chang Liu
- College of Food Science and Engineering, Ocean University of China, #1399 Sansha Road, Qingdao 266100, Shandong, China
| | - Qing Yang
- College of Food Science and Engineering, Ocean University of China, #1399 Sansha Road, Qingdao 266100, Shandong, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, #1399 Sansha Road, Qingdao 266100, Shandong, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, #1399 Sansha Road, Qingdao 266100, Shandong, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, #1399 Sansha Road, Qingdao 266100, Shandong, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, #1399 Sansha Road, Qingdao 266100, Shandong, China
| |
Collapse
|
21
|
Manoutcharian K, Gevorkian G. Shark VNAR phage display libraries: An alternative source for therapeutic and diagnostic recombinant antibody fragments. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108808. [PMID: 37169114 DOI: 10.1016/j.fsi.2023.108808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The development of recombinant antibody fragments as promising alternatives to full-length immunoglobulins offers vast opportunities for biomedicine. Antibody fragments have important advantages compared with conventional monoclonal antibodies that make them attractive for the biotech industry: superior stability and solubility, reduced immunogenicity, higher specificity and affinity, capacity to target the hidden epitope and cross the blood-brain barrier, the ability to refold after heat denaturation and inexpensive and easy large-scale production. Different antibody formats such as antigen-binding fragments (Fab), single-chain fragment variable (scFv) consisting of the antigen-binding domains of Ig heavy (VH) and light (VL) chain regions connected by a flexible peptide linker, single-domain antibody fragments (sdAbs) like camelid heavy-chain variable domains (VHHs) and shark variable new antigen receptor (VNARs), and bispecific antibodies (bsAbs) are currently being evaluated as diagnostics or therapeutics in preclinical studies and clinical trials. In the present review, we summarize and discuss studies on VNARs, the smallest recombinant antibody fragment, obtained after the screening of different types of phage display antibody libraries. Results published until March 2023 are discussed.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico.
| |
Collapse
|
22
|
Cawez F, Mercuri PS, Morales-Yãnez FJ, Maalouf R, Vandevenne M, Kerff F, Guérin V, Mainil J, Thiry D, Saulmont M, Vanderplasschen A, Lafaye P, Aymé G, Bogaerts P, Dumoulin M, Galleni M. Development of Nanobodies as Theranostic Agents against CMY-2-Like Class C β-Lactamases. Antimicrob Agents Chemother 2023; 67:e0149922. [PMID: 36892280 PMCID: PMC10112224 DOI: 10.1128/aac.01499-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
Three soluble single-domain fragments derived from the unique variable region of camelid heavy-chain antibodies (VHHs) against the CMY-2 β-lactamase behaved as inhibitors. The structure of the complex VHH cAbCMY-2(254)/CMY-2 showed that the epitope is close to the active site and that the CDR3 of the VHH protrudes into the catalytic site. The β-lactamase inhibition pattern followed a mixed profile with a predominant noncompetitive component. The three isolated VHHs recognized overlapping epitopes since they behaved as competitive binders. Our study identified a binding site that can be targeted by a new class of β-lactamase inhibitors designed on the sequence of the paratope. Furthermore, the use of mono- or bivalent VHH and rabbit polyclonal anti-CMY-2 antibodies enables the development of the first generation of enzyme-linked immunosorbent assay (ELISA) for the detection of CMY-2 produced by CMY-2-expressing bacteria, irrespective of resistotype.
Collapse
Affiliation(s)
- Frédéric Cawez
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Paola Sandra Mercuri
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Francisco Javier Morales-Yãnez
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
| | - Rita Maalouf
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Marylène Vandevenne
- InBios, Center for Protein Engineering, ROBOTEIN, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Frederic Kerff
- InBioS, Center for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Virginie Guérin
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Jacques Mainil
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Damien Thiry
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), Ciney, Belgium
| | - Alain Vanderplasschen
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
- Immunology-Vaccinology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 328, Paris, France
| | - Gabriel Aymé
- Institut Pasteur, Université Paris Cité, CNRS UMR 328, Paris, France
| | - Pierre Bogaerts
- National Reference Center for Antibiotic-Resistant Gram-Negative Bacilli, Department of Clinical Microbiology, CHU UCL Namur, Yvoir, Belgium
| | - Mireille Dumoulin
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
23
|
Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity. Nat Commun 2023; 14:580. [PMID: 36737435 PMCID: PMC9896449 DOI: 10.1038/s41467-023-36106-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.
Collapse
|
24
|
Joyce C, Speight L, Lawson ADG, Scott-Tucker A, Macpherson A. Phage Display of Bovine Ultralong CDRH3. Methods Mol Biol 2023; 2681:83-97. [PMID: 37405644 DOI: 10.1007/978-1-0716-3279-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Phage display is an in vitro technique used in the discovery of monoclonal antibodies that has been used successfully in the discovery of both camelid VHH and shark variable new antigen receptor domains (VNAR). Bovines also contain a unique "ultralong CDRH3" with a conserved structural motif, comprising a knob domain and β-stalk. When removed from the antibody scaffold, either the entire ultralong CDRH3 or the knob domain alone, is typically capable of binding an antigen, to produce antibody fragments that are smaller than both VHH and VNAR. By extracting immune material from bovine animals and specifically amplifying knob domain DNA sequences by PCR, knob domain sequences can be cloned into a phagemid vector producing knob domain phage libraries. Target-specific knob domains can be enriched by panning the libraries against an antigen of interest. Phage display of knob domains exploits the link between phage genotype and phenotype and could prove to be a high throughput method to discover target-specific knob domains, helping to explore the pharmacological properties of this unique antibody fragment.
Collapse
|
25
|
Cordell P, Carrington G, Curd A, Parker F, Tomlinson D, Peckham M. Affimers and nanobodies as molecular probes and their applications in imaging. J Cell Sci 2022; 135:276020. [PMID: 35848463 PMCID: PMC9450889 DOI: 10.1242/jcs.259168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies are the most widely used, traditional tool for labelling molecules in cells. In the past five to ten years, many new labelling tools have been developed with significant advantages over the traditional antibody. Here, we focus on nanobodies and the non-antibody binding scaffold proteins called Affimers. We explain how they are generated, selected and produced, and we describe how their small size, high binding affinity and specificity provides them with many advantages compared to antibodies. Of particular importance, their small size enables them to better penetrate dense cytoskeletal regions within cells, as well as tissues, providing them with specific advantage for super-resolution imaging, as they place the fluorophore with a few nanometres of the target protein being imaged. We expect these novel tools to be of broad interest to many cell biologists and anticipate them becoming the tools of choice for super-resolution imaging.
Collapse
|
26
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
27
|
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151-2169. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigen. Teaser: This review provides an overview of the different strategies that can be exploited to improve the success rate of antibody phage display discovery campaigns, addressing key parameters, such as antigen presentation, selection methodologies, and specialized libraries.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - John McCafferty
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK; Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
28
|
Identification of Anti-TNFα VNAR Single Domain Antibodies from Whitespotted Bambooshark (Chiloscyllium plagiosum). Mar Drugs 2022; 20:md20050307. [PMID: 35621957 PMCID: PMC9146136 DOI: 10.3390/md20050307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor necrosis factor α (TNFα), an important clinical testing factor and drug target, can trigger serious autoimmune diseases and inflammation. Thus, the TNFα antibodies have great potential application in diagnostics and therapy fields. The variable binding domain of IgNAR (VNAR), the shark single domain antibody, has some excellent advantages in terms of size, solubility, and thermal and chemical stability, making them an ideal alternative to conventional antibodies. This study aims to obtain VNARs that are specific for mouse TNF (mTNF) from whitespotted bamboosharks. After immunization of whitespotted bamboosharks, the peripheral blood leukocytes (PBLs) were isolated from the sharks, then the VNAR phage display library was constructed. Through phage display panning against mTNFα, positive clones were validated through ELISA assay. The affinity of the VNAR and mTNFα was measured using ELISA and Bio-Layer Interferometry. The binding affinity of 3B11 VNAR reached 16.7 nM. Interestingly, one new type of VNAR targeting mTNF was identified that does not belong to any known VNAR type. To understand the binding mechanism of VNARs to mTNFα, the models of VNARs-mTNFα complexes were predicted by computational modeling combining HawkDock and RosettaDock. Our results showed that four VNARs’ epitopes overlapped in part with that of mTNFR. Furthermore, the ELISA assay shows that the 3B11 potently inhibited mTNFα binding to mTNFR. This study may provide the basis for the TNFα blockers and diagnostics applications.
Collapse
|
29
|
Khalid Z, Chen Y, Yu D, Abbas M, Huan M, Naz Z, Mengist HM, Cao MJ, Jin T. IgNAR antibody: Structural features, diversity and applications. FISH & SHELLFISH IMMUNOLOGY 2022; 121:467-477. [PMID: 35077867 DOI: 10.1016/j.fsi.2022.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In response to the invasion of exogenous microorganisms, one of the defence strategies of the immune system is to produce antibodies. Cartilaginous fish is among those who evolved the earliest humoral immune system that utilizes immunoglobulin-type antibodies. The cartilaginous fish antibodies fall into three categories: IgW, IgM, and IgNAR. The shark Immunoglobulin Novel Antigen Receptor (IgNAR) constitutes disulfide-bonded dimers of two protein chains, similar to the heavy chain of mammalian IgGs. Shark IgNAR is the primary antibody of a shark's adaptive immune system with a serum concentration of 0.1-1.0 mg/mL. Its structure comprises of one variable (V) domain (VNAR) and five constant (C1 -C5) domains in the secretory form. VNARs are classified into several subclasses based on specific properties such as the quantity and position of additional non-canonical cysteine (Cys) residues in the VNAR. The VDJ recombination in IgNAR comprises various fragments; one variable component, three diverse sections, one joining portion, and a solitary arrangement of constant fragments framed in each IgNAR gene cluster. The re-arrangement happens just inside this gene cluster bringing about a VD1D2D3J segment. Therefore, four re-arrangement procedures create the entire VNAR space. IgNAR antibody can serve as an excellent diagnostic, therapeutic, and research tool because it has a smaller size, high specificity for antigen-binding, and perfect stability. The domain characterization, structural features, types, diversity and therapeutic applications of IgNAR molecules are highlighted in this review. It would be helpful for further research on IgNAR antibodies acting as an essential constituent of the adaptive immune system and a potential therapeutic agent.
Collapse
Affiliation(s)
- Zunera Khalid
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yulei Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Du Yu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Misbah Abbas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ma Huan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zara Naz
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hylemariam Mihiretie Mengist
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| |
Collapse
|
30
|
Liu X, Sui J, Li C, Peng X, Wang Q, Jiang N, Xu Q, Wang L, Lin J, Zhao G. Preparation of a Nanobody Specific to Dectin 1 and Its Anti-inflammatory Effects on Fungal Keratitis. Int J Nanomedicine 2022; 17:537-551. [PMID: 35140463 PMCID: PMC8818967 DOI: 10.2147/ijn.s338974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Objective To prepare a nanobody specific to dectin 1 and verify its specificity and anti-inflammatory effects on Aspergillus fumigatus keratitis. Methods The nanobody was selected from a high-quality shark-antibody library constructed with phage-display technology. The nanobody was developed in the expression systems of Escherichia coli. Indirect ELISA was used to determine the specificity of the nanobody to recombinant dectin 1 protein. The potential of the nanobody to be recognized and expressed on the surfaces of cells and corneas was detected by immunofluorescence, and its anti-inflammatory effect on A. fumigatus keratitis was further verified. After infection with A. fumigatus, eyes of C57B L/6 mice were treated with nanobodies. Human corneal epithelial cells (HCECs) were pretreated with nanobodies and then incubated with A. fumigatus. Clinical scores and slit-lamp photography were used to assess disease response in mouse corneas. RT-PCR and ELISA were used to evaluate mRNA and protein expression of IL1β and IL6 in both mouse corneas and HCECs. Results The nanobody was successfully expressed through microbial system and showed specific high-affinity binding to recombinant dectin 1. Furthermore, it exhibited specific binding to dectin 1 expressed on the surfaces of cells and recognized dectin 1 in mouse corneas. Importantly, it reduced clinical scores of A. fumigatus keratitis in mice compared with a PBS-treatment group. In addition, it decreased mRNA and protein expression of IL1β and IL6 in infected corneas and HCECs stimulated with A. fumigatus. Conclusion These results suggest that this nanobody can bring about anti-inflammatory effects. This highlights the potential of these nanobodies as innovative therapeutic agents in A. fumigatus.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| | - Cui Li
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xudong Peng
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qian Wang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Nan Jiang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qiang Xu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Luokai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| | - Jing Lin
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Jing Lin; Guiqiu Zhao, Department of Ophthalmology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao266003, Shandong, People’s Republic of China, Email ;
| | - Guiqiu Zhao
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
31
|
Pandey SS, Kovaleva M, Barelle CJ, Ubah OC. Overview, Generation, and Significance of Variable New Antigen Receptors (VNARs) as a Platform for Drug and Diagnostic Development. Methods Mol Biol 2022; 2446:19-33. [PMID: 35157267 DOI: 10.1007/978-1-0716-2075-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The approval of the first VHH-based drug caplacizumab (anti-von Willebrand factor) has validated a two-decade long commitment in time and research effort to realize the clinical potential of single-domain antibodies. The variable domain (VNAR) of the immunoglobulin new antigen receptor (IgNAR) found in sharks provides an alternative small binding domain to conventional monoclonal antibodies and their fragments and heavy-chain antibody-derived VHHs. Evolutionarily distinct from mammalian antibody variable domains, VNARs have enhanced thermostability and unusual convex paratopes. This predisposition to bind cryptic and recessed epitopes has facilitated both the targeting of new antigens and new (neutralizing) epitopes on existing antigens. Together these unique properties position the VNAR platform as an alternative non-antibody binding domain for therapeutic drug, diagnostic and reagent development. In this introductory chapter, we highlight recent VNAR advancements that further underline the exciting potential of this discovery platform.
Collapse
|
32
|
Dooley H. Generation of VNAR Libraries from Immunized Sharks and Selection of Target-Specific Clones. Methods Mol Biol 2022; 2421:57-72. [PMID: 34870811 DOI: 10.1007/978-1-0716-1944-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cartilaginous fishes (sharks, skates, rays, and chimeras) are the most phylogenetically distant lineage relative to mammals in which somatically rearranging immunoglobulins (Igs or antibodies) have also been found. Alongside their conventional (heavy-light chain) isotypes, IgM and IgW, sharks produce the novel isotype, IgNAR, a heavy-chain homodimer. Naturally lacking light chains, antigen binding is mediated by two highly soluble and independently functioning variable domains, or VNARs, each having a molecular weight of approximately 12 kDa. The small size, high affinity for antigen, and extreme structural stability of single-domain VNARs make them an emerging prospect for use in therapeutic, diagnostic, and research applications. In this chapter, we detail the immunization protocol we use to raise an antigen-specific IgNAR response in the nurse shark (Ginglymostoma cirratum), the subsequent cloning of the variable domains from this isotype, and the selection of antigen-specific VNARs by phage display.
Collapse
Affiliation(s)
- Helen Dooley
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
33
|
Gasperin-Bulbarela J, Cabanillas-Bernal O, Dueñas S, Licea-Navarro AF. Preparation of Immune and Synthetic VNAR Libraries as Sources of High-Affinity Binders. Methods Mol Biol 2022; 2446:71-93. [PMID: 35157269 DOI: 10.1007/978-1-0716-2075-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The shark-derived autonomous variable antibody domains known as VNARs are attractive tools for therapeutic and diagnostic applications due to their favorable properties like small size (approximately 12 kDa), high thermal and chemical stability, and good tissue penetration. Currently, different techniques have been reported to generate VNAR domains against targets of therapeutic interest. Here, we describe methods for the preparation of an immune VNAR library based on bacteriophage display, and for the preparation of a synthetic library of VNAR domains using a modified protocol based on Kunkel mutagenesis. Finally, we describe procedures for in silico maturation of a VNAR using a bioinformatic approach to obtain higher affinity binders.
Collapse
Affiliation(s)
| | | | - Salvador Dueñas
- Biomedical Innovation Department, CICESE, Zona Playitas, Ensenada, Mexico
| | | |
Collapse
|
34
|
Wei L, Wang M, Xiang H, Jiang Y, Gong J, Su D, Al Azad MAR, Dong H, Feng L, Wu J, Chan LL, Yang N, Shi J. Bamboo Shark as a Small Animal Model for Single Domain Antibody Production. Front Bioeng Biotechnol 2021; 9:792111. [PMID: 34957081 PMCID: PMC8692893 DOI: 10.3389/fbioe.2021.792111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
The development of shark single domain antibodies (sdAbs) is hindered by the high cost and tediousness of large-sized shark farming. Here, we demonstrated white-spotted bamboo sharks (Chiloscyllium plagiosum) being cultivated commercially as a promising small animal model to produce sdAbs. We found that immunoglobulin new antigen receptor (IgNAR) presented in bamboo shark genome, transcriptome, and plasma. Four complete IgNAR clusters including variable domains (vNARs) were discovered in the germline, and the Variable–Joining pair from IgNAR1 cluster was dominant from immune repertoires in blood. Bamboo sharks developed effective immune responses upon green fluorescent protein (GFP), near-infrared fluorescent protein iRFP713, and Freund’s adjuvant immunization revealed by elevated lymphocyte counts and antigen specific IgNAR. Before and after immunization, the complementarity determining region 3 (CDR3) of IgNAR were the major determinant of IgNAR diversity revealed by 400-bp deep sequencing. To prove that bamboo sharks could produce high-affinity IgNAR, we isolated anti-GFP and anti-iRFP713 vNARs with up to 0.3 and 3.8 nM affinities, respectively, from immunized sharks. Moreover, we constructed biparatopic vNARs with the highest known affinities (20.7 pM) to GFP and validated the functions of anti-GFP vNARs as intrabodies in mammalian cells. Taken together, our study will accelerate the discovery and development of bamboo shark sdAbs for biomedical industry at low cost and easy operation.
Collapse
Affiliation(s)
- Likun Wei
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Meiniang Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Jiang
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jinhua Gong
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dan Su
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - M A R Al Azad
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongming Dong
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Feng
- Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Complete Genomics Inc., San Jose, CA, United States
| | - Jiahai Shi
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China.,Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Soleimanizadeh A, Dinter H, Schindowski K. Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable Fragment Derivatives with Focus on Intranasal Nose to Brain Administration. Antibodies (Basel) 2021; 10:antib10040047. [PMID: 34939999 PMCID: PMC8699001 DOI: 10.3390/antib10040047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
IgG antibodies are some of the most important biopharmaceutical molecules with a high market volume. In spite of the fact that clinical therapies with antibodies are broadly utilized in oncology, immunology and hematology, their delivery strategies and biodistribution need improvement, their limitations being due to their size and poor ability to penetrate into tissues. In view of their small size, there is a rising interest in derivatives, such as single-domain antibodies and single-chain variable fragments, for clinical diagnostic but also therapeutic applications. Smaller antibody formats combine several benefits for clinical applications and can be manufactured at reduced production costs compared with full-length IgGs. Moreover, such formats have a relevant potential for targeted drug delivery that directs drug cargo to a specific tissue or across the blood–brain barrier. In this review, we give an overview of the challenges for antibody drug delivery in general and focus on intranasal delivery to the central nervous system with antibody formats of different sizes.
Collapse
Affiliation(s)
- Arghavan Soleimanizadeh
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Faculty of Medicine, University of Ulm, 89081 Ulm, Germany
| | - Heiko Dinter
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Department of Pharmacy and Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Correspondence:
| |
Collapse
|
36
|
Enatsu H, Okamoto N, Nomura Y, Onitsuka M, Yamano-Adachi N, Koga Y, Omasa T. Production of monoclonal shark-derived immunoglobulin new antigen receptor antibodies using Chinese hamster ovary cell expression system. J Biosci Bioeng 2021; 132:302-309. [PMID: 34119424 DOI: 10.1016/j.jbiosc.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Cartilaginous fishes such as sharks have adaptive immune systems based on immunoglobulins similar to those in mammals. During their evolution, cartilaginous fishes individually have acquired their adaptive immune system called immunoglobulin new antigen receptor (IgNARs). IgNARs maintain their functions in the harsh environment of shark serum, which contains a high concentration of urea to prevent water loss in seawater. Therefore, IgNARs have high structural stability, and are expected to be used as next-generation antibodies in applications different from those of conventional IgG antibodies. However, no recombinant expression system for IgNAR, which has a molecular weight of approximately 147 kDa as a dimer and multiple N-glycosylation sites, has yet been constructed. This has stalled research into IgNAR development. Here, we constructed a recombinant expression system for IgNAR using Chinese hamster ovary (CHO) cells, widely used as hosts for IgG antibody production. Using this system, IgNAR was successfully expressed and purified as a human IgG Fc fusion protein and showed antigen-binding ability. After Protein A affinity purification, followed by specific cleavage and removal of the human Fc-region, the final yield of IgNAR was 1.07 mg/L-medium. Moreover, this CHO cell expression system modified IgNAR with various N-glycans, including high-mannose and complex types. This expression system will allow us to analyze the structure, physicochemical properties, and biological functions of IgNAR. This fundamental information will advance the development of IgNARs for industrial and biotechnological applications.
Collapse
Affiliation(s)
- Hajime Enatsu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Nako Okamoto
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Yoshiki Nomura
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima 7708513, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 6500047, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 6500047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 6500047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan.
| |
Collapse
|
37
|
Shark New Antigen Receptor (IgNAR): Structure, Characteristics and Potential Biomedical Applications. Cells 2021; 10:cells10051140. [PMID: 34066890 PMCID: PMC8151367 DOI: 10.3390/cells10051140] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Shark is a cartilaginous fish that produces new antigen receptor (IgNAR) antibodies. This antibody is identified with a similar human heavy chain but dissimilar sequences. The variable domain (VNAR) of IgNAR is stable and small in size, these features are desirable for drug discovery. Previous study results revealed the effectiveness of VNAR as a single molecule or a combination molecule to treat diseases both in vivo and in vitro with promising clinical applications. We showed the first evidence of IgNAR alternative splicing from spotted bamboo shark (Chiloscyllium plagiosum), broadening our understanding of the IgNARs characteristics. In this review, we summarize the discoveries on IgNAR with a focus on its advantages for therapeutic development based on its peculiar biochemistry and molecular structure. Proper applications of IgNAR will provide a novel avenue to understand its special presence in cartilaginous fishes as well as designing a number of drugs for undefeated diseases.
Collapse
|
38
|
Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J 2021; 289:4304-4327. [DOI: 10.1111/febs.15809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Martin A. Rossotti
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kasandra Bélanger
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kevin A. Henry
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| | - Jamshid Tanha
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| |
Collapse
|
39
|
Phage Display for Imaging Agent Development. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Eve O, Matz H, Dooley H. Proof of long-term immunological memory in cartilaginous fishes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103674. [PMID: 32165114 PMCID: PMC7164379 DOI: 10.1016/j.dci.2020.103674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 05/06/2023]
Abstract
Immunological memory provides long-term protection against pathogen re-infection and is the foundation for successful vaccination. We have previously shown an antigen-specific recall response in nurse sharks almost one year after primary exposure. Herein, we extend the time between prime and successful recall to >8 years, the longest period for which immunological memory has been shown in any non-mammalian vertebrate. We confirm that antigen binding is mediated by monomeric IgM and IgNAR, but not pentameric IgM, in both the primary and recall phases. Our inability to find target-binding clones in recombinant VNAR expression libraries suggests that, at least in this instance, antigen-specific memory cells comprise a small fraction of the IgNAR-positive B cells in epigonal and spleen. Further, that the few memory cells present can generate a robust antigen-specific IgNAR titer following re-stimulation. Our results continue to challenge the long-held, but erroneous, belief that the shark adaptive immune system is 'primitive' when compared to that of mammals.
Collapse
Affiliation(s)
- Oliver Eve
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Hanover Matz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
41
|
Cheong WS, Leow CY, Abdul Majeed AB, Leow CH. Diagnostic and therapeutic potential of shark variable new antigen receptor (VNAR) single domain antibody. Int J Biol Macromol 2020; 147:369-375. [PMID: 31926922 PMCID: PMC7112388 DOI: 10.1016/j.ijbiomac.2020.01.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 12/29/2022]
Abstract
Conventional monoclonal antibodies (mAbs) have been widely used in research and diagnostic applications due to their high affinity and specificity. However, multiple limitations, such as large size, complex structure and sensitivity to extreme ambient temperature potentially weaken the performance of mAbs in certain applications. To address this problem, the exploration of new antigen binders is extensively required in relation to improve the quality of current diagnostic platforms. In recent years, a new immunoglobulin-based protein, namely variable domain of new antigen receptor (VNAR) was discovered in sharks. Unlike conventional mAbs, several advantages of VNARs, include small size, better thermostability and peculiar paratope structure have attracted interest of researchers to further explore on it. This article aims to first present an overview of the shark VNARs and outline the characteristics as an outstanding new reagent for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wei Shien Cheong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| |
Collapse
|
42
|
Abstract
Phage display antibody libraries have proven an invaluable resource for the isolation of diagnostic and potentially therapeutic antibodies, the latter usually being antibody fragments converted into IgG formats. Recent advances in the production of highly diverse and functional antibody libraries are considered here, including for Fabs, scFvs and nanobodies. These advances include codon optimisation during generation of CDR diversity, improved display levels using novel signal sequences, molecular chaperones and isomerases and the use of highly stable scaffolds with relatively high expression levels. In addition, novel strategies for the batch reformatting of scFv and Fab phagemid libraries, derived from phage panning, into IgG formats are described. These strategies allow the screening of antibodies in the end-use format, facilitating more efficient selection of potential therapeutics.
Collapse
|
43
|
Feng R, Wang R, Hong J, Dower CM, Croix BS, Ho M. Isolation of rabbit single domain antibodies to B7-H3 via protein immunization and phage display. Antib Ther 2020; 3:10-17. [PMID: 32166218 DOI: 10.1093/abt/tbaa002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/04/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Single domain antibodies have certain advantages including their small size, high stability and excellent tissue penetration, making them attractive drug candidates. Rabbit antibodies can recognize diverse epitopes, including those that are poorly immunogenic in mice and humans. In the present study, we established a method to isolate rabbit VH single domain antibodies for potential cancer therapy. We immunized rabbits with recombinant human B7-H3 (CD276) protein, made a phage-displayed rabbit VH single domain library with a diversity of 7 × 109, and isolated two binders (A1 and B1; also called RFA1 and RFB1) from phage panning. Both rabbit VH single domains exhibited antigen-dependent binding to B7-H3-positive tumor cell lines but not B7-H3 knockout tumor cell lines. Our study shows that protein immunization followed by phage display screening can be used to isolate rabbit single domain antibodies. The two single domain antibodies reported here may have potential applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Ruonan Feng
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruixue Wang
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Hong
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher M Dower
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
English H, Hong J, Ho M. Ancient species offers contemporary therapeutics: an update on shark V NAR single domain antibody sequences, phage libraries and potential clinical applications. Antib Ther 2020; 3:1-9. [PMID: 32118195 PMCID: PMC7034638 DOI: 10.1093/abt/tbaa001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
The antigen binding variable domain (VNAR) of the shark immunoglobulin new antigen receptor (IgNAR) evolved approximately 500 million years ago and it is one of the smallest antibody fragments in the animal kingdom with sizes of 12-15 kDa. This review discusses the current knowledge of the shark VNAR single domain sequences and ongoing development of shark VNARs as research tools as well as potential therapeutics, in particular highlighting the recent next-generation sequencing analysis of 1.2 million shark VNAR sequences and construction of a large phage displayed shark VNAR library from six naïve adult nurse sharks (Ginglymostoma cirratum). The large phage-displayed VNAR single domain library covers all the four known VNAR types (Types I-IV) and many previously unknown types. Ongoing preclinical development will help define the utility of shark VNAR single domains as a potentially new family of drug candidates for treating cancer and other human diseases.
Collapse
Affiliation(s)
- Hejiao English
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jessica Hong
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Steven J, Ubah OC, Buschhaus M, Kovaleva M, Ferguson L, Porter AJ, Barelle CJ. In Vitro Maturation of a Humanized Shark VNAR Domain to Improve Its Biophysical Properties. Methods Mol Biol 2020; 2070:115-142. [PMID: 31625093 DOI: 10.1007/978-1-4939-9853-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
VNAR domains are the binding regions of new antigen receptor proteins (IgNAR) which are unique to sharks, skates, and rays (Elasmobranchii). Individual VNAR domains can bind antigens independently and are the smallest reported adaptive immune recognition entities in the vertebrate kingdom. Sharing limited sequence homology with human immunoglobulin domains, their development and use as biotherapeutic agents require that they be humanized to minimize their potential immunogenicity. Efforts to humanize a human serum albumin (HSA)-specific VNAR, E06, resulted in protein molecules that initially had undesirable biophysical properties or reduced affinity for cognate antigen. Two lead humanized anti-HSA clones, v1.10 and v2.4, were subjected to a process of random mutagenesis using error-prone PCR. The mutated sequences for each humanized VNAR variant were screened for improvements in affinity for HSA and biophysical properties, achieved without a predicted increase in overall immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew J Porter
- Elasmogen Ltd., Aberdeen, UK
- Scottish Biologics Facility, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
46
|
Buschhaus MJ, Becker S, Porter AJ, Barelle CJ. Isolation of highly selective IgNAR variable single-domains against a human therapeutic Fc scaffold and their application as tailor-made bioprocessing reagents. Protein Eng Des Sel 2019; 32:385-399. [PMID: 32119084 DOI: 10.1093/protein/gzaa002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 01/03/2023] Open
Abstract
The adaptive immune system of cartilaginous fish (Elasmobranchii), comprising of classical hetero-tetrameric antibodies, is enhanced through the presence of a naturally occurring homodimeric antibody-like immunoglobulin-the new antigen receptor (IgNAR). The binding site of the IgNAR variable single-domain (VNAR) offers advantages of reduced size (<1/10th of classical immunoglobulin) and extended binding topographies, making it an ideal candidate for accessing cryptic epitopes otherwise intractable to conventional antibodies. These attributes, coupled with high physicochemical stability and amenability to phage display, facilitate the selection of VNAR binders to challenging targets. Here, we explored the unique attributes of these single domains for potential application as bioprocessing reagents in the development of the SEED-Fc platform, designed to generate therapeutic bispecific antibodies. A panel of unique VNARs specific to the SEED homodimeric (monospecific) 'by-products' were isolated from a shark semi-synthetic VNAR library via phage display. The lead VNAR candidate exhibited low nanomolar affinity and superior selectivity to SEED homodimer, with functionality being retained upon exposure to extreme physicochemical conditions that mimic their applicability as purification agents. Ultimately, this work exemplifies the robustness of the semi-synthetic VNAR platform, the predisposition of the VNAR paratope to recognise novel epitopes and the potential for routine generation of tailor-made VNAR-based bioprocessing reagents.
Collapse
Affiliation(s)
- Magdalena J Buschhaus
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK
| | - Stefan Becker
- Merck Biopharma KGaA, Protein Engineering & Antibody Technologies, Global Research and Development, Frankfurter Str. 250 Darmstadt 64293, Germany
| | - Andrew J Porter
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK.,Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Caroline J Barelle
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK
| |
Collapse
|
47
|
Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. Phage Display in the Quest for New Selective Recognition Elements for Biosensors. ACS OMEGA 2019; 4:11569-11580. [PMID: 31460264 PMCID: PMC6682082 DOI: 10.1021/acsomega.9b01206] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Phages are bacterial viruses that have gained a significant role in biotechnology owing to their widely studied biology and many advantageous characteristics. Perhaps the best-known application of phages is phage display that refers to the expression of foreign peptides or proteins outside the phage virion as a fusion with one of the phage coat proteins. In 2018, one half of the Nobel prize in chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies." The outstanding technology has evolved and developed considerably since its first description in 1985, and today phage display is commonly used in a wide variety of disciplines, including drug discovery, enzyme optimization, biomolecular interaction studies, as well as biosensor development. A cornerstone of all biosensors, regardless of the sensor platform or transduction scheme used, is a sensitive and selective bioreceptor, or a recognition element, that can provide specific binding to the target analyte. Many environmentally or pharmacologically interesting target analytes might not have naturally appropriate binding partners for biosensor development, but phage display can facilitate the production of novel receptors beyond known biomolecular interactions, or against toxic or nonimmunogenic targets, making the technology a valuable tool in the quest of new recognition elements for biosensor development.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme (UFIEC), Instituto de
Salud Carlos III, Ctra.
Majadahonda-Pozuelo Km 2.2, 28220 Madrid, Spain
| | - María C. Moreno-Bondi
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
48
|
Nogueira JCF, Greene MK, Richards DA, Furby AO, Steven J, Porter A, Barelle C, Scott CJ, Chudasama V. Oriented attachment of V NAR proteins, via site-selective modification, on PLGA-PEG nanoparticles enhances nanoconjugate performance. Chem Commun (Camb) 2019; 55:7671-7674. [PMID: 31204425 PMCID: PMC6873773 DOI: 10.1039/c9cc02655j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Herein we report the construction of a nanoparticle-based drug delivery system which targets a key regulator in tumour angiogenesis. We exploit a Variable New Antigen Receptor (VNAR) domain, conjugated using site-specific chemistry, to direct poly lactic acid-co-glycolic acid-polyethylene glycol (PLGA-PEG) nanoparticles to delta like canonical Notch ligand 4 (DLL4). The importance of site-specific chemistry is demonstrated.
Collapse
Affiliation(s)
| | - Michelle K. Greene
- Centre for Cancer Research and Cell Biology
, School of Medicine
, Queen's University Belfast
,
Belfast
, UK
.
| | - Daniel A. Richards
- Department of Chemistry
, University College London
,
London
, UK
.
- Department of Materials
, Imperial College London
,
London
, UK
| | | | - John Steven
- Institute of Medical Science
, University of Aberdeen
,
Aberdeen
, UK
- Elasmogen Ltd
,
Aberdeen
, UK
.
| | - Andrew Porter
- Institute of Medical Science
, University of Aberdeen
,
Aberdeen
, UK
- Elasmogen Ltd
,
Aberdeen
, UK
.
| | - Caroline Barelle
- Institute of Medical Science
, University of Aberdeen
,
Aberdeen
, UK
- Elasmogen Ltd
,
Aberdeen
, UK
.
| | - Christopher J. Scott
- Centre for Cancer Research and Cell Biology
, School of Medicine
, Queen's University Belfast
,
Belfast
, UK
.
| | - Vijay Chudasama
- Department of Chemistry
, University College London
,
London
, UK
.
- Research Institute for Medicines (iMed.ULisboa)
, Faculty of Pharmacy
, Universidade de Lisboa
,
Lisbon
, Portugal
| |
Collapse
|
49
|
Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3. PLoS One 2019; 14:e0213394. [PMID: 31206542 PMCID: PMC6576789 DOI: 10.1371/journal.pone.0213394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
The variable domain of New Antigen Receptors (vNAR) from sharks, present special characteristics in comparison to the conventional antibody molecules such as: small size (12–15 kDa), thermal and chemical stability and great tissue penetration, that makes them a good alternative source as therapeutic or diagnostic agents. Therefore, it is essential to improve techniques used for the development and selection of vNAR antibodies that recognize distinct antigens. The development of synthetic antibody libraries offers a fast option for the generation of antibodies with the desired characteristics. In this work three synthetic antibody libraries were constructed; without cysteines (Cys), with one Cys and with two Cys residues within its CDR3, with the objective of determining whether the presence or absence of Cys in the CDR3 favors the isolation of vNAR clones from a synthetic library. The libraries were validated selecting against six mammalian proteins. At least one vNAR was found for each of the antigens, and a clone coming from the library without Cys in the CDR3 was selected with all the antigens. In vitro angiogenesis assay with the isolated anti-VEGF antibodies, suggest that these vNARs are capable of inhibiting in vitro angiogenesis. In silico analysis of anti-VEGF antibodies showed that vNARs from synthetic libraries could rival antibodies with affinity maturation by in silico modeling.
Collapse
|
50
|
Leow HC, Fischer K, Leow YC, Braet K, Cheng Q, McCarthy J. Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in Escherichia coli. Prep Biochem Biotechnol 2019; 49:315-327. [DOI: 10.1080/10826068.2019.1566145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Herng C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katja Fischer
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yee C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katleen Braet
- Department of Research, BioMARIC, Zwijnaarde, Belgium
| | - Qin Cheng
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Drug Resistance Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|