1
|
MALAT1 as a Regulator of the Androgen-Dependent Choline Kinase A Gene in the Metabolic Rewiring of Prostate Cancer. Cancers (Basel) 2022; 14:cancers14122902. [PMID: 35740569 PMCID: PMC9221206 DOI: 10.3390/cancers14122902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Despite the rapid advance in cancer therapies, treatment-resistant relapse remains a significant challenge in cancer treatment. Acquired resistance arises during or after treatment administration, and is usually the main contributor to relapse. For example, prostate cancer, the most frequent type of cancer in the elderly male population, frequently develops into aggressive forms resistant to chemical and hormonal therapies. In this condition, the so-called “cholinic phenotype” that is characterized by the overexpression of choline kinase alpha (CHKA) and increased phosphocholine levels leads to aberrant lipid metabolism. Our work demonstrates that CHKA, which is necessary for membrane phospholipid synthesis, is a target of the long non-coding RNA MALAT1. This study helps to further decipher how MALAT1 affects the regulation of crucial phospholipid/sphingolipid metabolic enzymes, as well as how the androgen receptor pathway is involved in MALAT1-dependent transcriptional regulation. Abstract Background. Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism, is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer (PCa). Methods. We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR recruitment. Results. In MALAT1-depleted cells, the decrease of CHKA gene expression was associated with reduced total choline-containing metabolites compared to controls, particularly phosphocholine (PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP) cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or androgen treatment. Conclusions. These findings support the role of MALAT1 as a CHKA activator through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic option from a metabolic rewiring perspective.
Collapse
|
2
|
Bahnfleth CL, Strupp BJ, Caudill MA, Canfield RL. Prenatal choline supplementation improves child sustained attention: A 7-year follow-up of a randomized controlled feeding trial. FASEB J 2021; 36:e22054. [PMID: 34962672 PMCID: PMC9303951 DOI: 10.1096/fj.202101217r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 01/23/2023]
Abstract
Numerous rodent studies demonstrate developmental programming of offspring cognition by maternal choline intake, with prenatal choline deprivation causing lasting adverse effects and supplemental choline producing lasting benefits. Few human studies have evaluated the effect of maternal choline supplementation on offspring cognition, with none following children to school age. Here, we report results from a controlled feeding study in which pregnant women were randomized to consume 480 mg choline/d (approximately the Adequate Intake [AI]) or 930 mg choline/d during the 3rd trimester. Sustained attention was assessed in the offspring at age 7 years (n = 20) using a signal detection task that showed benefits of maternal choline supplementation in a murine model. Children in the 930 mg/d group showed superior performance (vs. 480 mg/d group) on the primary endpoint (SAT score, p = .02) and a superior ability to maintain correct signal detections (hits) across the 12‐min session (p = .02), indicative of improved sustained attention. This group difference in vigilance decrement varied by signal duration (p = .04). For the briefest (17 ms) signals, the 480 mg/d group showed a 22.9% decline in hits across the session compared to a 1.5% increase in hits for the 930 mg/d group (p = .04). The groups did not differ in vigilance decrement for 29 or 50 ms signals. This pattern suggests an enhanced ability to sustain perceptual amplification of a brief low‐contrast visual signal by children in the 930 mg/d group. This inference of improved sustained attention by the 930 mg/d group is strengthened by the absence of group differences for false alarms, omissions, and off‐task behaviors. This pattern of results indicates that maternal 3rd trimester consumption of the choline AI for pregnancy (vs. double the AI) produces offspring with a poorer ability to sustain attention—reinforcing concerns that, on average, choline consumption by pregnant women is approximately 70% of the AI.
Collapse
Affiliation(s)
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Richard L Canfield
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Wang J, Zhang Y, Xu N, Zhang H, Fan Y, Rui C, Han M, Malik WA, Wang Q, Sun L, Chen X, Lu X, Wang D, Zhao L, Wang J, Wang S, Chen C, Guo L, Ye W. Genome-wide identification of CK gene family suggests functional expression pattern against Cd 2+ stress in Gossypium hirsutum L. Int J Biol Macromol 2021; 188:272-282. [PMID: 34364943 DOI: 10.1016/j.ijbiomac.2021.07.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
Choline kinase (CK) gene plays an important role in plants growth, development and resistance to stress. It mainly regulates the biosynthesis of phosphatidylcholine. This study aims to explore the structure-function relationship, and to provide a framework for functional validation and biochemical characterization of various CK genes. Our analysis showed that 87 CK genes were identified in cotton and 7 diploid plants, of which 43 genes encode CK proteins in 4 cotton species, and 13 genes were identified in Gossypium hirsutum. Most of GhCK genes are affected by the abiotic stress conditions, indicating the importance of CK proteins for plant development and response to abiotic stress. RT-qPCR analysis showed the tissue specificity of GhCK genes in response to Cd2+ and other abiotic stresses. Under Cd2+ stress, the expression level of GhCK gene family members has undergone different changes. The expression level of GhCK5 was enhanced, indicating that Cd2+ stress caused the increase of phosphatidylcholine content, which in turn reacted on the plant cell membrane, finally reached the absorption of Cd2+ into plant cells to repair Cd2+ the purpose of contaminated soil. This study will further broaden our understanding of the association between evolution and function of the GhCK gene family.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Yuexin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Nan Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Hong Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Cun Rui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Mingge Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Waqar Afzal Malik
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Qinqin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Liangqing Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Chao Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
| |
Collapse
|
4
|
Huang JS, Mukherjee JJ, Chung T, Crilly KS, Kiss Z. Extracellular calcium stimulates DNA synthesis in synergism with zinc, insulin and insulin-like growth factor I in fibroblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:943-51. [PMID: 10583389 DOI: 10.1046/j.1432-1327.1999.00932.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In serum-starved mouse NIH 3T3 fibroblasts cultured in 1.8 mM Ca2+-containing medium, addition of 0.75-2 mM extra Ca2+ stimulated DNA synthesis in synergism with zinc (15-60 microM), insulin and insulin-like growth factor I. Extra Ca2+ stimulated phosphorylation/activation of p42/p44 mitogen-activated protein kinases by an initially (10 min) zinc-independent mechanism; however, insulin, and particularly zinc, significantly prolonged Ca2+-induced mitogen-activated protein kinase phosphorylation. In addition, extra Ca2+ activated p70 S6 kinase by a zinc-dependent mechanism and enhanced the stimulatory effect of zinc on choline kinase activity. Insulin and insulin-like growth factor I also commonly increased both p70 S6 kinase and choline kinase activities. In support of the role of the choline kinase product phosphocholine in the mediation of mitogenic Ca2+ effects, cotreatments with the choline kinase substrate choline (250 microM) and the choline kinase inhibitor hemicholinium-3 (2 mM) enhanced and inhibited, respectively, the combined stimulatory effect of extra Ca2+ (3.8 mM total) and zinc on DNA synthesis. In various human skin fibroblast lines, 1-2 mM extra Ca2+ also stimulated DNA synthesis in synergism with zinc and insulin. The results show that in various fibroblast cultures, high concentrations of extracellular Ca2+ can collaborate with zinc and certain growth factors to stimulate DNA synthesis. Considering the high concentration of extracellular Ca2+ in the dermal layer, Ca2+ may promote fibroblast growth during wound healing in concert with zinc, insulin growth factor-I insulin, and perhaps other growth factors.
Collapse
Affiliation(s)
- J S Huang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | | | | | | | | |
Collapse
|
5
|
Tang W, Walsh A, Tabas I. Macrophage-targeted CTP:phosphocholine cytidylyltransferase (1-314) transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:301-16. [PMID: 10101264 DOI: 10.1016/s1388-1981(99)00023-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CT) is a rate-limiting and complexly regulated enzyme in phosphatidylcholine (PC) biosynthesis and is important in the adaptation of macrophages to cholesterol loading. The goal of the present study was to use transgenesis to study the CT reaction in differentiated macrophages in vivo. We successfully created macrophage-targeted transgenic mice that overexpress a truncated form of CT, called CT-314. Sonicated homogenates of peritoneal macrophages overexpressing CT-314 protein demonstrated a two-fold increase in CT activity in vitro compared with homogenates from nontransgenic macrophages. CT-314 macrophages, however, demonstrated no increase in CT activity or PC biosynthesis in vivo. This finding could not be explained simply by intracellular mistargeting of CT-314, by the inability of CT-314 to associate with cellular membranes, or by substrate limitation. To further probe the mechanism, an in vitro assay using intact nuclei was developed in an attempt to preserve interactions between CT, which is primarily a nuclear enzyme in macrophages, and other nuclear molecules. This intact-nuclei assay faithfully reproduced the situation observed in living macrophages, namely, no significant increase in CT activity despite increased CT-314 protein. In contrast, CT activity in sonicated nuclei from CT-314 macrophages was substantially higher than that from nontransgenic macrophages. Thus, a sonication-sensitive interaction between excess CT and one or more nuclear molecules may be responsible for the limitation of CT activity in CT-314 macrophages. These data represent the first report of a CT transgenic animal and the first study of a differentiated cell type with excess CT.
Collapse
Affiliation(s)
- W Tang
- The Departments of Medicine, and Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
6
|
Kiss Z, Petrovics G, Olàh Z, Lehel C, Anderson WB. Overexpression of protein kinase C-epsilon and its regulatory domains in fibroblasts inhibits phorbol ester-induced phospholipase D activity. Arch Biochem Biophys 1999; 363:121-8. [PMID: 10049506 DOI: 10.1006/abbi.1998.1066] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In fibroblasts, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) stimulates phospholipase D (PLD)-mediated hydrolysis of both phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) by PKC-alpha-mediated nonphosphorylating and phosphorylating mechanisms. Here we have used NIH 3T3 fibroblasts overexpressing holo PKC-epsilon and its regulatory, catalytic, and zinc finger domain fragments to determine if this isozyme also regulates PLD activity. Overexpression of holo PKC-epsilon inhibited the stimulatory effects of PMA (5-100 nM) on both PtdCho and PtdEtn hydrolysis. Overexpression of PKC-epsilon also was found to inhibit platelet-derived growth factor-induced PLD activity. Expression of the catalytic unit of PKC-epsilon had no effect on PMA-induced PLD activity. In contrast, expression of both the regulatory domain fragment and the zinc finger domain of PKC-epsilon resulted in significant inhibition of PMA-stimulated PtdCho and PtdEtn hydrolysis. Interestingly, although PKC-alpha also mediates the stimulatory effect of PMA on the synthesis of PtdCho by a phosphorylation mechanism, overexpression of holo PKC-epsilon or its regulatory domain fragments did not affect PMA-induced PtdCho synthesis. These results indicate that the PKC-epsilon system can act as a negative regulator of PLD activity and that this inhibition is mediated by its regulatory domain.
Collapse
Affiliation(s)
- Z Kiss
- The Hormel Institute, University of Minnesota, Austin, Minnesota, 55912, USA.
| | | | | | | | | |
Collapse
|
7
|
Walkey CJ, Donohue LR, Bronson R, Agellon LB, Vance DE. Disruption of the murine gene encoding phosphatidylethanolamine N-methyltransferase. Proc Natl Acad Sci U S A 1997; 94:12880-5. [PMID: 9371769 PMCID: PMC24232 DOI: 10.1073/pnas.94.24.12880] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All nucleated cells make phosphatidylcholine via the CDP-choline pathway. Liver has an alternative pathway in which phosphatidylcholine is made by methylation of phosphatidylethanolamine catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). We investigated the function of PEMT and its role in animal physiology by targeted disruption of its gene, Pempt2. A targeting vector that interrupts exon 2 was constructed and introduced into mice yielding three genotypes: normal (+/+), heterozygotes (+/-), and homozygotes (-/-) for the disrupted PEMT gene. Only a trace of PE methylation activity remained in Pempt2(-/-) mice. Antibody to one form of the enzyme, PEMT2, indicated complete loss of this protein from Pempt2(-/-) mice and a decrease in Pempt2(+/-) mice, compared with Pempt2(+/+) mice. The levels of hepatic phosphatidylethanolamine and phosphatidylcholine were minimally affected. The active form of CTP:phosphocholine cytidylyltransferase, the regulated enzyme in the CDP-choline pathway, was increased 60% in the PEMT-deficient mice. Injection of [L-methyl-3H]methionine demonstrated that the in vivo PEMT activity was eliminated in the Pempt2(-/-) mice and markedly decreased in the Pempt2(+/-) mice. This experiment also demonstrated that the choline moiety derived from PEMT in the liver can be distributed via the plasma throughout the mouse where it is found as phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin. Mice homozygous for the disrupted Pempt2 gene displayed no abnormal phenotype, normal hepatocyte morphology, normal plasma lipid levels and no differences in bile composition. This is the first application of the "knockout mouse" technique to a gene for phospholipid biosynthesis.
Collapse
Affiliation(s)
- C J Walkey
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
8
|
Ross BM, Moszczynska A, Blusztajn JK, Sherwin A, Lozano A, Kish SJ. Phospholipid biosynthetic enzymes in human brain. Lipids 1997; 32:351-8. [PMID: 9113621 DOI: 10.1007/s11745-997-0044-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Growing evidence suggests an involvement of brain membrane phospholipid metabolism in a variety of neurodegenerative and psychiatric conditions. This has prompted the use of drugs (e.g., CDPcholine) aimed at elevating the rate of neural membrane synthesis. However, no information is available regarding the human brain enzymes of phospholipid synthesis which these drugs affect. Thus, the objective of our study was to characterize the enzymes involved, in particular, whether differences existed in the relative affinity of substrates for the enzymes of phosphatidylethanolamine (PE) compared to those of phosphatidylcholine (PC) synthesis. The concentration of choline in rapidly frozen human brain biopsies ranged from 32-186 nmol/g tissue, a concentration similar to that determined previously for ethanolamine. Since human brain ethanolamine kinase possessed a much lower affinity for ethanolamine (Km = 460 microM) than choline kinase did for choline (Km = 17 microM), the activity of ethanolamine kinase in vivo may be more dependent on substrate availability than that of choline kinase. In addition, whereas ethanolamine kinase was inhibited by choline, and to a lesser extent by phosphocholine, choline kinase activity was unaffected by the presence of ethanolamine, or phosphoethanolamine, and only weakly inhibited by phosphocholine. Phosphoethanolamine cytidylyltransferase (PECT) and phosphocholine cytidylyltransferase (PCCT) also displayed dissimilar characteristics, with PECT and PCCT being located predominantly in the cytosolic and particulate fractions, respectively. Both PECT and PCCT exhibited a low affinity for CTP (Km approximately 1.2 mM), suggesting that the activities of these enzymes, and by implication, the rate of phospholipid synthesis, are highly dependent upon the cellular concentration of CTP. In conclusion our data indicate different regulatory properties of PE and PC synthesis in human brain, and suggest that the rate of PE synthesis may be more dependent upon substrate (ethanolamine) availability than that of PC synthesis.
Collapse
Affiliation(s)
- B M Ross
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Shiratori Y, Houweling M, Zha X, Tabas I. Stimulation of CTP:phosphocholine cytidylyltransferase by free cholesterol loading of macrophages involves signaling through protein dephosphorylation. J Biol Chem 1995; 270:29894-903. [PMID: 8530387 DOI: 10.1074/jbc.270.50.29894] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Free cholesterol-loaded macrophages in atheromata synthesize excess phosphatidylcholine (PC), which may be an important adaptive response to the excess free cholesterol (FC) load. We have recently shown that FC loading of macrophages leads to 2-4-fold increases in PC mass and biosynthesis and to the post-translational activation of the membrane-bound form of CTP:phosphocholine cytidylyltransferase (CT), a key enzyme in PC biosynthesis. Herein, we explore further the mechanism of CT activation in FC-loaded macrophages. First, enrichment of membranes from control macrophages with FC in vitro did not increase CT activity, and PC biosynthesis in vivo is up-regulated by FC loading even when CT and FC appear to be mostly in different intracellular sites. These data imply that FC activates membrane-bound CT by a signaling mechanism. That the proposed signaling mechanism involves structural changes in the CT protein was suggested by data showing that two different antibodies against synthetic CT peptides showed increased recognition of membrane-bound CT from FC-loaded cells despite no increase in CT protein. Since CT is phosphorylated, two-dimensional maps of peptides from 32P-labeled control and FC-loaded macrophages were compared: six peptide spots from membrane-bound CT, but none from soluble CT, were dephosphorylated in the FC-loaded cells. Furthermore, incubation of FC-loaded macrophages with the phosphatase inhibitor, calyculin A, blocked increases in both PC biosynthesis and antipeptide-antibody recognition of CT. Last, treatment of membranes from control macrophages with lambda phage protein phosphatase in vitro increased both CT activity (2-fold) and antipeptide-antibody recognition of CT; soluble CT activity and antibody recognition were not substantially affected by phosphatase treatment. In summary, FC loading of macrophages leads to the partial dephosphorylation of membrane-bound CT, and possibly other cellular proteins, which appears to be important in CT activation. This novel regulatory action of FC may allow macrophages to adapt to FC loading in atheromata.
Collapse
Affiliation(s)
- Y Shiratori
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
10
|
Houweling M, Cui Z, Vance DE. Expression of phosphatidylethanolamine N-methyltransferase-2 cannot compensate for an impaired CDP-choline pathway in mutant Chinese hamster ovary cells. J Biol Chem 1995; 270:16277-82. [PMID: 7608195 DOI: 10.1074/jbc.270.27.16277] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylcholine is a product of the CDP-choline pathway and the pathway that methylates phosphatidylethanolamine. We have asked the question: are the two pathways functionally interchangeable? We addressed his question by investigating the expression of phosphatidylethanolamine N-methyltransferase-2 (PEMT2) of rat liver in mutant Chinese hamster ovary cells (MT-58) (Esko, J. D., Wermuth, M.M., and Raetz, C. R. H. (1981) J. Biol. Chem. 256, 7388-7393) defective in the CDP-choline pathway for phosphatidylcholine biosynthesis. Cell lines stably expressing different amounts of PEMT2 activity (up to 700 pmol/min.mg protein) were isolated. A positive correlation between the amount of PEMT2 activity expressed and the incorporation of [3H]methionine into phosphatidylcholine at both the permissive and restrictive temperatures showed that PEMT2 was functional in the Chinese hamster ovary MT-58 cells. In contrast to mutant cell lines stably expressing transfected CTP:phosphocholine cytidylyltransferase, the cell lines stably expressing PEMT2 did not survive at the restrictive temperature. Determination of the phosphatidylcholine mass in wild type cells, mutant MT-58 cells, and cells with the highest level of PEMT2 expression showed that PEMT2 was functional and synthesized the same amount of phosphatidylcholine as did wild type cells at the restrictive temperature. Indirect immunofluorescence studies showed that localization of the over-expressed cytidylyltransferase in MT-58 cells was largely nuclear, whereas PEMT2 was predominantly located outside the nucleus. Our data show that methylation of phosphatidylethanolamine to phosphatidylcholine cannot substitute for the CDP-choline pathway.
Collapse
Affiliation(s)
- M Houweling
- Lipid and Lipoprotein Research Group, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
11
|
Wieprecht M, Wieder T, Geilen CC, Orfanos CE. Growth factors stimulate phosphorylation of CTP:phosphocholine cytidylyltransferase in HeLa cells. FEBS Lett 1994; 353:221-4. [PMID: 7926053 DOI: 10.1016/0014-5793(94)01040-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of insulin and epidermal growth factor on the phosphorylation of CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) was investigated in HeLa cells. For the first time, cytidylyltransferase phosphorylation was shown to be influenced by growth factors in cell culture experiments. The rephosphorylation of cytidylyltransferase after an oleate-mediated dephosphorylation and translocation to membranes was increased after 2 min in the presence of insulin or epidermal growth factor by 99% and 76%, respectively, compared with controls. However, the increased phosphorylation of cytidylyltransferase did not have an effect on its subcellular distribution. Furthermore, purified cytidylyltransferase preincubated with alkaline phosphatase is a substrate for p44mapk, a member of the mitogen-activated protein (MAP) kinase family downstream of the growth factor receptors, in vitro. In accordance with the in vivo data, in vitro phosphorylation of cytidylyltransferase by p44mapk occurred after 2 min.
Collapse
Affiliation(s)
- M Wieprecht
- Institute of Molecular Biology and Biochemistry, University Medical Center Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Shiratori Y, Okwu A, Tabas I. Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP: phosphocholine cytidylyltransferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78130-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Houweling M, Jamil H, Hatch G, Vance D. Dephosphorylation of CTP-phosphocholine cytidylyltransferase is not required for binding to membranes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37321-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Hatch G, Jamil H, Utal A, Vance D. On the mechanism of the okadaic acid-induced inhibition of phosphatidylcholine biosynthesis in isolated rat hepatocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49599-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|