1
|
Tang S, Levy ES, Zang N, Goyon A, Chang D, Cebrero A, Tang Y, Pellett JD. Scaling laws for nanoparticles - Online shape heterogeneity analysis by size exclusion chromatography coupled with multi-angle light scattering. J Chromatogr A 2024; 1736:465386. [PMID: 39341170 DOI: 10.1016/j.chroma.2024.465386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Nanoparticle-based drug delivery systems are rising technologies to access challenging therapeutic targets. Following commercial success of lipid-based nanoparticles (LBNP), accruing understandings of nanoparticle structures and critical quality attributes through advanced analytics are beneficial to future clinical development and generalization of this delivery platform. The morphological attributes of nanoparticles, such as shape, can affect uptake, cell-interaction, drug release, circulation, and flow. Gaining an understanding of these structure-activity relationships in early-stage formulation development is important because mix morphologies can affect quality and potency but often exist before process control strategies are fully implemented. In this study, we used shape heterogeneous nanoparticle mixtures, containing various populations of liposomes and lipodisks, as a model system and developed an online semi-quantitative method to characterize the nanoparticle shape heterogeneity by size exclusion chromatography (SEC) coupled with multi-angle light scattering (MALS). The liposomes and lipodisks were separated in SEC when their sizes were ∼3 fold different. When the particles of different shapes were in similar sizes, size-based separation was not always feasible. Instead, light scattering data distinguished liposomes and lipodisks by the scaling law linking radius of gyration and molecular weight of the nanoparticles, enabling morphological identification. A semi-quantitative model was built based on the exponential correlation between the scaling law exponents and the ratios of liposomes and lipodisks. The model was applied to test 6 random formulations made with different compositions and manufacturing processes, and the predicted liposome percentage for 5 formulations was within 25 % absolute difference from the percentage determined by cryogenic electron microscopy (cryo-EM). We envision this method being routinely used to characterize liposome and lipodisk shape heterogeneity during formulation screening as well as on stability studies. Potentially, the method can be converted to in-process control method and extended to other categories of nanoparticles beyond liposomes.
Collapse
Affiliation(s)
- Shijia Tang
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Elizabeth S Levy
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Nanzhi Zang
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Alexandre Goyon
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Debby Chang
- Pharma Technical Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Abigail Cebrero
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Yijing Tang
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jackson D Pellett
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Gehlbach EM, Robinson AO, Engelhart AE, Adamala KP. Sequential gentle hydration increases encapsulation in model protocells. DISCOVER LIFE 2024; 54:2. [PMID: 38765272 PMCID: PMC11099956 DOI: 10.1007/s11084-024-09645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer.
Collapse
Affiliation(s)
- Emma M. Gehlbach
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| | - Abbey O. Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| | - Aaron E. Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
3
|
D'Atri V, Imiołek M, Quinn C, Finny A, Lauber M, Fekete S, Guillarme D. Size exclusion chromatography of biopharmaceutical products: From current practices for proteins to emerging trends for viral vectors, nucleic acids and lipid nanoparticles. J Chromatogr A 2024; 1722:464862. [PMID: 38581978 DOI: 10.1016/j.chroma.2024.464862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.
Collapse
Affiliation(s)
- Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland
| | | | | | - Abraham Finny
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | - Matthew Lauber
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | | | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland.
| |
Collapse
|
4
|
Schulze J, Schöne L, Ayoub AM, Librizzi D, Amin MU, Engelhardt K, Yousefi BH, Bender L, Schaefer J, Preis E, Schulz-Siegmund M, Wölk C, Bakowsky U. Modern Photodynamic Glioblastoma Therapy Using Curcumin- or Parietin-Loaded Lipid Nanoparticles in a CAM Model Study. ACS APPLIED BIO MATERIALS 2023; 6:5502-5514. [PMID: 38016693 PMCID: PMC10732153 DOI: 10.1021/acsabm.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.
Collapse
Affiliation(s)
- Jan Schulze
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Lisa Schöne
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Abdallah M. Ayoub
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Damiano Librizzi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Muhammad Umair Amin
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Konrad Engelhardt
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Behrooz H. Yousefi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Lena Bender
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Jens Schaefer
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Michaela Schulz-Siegmund
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Christian Wölk
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| |
Collapse
|
5
|
Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J Pharm Biomed Anal 2023; 236:115751. [PMID: 37778202 DOI: 10.1016/j.jpba.2023.115751] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Liposomes are nano-sized lipid-based vesicles widely studied for their drug delivery capabilities. Compared to standard carries they exhibit better properties such as improved site-targeting and drug release, protection of drugs from degradation and clearance, and lower toxic side effects. At present, scientific literature is rich of studies regarding liposomes-based systems, while 14 types of liposomal products have been authorized to the market by EMA and FDA and many others have been approved by national agencies. Although the interest in nanodevices and nanomedicine has steadily increased in the last two decades the development of documentation regulating and standardizing all the phases of their development and quality control still suffers from major inadequacy due to the intrinsic complexity of nano-systems characterization. Many generic documents (Type 1) discussing guidelines for the study of nano-systems (lipidic and not) have been proposed while there is a lack of robust and standardized methods (Type 2 documents). As a result, a widespread of different techniques, approaches and methodologies are being used, generating results of variable quality and hard to compare with each other. Additionally, such documents are often subject to updates and rewriting further complicating the topic. Within this context the aim of this work is focused on bridging the gap in liposome characterization: the most recent standardized methodologies suitable for liposomes characterization are here reported (with the corresponding Type 2 documents) and revised in a short and pragmatical way focused on providing the reader with a practical background of the state of the art. In particular, this paper will put the accent on the methodologies developed to evaluate the main critical quality attributes (CQAs) necessary for liposomes market approval.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Pierluigi Reschiglian
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
6
|
Kevadiya BD, Islam F, Deol P, Zaman LA, Mosselhy DA, Ashaduzzaman M, Bajwa N, Routhu NK, Singh PA, Dawre S, Vora LK, Nahid S, Mathur D, Nayan MU, Baldi A, Kothari R, Patel TA, Madan J, Gounani Z, Bariwal J, Hettie KS, Gendelman HE. Delivery of gene editing therapeutics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102711. [PMID: 37813236 PMCID: PMC10843524 DOI: 10.1016/j.nano.2023.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Pallavi Deol
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Institute of Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Lubaba A Zaman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, ARC, Dokki, Giza 12618, Egypt.
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Neha Bajwa
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Nanda Kishore Routhu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Preet Amol Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMs, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Sumaiya Nahid
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | - Mohammad Ullah Nayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Ashish Baldi
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Ramesh Kothari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| | - Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-NIPER, Hyderabad 500037, Telangana, India.
| | - Zahra Gounani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430-6551, USA.
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Kraevsky SV, Ivanova IA, Kanashenko SL, Shumov ID, Ryazantsev IA, Tereshkina YA, Kostryukova LV, Romashova YA, Pleshakova TO. Nanoform of Phospholipid Composition: Investigation of the Morphological Features by Atomic Force Microscopy. Int J Mol Sci 2023; 24:15338. [PMID: 37895017 PMCID: PMC10607005 DOI: 10.3390/ijms242015338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Morphological features of the nanoform of a phospholipid composition (NFPh), which can be used as an individual pharmaceutic agent or as a platform for designing drug delivery systems, have been studied using atomic force microscopy (AFM). NFPh has been developed, and its characteristics have been investigated using conventional drug analysis methods, including the determination of the mean diameter of nanosized vesicles in the emulsion via dynamic light scattering (DLS). Using DLS, the mean diameter of the vesicles was found to be ~20 nm. AFM imaging of the surface has revealed four types of objects related to NFPh: (1) compact objects; (2) layer fragments; (3) lamellar structures; and (4) combined objects containing the compact and extended parts. For type (4) objects, it has been found that the geometric ratio of the volume of the convex part to the total area of the entire object is constant. It has been proposed that these objects formed owing to fusion of vesicles of the same size (with the same surface-to-volume ratio). It has been shown that this is possible for vesicles with diameters of 20 nm. This diameter is in good coincidence with the value obtained using DLS.
Collapse
Affiliation(s)
- Sergey V. Kraevsky
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10, Moscow 119121, Russia; (I.A.I.); (S.L.K.); (I.D.S.); (I.A.R.); (Y.A.T.); (L.V.K.); (Y.A.R.); (T.O.P.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gehlbach EM, Robinson AO, Engelhart AE, Adamala KP. Sequential gentle hydration increases encapsulation in model protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562404. [PMID: 37873423 PMCID: PMC10592796 DOI: 10.1101/2023.10.15.562404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer.
Collapse
Affiliation(s)
- Emma M. Gehlbach
- University of Minnesota Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA
| | - Abbey O. Robinson
- University of Minnesota Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA
| | - Aaron E. Engelhart
- University of Minnesota Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA
| | - Katarzyna P. Adamala
- University of Minnesota Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA
| |
Collapse
|
9
|
Fulton MD, Najahi-Missaoui W. Liposomes in Cancer Therapy: How Did We Start and Where Are We Now. Int J Mol Sci 2023; 24:ijms24076615. [PMID: 37047585 PMCID: PMC10095497 DOI: 10.3390/ijms24076615] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Since their first discovery in the 1960s by Alec Bangham, liposomes have been shown to be effective drug delivery systems for treating various cancers. Several liposome-based formulations received approval by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA), with many others in clinical trials. Liposomes have several advantages, including improved pharmacokinetic properties of the encapsulated drug, reduced systemic toxicity, extended circulation time, and targeted disposition in tumor sites due to the enhanced permeability and retention (EPR) mechanism. However, it is worth noting that despite their efficacy in treating various cancers, liposomes still have some potential toxicity and lack specific targeting and disposition. This explains, in part, why their translation into the clinic has progressed only incrementally, which poses the need for more research to focus on addressing such translational limitations. This review summarizes the main properties of liposomes, their current status in cancer therapy, and their limitations and challenges to achieving maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Melody D. Fulton
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release 2023; 355:624-654. [PMID: 36775245 DOI: 10.1016/j.jconrel.2023.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Lipid vesicles can provide a cost-effective enhancement of skin drug absorption when vesicle production process is optimised. It is an important challenge to design the ideal vesicle, since their properties and features are related, as changes in one affect the others. Here, we review the main components, preparation and characterization methods commonly used, and the key properties that lead to highly efficient vesicles for transdermal drug delivery purposes. We stand by size, deformability degree and drug loading, as the most important vesicle features that determine the further transdermal drug absorption. The interest in this technology is increasing, as demonstrated by the exponential growth of publications on the topic. Although long-term preservation and scalability issues have limited the commercialization of lipid vesicle products, freeze-drying and modern escalation methods overcome these difficulties, thus predicting a higher use of these technologies in the market and clinical practice.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Teresa M Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain.
| |
Collapse
|
11
|
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury. Asian J Pharm Sci 2023; 18:100783. [PMID: 36891470 PMCID: PMC9986716 DOI: 10.1016/j.ajps.2023.100783] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/13/2023] Open
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies. One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier (BBB), which affects the intracerebral delivery of drugs. Ginkgolide B (GB), a major bioactive component in commercially available products of Ginkgo biloba, has been shown significance in CI/RI treatment by regulating inflammatory pathways, oxidative damage, and metabolic disturbance, and seems to be a candidate for stroke recovery. However, limited by its poor hydrophilicity and lipophilicity, the development of GB preparations with good solubility, stability, and the ability to cross the BBB remains a challenge. Herein, we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid (DHA) to obtain a covalent complex GB-DHA, which can not only enhance the pharmacological effect of GB, but can also be encapsulated in liposomes stably. The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion (MCAO) rats. Compared to the marketed ginkgolide injection, Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion. Low levels of reactive oxygen species (ROS) and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment, while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype, which modulate neuroinflammatory and angiogenesis. In addition, Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway. Thus, transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects.
Collapse
|
12
|
Gonçalves RF, Madalena DA, Fernandes JM, Marques M, Vicente AA, Pinheiro AC. Application of nanostructured delivery systems in food: From incorporation to detection and characterization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Bondu C, Yen FT. Nanoliposomes, from food industry to nutraceuticals: Interests and uses. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Tomnikova A, Orgonikova A, Krizek T. Liposomes: preparation and characterization with a special focus on the application of capillary electrophoresis. MONATSHEFTE FUR CHEMIE 2022; 153:687-695. [PMID: 35966959 PMCID: PMC9360637 DOI: 10.1007/s00706-022-02966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Liposomes are nowadays a matter of tremendous interest. Due to their amphiphilic character, various substances with different properties can be incorporated into them and they are especially suitable as a model system for controlled transport of bioactive substances and drugs to the final destination in the body; for example, COVID-19 vaccines use liposomes as a carrier of mRNA. Liposomes mimicking composition of various biological membranes can be prepared with a proper choice of the lipids used, which proved to be important tool in the early drug development. This review deals with commonly used methods for the preparation and characterization of liposomes which is essential for their later use. The alternative capillary electrophoresis methods for physico-chemical characterization such as determination of membrane permeability of liposome, its size and charge, and encapsulation efficiency are included. Two different layouts using liposomes to yield more efficient separation of various analytes are also presented, capillary electrochromatography, and liposomal electrokinetic chromatography.
Collapse
Affiliation(s)
- Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Andrea Orgonikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Lombardo D, Kiselev MA. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022; 14:pharmaceutics14030543. [PMID: 35335920 PMCID: PMC8955843 DOI: 10.3390/pharmaceutics14030543] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Liposomes are nano-sized spherical vesicles composed of an aqueous core surrounded by one (or more) phospholipid bilayer shells. Owing to their high biocompatibility, chemical composition variability, and ease of preparation, as well as their large variety of structural properties, liposomes have been employed in a large variety of nanomedicine and biomedical applications, including nanocarriers for drug delivery, in nutraceutical fields, for immunoassays, clinical diagnostics, tissue engineering, and theranostics formulations. Particularly important is the role of liposomes in drug-delivery applications, as they improve the performance of the encapsulated drugs, reducing side effects and toxicity by enhancing its in vitro- and in vivo-controlled delivery and activity. These applications stimulated a great effort for the scale-up of the formation processes in view of suitable industrial development. Despite the improvements of conventional approaches and the development of novel routes of liposome preparation, their intrinsic sensitivity to mechanical and chemical actions is responsible for some critical issues connected with a limited colloidal stability and reduced entrapment efficiency of cargo molecules. This article analyzes the main features of the formation and fabrication techniques of liposome nanocarriers, with a special focus on the structure, parameters, and the critical factors that influence the development of a suitable and stable formulation. Recent developments and new methods for liposome preparation are also discussed, with the objective of updating the reader and providing future directions for research and development.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
- Correspondence: ; Tel.: +39-090-39762222
| | - Mikhail A. Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia;
- Department of Nuclear Physics, Dubna State University, 141980 Dubna, Moscow Region, Russia
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Moscow Region, Russia
| |
Collapse
|
16
|
An analytical study of lipid-oligonucleotide aggregation properties. J Pharm Biomed Anal 2021; 205:114327. [PMID: 34479172 DOI: 10.1016/j.jpba.2021.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Lipid-oligonucleotides (LON) attract great interest as supramolecular scaffolds to improve the intracellular delivery of nucleic acids. Analytical characterization of LON assemblies is critical to formulation development, understanding in-vivo performance, as well as quality control. For this study, we selected LONs featuring different modifications on both oligonucleotide (with or without a G4 prone sequence) and lipid (mono or bis-alkyl chain covalently attached to the oligonucleotide sequence). Size exclusion chromatography (SEC) and, for the first time, capillary electrophoresis (CE) were investigated to study LON supramolecular self-assemblies. Results were correlated to those obtained with conventional physico-chemical characterization techniques i.e. gel electrophoresis, dynamic light scattering, and circular dichroism. In SEC, a separation between LON monomers and micelles was achieved in 5min on a TSK-gel G3000PW column at 70°C with 100% water, as mobile phase. CE conditions were optimized using a fused-silica capillary length of 10.0cm effective length at 15°C. Different background electrolytes were tested by varying the nature and the concentration of salts added. A sodium tetraborate buffer with 75mM NaCl appeared suitable to promote LON assembly. CE offers benefits to LON micelle analysis in terms of speed of analysis, high resolution, and low quantity of sample injected. Moreover, CE provides an appropriate tool to assess the impact of media of biological relevance on LON self-assembly. In this work, the key role of lipophilic tails and the formation of tetramolecular G-quadruplexes on the stability of LON micelles was confirmed.
Collapse
|
17
|
Sandin SI, Gravano DM, Randolph CJ, Sharma M, de Alba E. Engineering of Saposin C Protein Chimeras for Enhanced Cytotoxicity and Optimized Liposome Binding Capability. Pharmaceutics 2021; 13:pharmaceutics13040583. [PMID: 33921905 PMCID: PMC8072984 DOI: 10.3390/pharmaceutics13040583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Saposin C (sapC) is a lysosomal, peripheral-membrane protein displaying liposome fusogenic capabilities. Proteoliposomes of sapC and phosphatidylserine have been shown to be toxic for cancer cells and are currently on clinical trial to treat glioblastoma. As proof-of-concept, we show two strategies to enhance the applications of sapC proteoliposomes: (1) Engineering chimeras composed of sapC to modulate proteoliposome function; (2) Engineering sapC to modify its lipid binding capabilities. In the chimera design, sapC is linked to a cell death-inducing peptide: the BH3 domain of the Bcl-2 protein PUMA. We show by solution NMR and dynamic light scattering that the chimera is functional at the molecular level by fusing liposomes and by interacting with prosurvival Bcl-xL, which is PUMA’s known mechanism to induce cell death. Furthermore, sapC-PUMA proteoliposomes enhance cytotoxicity in glioblastoma cells compared to sapC. Finally, the sapC domain of the chimera has been engineered to optimize liposome binding at pH close to physiological values as protein–lipid interactions are favored at acidic pH in the native protein. Altogether, our results indicate that the properties of sapC proteoliposomes can be modified by engineering the protein surface and by the addition of small peptides as fusion constructs.
Collapse
Affiliation(s)
- Suzanne I. Sandin
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
- Chemistry and Chemical Biology Ph.D. Program, University of California, Merced, CA 95343, USA
| | - David M. Gravano
- Stem Cell Instrumentation Foundry, University of California, Merced, CA 95343, USA;
| | - Christopher J. Randolph
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
| | - Meenakshi Sharma
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
| | - Eva de Alba
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
- Correspondence:
| |
Collapse
|
18
|
Kósa N, Zolcsák Á, Voszka I, Csík G, Horváti K, Horváth L, Bősze S, Herenyi L. Comparison of the Efficacy of Two Novel Antitubercular Agents in Free and Liposome-Encapsulated Formulations. Int J Mol Sci 2021; 22:2457. [PMID: 33671100 PMCID: PMC7957691 DOI: 10.3390/ijms22052457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives-TB501 and TB515-were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed.
Collapse
Affiliation(s)
- Nikoletta Kósa
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Ádám Zolcsák
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - István Voszka
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
- Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
- Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
| | - Levente Herenyi
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| |
Collapse
|
19
|
Luminescence continuous flow system for monitoring the efficiency of hybrid liposomes separation using multiphase density gradient centrifugation. Talanta 2021; 222:121532. [PMID: 33167240 DOI: 10.1016/j.talanta.2020.121532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022]
Abstract
A method for monitoring the efficiency of the hybrid magnetoliposomes (h-MLs) separation using multiphase density gradient centrifugation (MDGC) coupled with a continuous flow system (CFS) is described. Several h-MLs suspensions containing hydrophobic magnetic gold nanoparticles (Fe3O4@AuNPs-C12SH) and different fluorophores encapsulated have been synthesized using the rapid solvent evaporation (RSE) method. The MDGC system was prepared using a non-linear multiphase density gradient formed with a bottom layer with 100% (v/v) sucrose solution and six layers containing a mixture of sucrose solution (with concentrations ranged between 10 and 55% v/v), and fixed concentrations of ficoll (30% v/v) and percoll (15% v/v) solutions. The density gradient profile was previously stabilized using a relative centrifugal force (RCF) of 4480×g for 30 min. The synthesized h-MLs were added to the density gradient profile and separated by centrifugation at 2520×g for 20 min. The efficiency of the separation procedure was tested, aspirating the separated extract into the CFS and lysing liposomes before their translation to the detector introducing surfactant solutions. The luminescence signals provided by the release of the encapsulated fluorophores and other materials provided the distribution status of the liposomes in each density gradient stage. The monitoring of the different samples revealed four different fractions (MLs, h-Ls, h-MLs, and non-encapsulated fluorophores) for each separated h-MLs. Additional information on the h-MLs has also been acquired by confocal microscopy.
Collapse
|
20
|
Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2020; 192:113642. [PMID: 33011580 DOI: 10.1016/j.jpba.2020.113642] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Lipid nanoparticles, especially liposomes and lipid/nucleic acid complexed nanoparticles have shown great success in the pharmaceutical industry. Their success is attributed to stable drug loading, extended pharmacokinetics, reduced off-target side effects, and enhanced delivery efficiency to disease targets with formidable blood-brain or plasma membrane barriers. Therefore, they offer promising formulation options for drugs limited by low therapeutic indexes in traditional dosage forms and current "undruggable" targets. Recent development of siRNA, antisense oligonucleotide, or the CRISPR complex-loaded lipid nanoparticles and liposomal vaccines also shed light on their potential in enabling versatile formulation platforms for new pharmaceutical modalities. Analytical characterization of these nanoparticles is critical to drug design, formulation development, understanding in vivo performance, as well as quality control. The multi-lipid excipients, unique core-bilayer structure, and nanoscale size all underscore their complicated critical quality attributes, including lipid species, drug encapsulation efficiency, nanoparticle characteristics, product stability, and drug release. To address these challenges and facilitate future applications of lipid nanoparticles in drug development, we summarize available analytical approaches for physicochemical characterizations of lipid nanoparticle-based pharmaceutical modalities. Furthermore, we compare advantages and challenges of different techniques, and highlight the promise of new strategies for automated high-throughput screening and future development.
Collapse
Affiliation(s)
- Yuchen Fan
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Maria Marioli
- Pharma Technical Development Europe Analytics, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kelly Zhang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
21
|
Liu G, Hou S, Tong P, Li J. Liposomes: Preparation, Characteristics, and Application Strategies in Analytical Chemistry. Crit Rev Anal Chem 2020; 52:392-412. [DOI: 10.1080/10408347.2020.1805293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guangyan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Peihong Tong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
22
|
Lombardo D, Calandra P, Teresa Caccamo M, Magazù S, Pasqua L, A. Kiselev M. Interdisciplinary approaches to the study of biological membranes. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
García-Manrique P, Machado ND, Fernández MA, Blanco-López MC, Matos M, Gutiérrez G. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids Surf B Biointerfaces 2019; 186:110711. [PMID: 31864114 DOI: 10.1016/j.colsurfb.2019.110711] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022]
Abstract
Encapsulation into nanocarriers, such as niosomes, is a promising way to protect them from degradation, and allow controll and target delivery of bioactive compounds. For biotechnological applications, a tight control of particle size with acceptable encapsulation efficiencies (EE) is a technological challenge, especially for hydrophilic compounds due to its capability to diffuse across biological barriers. Niosomes formulated with mixture of surfactants represent promising nanocarriers due to the advantages of non-ionic surfactants, such as low cost, versatility and enhanced physico-chemical properties. In this work, the effect of both, composition of the hydrating solution and molecular weight of the loaded compound, on the particle size and EE of niosomes prepared by using the thin film hydration method was studied. Particularly, mili-Q water, glycerol solution and PEG-400 solution were tested for niosomes formulated with Span®80-Tween®80 with/without dodecanol as membrane stabilizer. It was found that particle size highly depends on hydration media composition and an interaction with compound MW could exist. Larger vesicles results in an increase in EE, which could be purely related with physical aspects such as vesicle loading volume capacity. The effect of hydration solution composition could be related with their ability to change the bilayer packing and physical properties, as observed by differential scanning calorimetry. Finally, it was possible to compare the suitability of dialysis and gel filtration as purification methods, demonstrating that gel filtration is not an adequate purification method when viscous solutions are used, since they could affect the particle vesicles retention and hence EE measurements would be misrepresentative.
Collapse
Affiliation(s)
- Pablo García-Manrique
- Department of Physical and Analytical Chemistry, University of Oviedo, Spain; Department of Chemical Engineering and Environmental Technology, University of Oviedo, Spain
| | - Noelia D Machado
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Mariana A Fernández
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | | | - María Matos
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Spain.
| |
Collapse
|
24
|
Rojas-Montoya ID, Fosado-Esquivel P, Henao-Holguín LV, Esperanza-Villegas AE, Bernad-Bernad M, Gracia-Mora J. Adsorption/desorption studies of norfloxacin on brushite nanoparticles from reverse microemulsions. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00138-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Truzzi E, Meneghetti F, Mori M, Costantino L, Iannuccelli V, Maretti E, Domenici F, Castellano C, Rogers S, Capocefalo A, Leo E. Drugs/lamellae interface influences the inner structure of double-loaded liposomes for inhaled anti-TB therapy: An in-depth small-angle neutron scattering investigation. J Colloid Interface Sci 2019; 541:399-406. [PMID: 30710822 DOI: 10.1016/j.jcis.2019.01.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/05/2023]
Abstract
With the aim of developing new drug carriers for inhalation therapy, we report here an in depth investigation of the structure of multilamellar liposomes loaded with two well-established anti-tubercular (anti-TB) drugs, isoniazid (INH) and rifampicin (RIF), by means of small-angle neutron-scattering (SANS) analysis. Unloaded, single drug-loaded and co-loaded liposomes were prepared using different amounts of drugs and characterized regarding size, encapsulation efficiency and drug release. Detailed information on relevant properties of the investigated host-guest structures, namely the steric bilayer thickness, particle dispersion, number of lamellae and drug localization was studied by SANS. Results showed that RIF-liposomes were less ordered than unloaded liposomes. INH induced a change in the inter-bilayer periodical spacing, while RIF-INH co-loading stabilized the multilamellar liposome architecture, as confirmed by the increment of the drug loading capacity. These findings could be useful for the understanding of in vitro and in vivo behavior of these systems and for the design of new drug carriers, intended for inhaled therapy.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Luca Costantino
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Valentina Iannuccelli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Eleonora Maretti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Via della Ricerca Scientifica, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy.
| | - Carlo Castellano
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Sarah Rogers
- ISIS-STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, UK
| | - Angela Capocefalo
- Dipartimento di Fisica, Sapienza Università di Roma P. le Aldo Moro 5, 00185 Roma, Italy
| | - Eliana Leo
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy.
| |
Collapse
|
26
|
Lapteva M, Mignot M, Mondon K, Möller M, Gurny R, Kalia YN. Self-assembled mPEG-hexPLA polymeric nanocarriers for the targeted cutaneous delivery of imiquimod. Eur J Pharm Biopharm 2019; 142:553-562. [PMID: 30641138 DOI: 10.1016/j.ejpb.2019.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 01/10/2019] [Indexed: 11/18/2022]
Abstract
mPEG-hexPLA micelles have shown their ability to improve delivery and cutaneous bioavailability of a wide range of poorly water soluble and lipophilic molecules. Although poorly water soluble, imiquimod (IMQ) is only moderately lipophilic and it was decided to investigate whether mPEG-hexPLA polymeric micelles could be used as a drug delivery system for this "less than ideal" candidate for encapsulation. Nanosized IMQ micelles (dn = 27 nm) were formulated and characterized. Moreover, the innovative use of size exclusion chromatography allowed the exact drug localization inside the formulation to be determined; it appeared that the use of acetic acid to solubilize IMQ led to a higher IMQ content outside the micelle than inside. IMQ micelles (0.05%) were formulated in a gel using carboxymethyl cellulose (CMC). In vitro application of this formulation to porcine and human skin led to promising delivery results. IMQ deposition in human skin was 1.4 ± 0.4 µg/cm2 while transdermal permeation was only 79 ± 19 ng/cm2: the formulation displayed >17-fold selectivity for cutaneous deposition over transdermal permeation. The optimized 0.05% gel significantly outperformed Aldara® cream (containing 5% IMQ) formulation in terms of delivery efficiency to human skin (2.85 ± 0.74% vs 0.04 ± 0.01%). Despite IMQ being only partially incorporated in the micelles, the biodistribution profile showed that the optimized 0.05% gel delivered as much as 518.2 ± 173.3 ng/cm2 (1.04 ± 0.35% of the applied dose) to the viable epidermis and 236.4 ± 88.2 ng/cm2 (0.47 ± 0.18% of the applied dose) to the upper dermis where the target antigen presenting cells reside. In contrast, for Aldara® cream, the delivery efficiencies in those layers were less than 0.02%. The optimal 0.05% gel thus allowed therapeutically relevant drug levels to be achieved in target tissues despite a 100-fold dose reduction.
Collapse
Affiliation(s)
- Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, Geneva, Switzerland
| | - Margaux Mignot
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, Geneva, Switzerland
| | - Karine Mondon
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, Geneva, Switzerland
| | - Michael Möller
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, Geneva, Switzerland
| | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, Geneva, Switzerland; Apidel SA, CH 1204 Geneva, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
27
|
Sortaggable liposomes: Evaluation of reaction conditions for single-domain antibody conjugation by Sortase-A and targeting of CD11b+ myeloid cells. Eur J Pharm Biopharm 2018; 133:138-150. [DOI: 10.1016/j.ejpb.2018.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/31/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
|
28
|
Huclier-Markai S, Grivaud-Le Du A, N'tsiba E, Montavon G, Mougin-Degraef M, Barbet J. Coupling a gamma-ray detector with asymmetrical flow field flow fractionation (AF4): Application to a drug-delivery system for alpha-therapy. J Chromatogr A 2018; 1573:107-114. [PMID: 30224278 DOI: 10.1016/j.chroma.2018.08.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022]
Abstract
Alpha-particle-emitting radionuclides have been the subject of considerable investigation as cancer therapeutics, since they have the advantages of high potency and specificity. Among α-emitting radionuclides that are medically relevant and currently available, the lead-212/bismuth-212 radionuclide pair could constitute an in vivo generator. Considering its short half-life (T1/2 = 60.6 min), 212Bi can only be delivered using labelled carrier molecules that would rapidly accumulate in the target tumor. To expand the range of applications, an interesting method is to use its longer half-life parent 212Pb (T1/2 = 10.6 h) that decays to 212Bi. The challenge consists in keeping 212Bi bound to the vector after the 212Pb decay. Preclinical and clinical studies have shown that a variety of vectors may be used to target alpha-emitting radionuclides to cancer cells. Nanoparticles, notably liposomes, allow combined targeting options, achieving high specific activities, easier combination of imaging and therapy and development of multimodality therapeutic agents (e.g., radionuclide therapy plus chemotherapy). The aim of this work consists in assessing the in vitro stability of 212Pb/212Bi encapsulation in the liposomes. Indeed, the release of the radionuclide from the carrier molecules might causes toxicity to normal tissues. To reach this goal, Asymmetrical Flow Field-Flow Fractionation (AF4) coupled with a Multi-Angle Light Scattering detector (MALS) was used and coupling with a gamma (γ) ray detector was developed. AF4-MALS-γ was shown to be a powerful tool for monitoring the liposome size together with the incorporation of the high energy alpha emitter. This was successfully extended to assess the stability of 212Bi-radiolabelled liposomes in serum showing that more than 85% of 212Pb/212Bi is retained after 24 h of incubation at 37 °C.
Collapse
Affiliation(s)
- Sandrine Huclier-Markai
- SUBATECH, UMR 6457, IMT Atlantique CNRS/IN2P3-Université de Nantes-, 4 rue Alfred Kastler La Chantrerie, BP 20722, 44307 Nantes Cedex 3, France; GIP ARRONAX, 1 Rue Aronnax, CS 10112, 44817 Saint-Herblain Cedex, France.
| | - Alicia Grivaud-Le Du
- SUBATECH, UMR 6457, IMT Atlantique CNRS/IN2P3-Université de Nantes-, 4 rue Alfred Kastler La Chantrerie, BP 20722, 44307 Nantes Cedex 3, France
| | - Estelle N'tsiba
- SUBATECH, UMR 6457, IMT Atlantique CNRS/IN2P3-Université de Nantes-, 4 rue Alfred Kastler La Chantrerie, BP 20722, 44307 Nantes Cedex 3, France; GIP ARRONAX, 1 Rue Aronnax, CS 10112, 44817 Saint-Herblain Cedex, France
| | - Gilles Montavon
- SUBATECH, UMR 6457, IMT Atlantique CNRS/IN2P3-Université de Nantes-, 4 rue Alfred Kastler La Chantrerie, BP 20722, 44307 Nantes Cedex 3, France
| | - Marie Mougin-Degraef
- Centre de Recherche en Cancérologie et Immunologie de Nantes-Angers CRCINA, Inserm UMR 1232, Université de Nantes, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP70721, 44007 Nantes Cedex 1, France
| | - Jacques Barbet
- GIP ARRONAX, 1 Rue Aronnax, CS 10112, 44817 Saint-Herblain Cedex, France; Centre de Recherche en Cancérologie et Immunologie de Nantes-Angers CRCINA, Inserm UMR 1232, Université de Nantes, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP70721, 44007 Nantes Cedex 1, France
| |
Collapse
|
29
|
Su FY, Chen J, Son HN, Kelly AM, Convertine AJ, Ratner DM, Stayton PS. Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections. Biomater Sci 2018; 6:1976-1985. [PMID: 29850694 PMCID: PMC6195317 DOI: 10.1039/c8bm00282g] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulmonary intracellular infections, such as tuberculosis, anthrax, and tularemia, have remained a significant challenge to conventional antibiotic therapy. Ineffective antibiotic treatment of these infections can lead not only to undesired side effects, but also to the emergence of antibiotic resistance. Aminoglycosides (e.g., streptomycin) have long been part of the therapeutic regiment for many pulmonary intracellular infections. Their bioavailability for intracellular bacterial pools, however, is limited by poor membrane permeability and rapid elimination. To address this challenge, polymer-augmented liposomes (PALs) were developed to provide improved cytosolic delivery of streptomycin to alveolar macrophages, an important host cell for intracellular pathogens. A multifunctional diblock copolymer was engineered to functionalize PALs with carbohydrate-mediated targeting, pH-responsive drug release, and endosomal release activity with a single functional polymer that replaces the pegylated lipid component to simplify the liposome formulation. The pH-sensing functionality enabled PALs to provide enhanced release of streptomycin under endosomal pH conditions (70% release in 6 hours) with limited release at physiological pH 7.4 (16%). The membrane-destabilizing activity connected to endosomal release was characterized in a hemolysis assay and PALs displayed a sharp pH profile across the endosomal pH development target range. The direct connection of this membrane-destabilizing pH profile to model drug release was demonstrated in an established pyranine/p-xylene bispyridinium dibromide (DPX) fluorescence dequenching assay. PALs displayed similar sharp pH-responsive release, whereas PEGylated control liposomes did not, and similar profiles were then shown for streptomycin release. The mannose-targeting capability of the PALs was also demonstrated with 2.5 times higher internalization compared to non-targeted PEGylated liposomes. Finally, the streptomycin-loaded PALs were shown to have a significantly improved intracellular antibacterial activity in a Francisella-macrophage co-culture model, compared with free streptomycin or streptomycin delivered by control PEGylated liposomes (13× and 16×, respectively). This study suggests the potential of PALs as a useful platform to deliver antibiotics for the treatment of intracellular macrophage infections.
Collapse
Affiliation(s)
- Fang-Yi Su
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jasmin Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hye-Nam Son
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Abby M. Kelly
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Daniel M. Ratner
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Vanza J, Jani P, Pandya N, Tandel H. Formulation and statistical optimization of intravenous temozolomide-loaded PEGylated liposomes to treat glioblastoma multiforme by three-level factorial design. Drug Dev Ind Pharm 2018; 44:923-933. [DOI: 10.1080/03639045.2017.1421661] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jigar Vanza
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Parva Jani
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nilima Pandya
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Hemal Tandel
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
31
|
|
32
|
The effect of thermosensitive liposomal formulations on loading and release of high molecular weight biomolecules. Int J Pharm 2017; 524:279-289. [DOI: 10.1016/j.ijpharm.2017.03.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2022]
|
33
|
Bryła A, Juzwa W, Weiss M, Lewandowicz G. Lipid nanoparticles assessment by flow cytometry. Int J Pharm 2017; 520:149-157. [PMID: 28161665 DOI: 10.1016/j.ijpharm.2017.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Liposomes are promising carriers for drugs and bioactive compounds. Size and structure are their crucial parameters. Thus, it is essential to assess individual vesicles as prepared. Currently available techniques fail to measure liposome's size and structure simultaneously, with a high throughput. To solve this problem, we have developed a novel, flow cytometric method quantifying liposomes. METHODS Firstly, the following fluorescent staining combinations were tested: DiD/TO, Rh123/DiD, Syto9/DiD. Further, chosen fluorochromes were used to compare three populations of vesicles: raw (R), obtained by thin film hydration and extruded ones (populations E10 and E21). Dynamic light scattering (DLS) was used for determination of average diameter and size distribution of nanocarriers. Structural differences between the raw and the extruded liposomes, as well as additional information concerning vesicles size were acquired employing atomic force microscopy (AFM). RESULTS DLS analysis indicated that, three distinct populations of vesicles were obtained. Liposomes were characterized by mean diameter of 323nm, 220nm and 170nm for population R, E10 and E21 respectively. All the populations were stable and revealed zeta potential of -29mV. AFM confirmed that raw and extruded liposomes were differed in structure. CONCLUSIONS AND GENERAL SIGNIFICANCE DiD/TO was the optimal fluorochrome combination that enabled to resolve distinctly the sub-populations of liposomes. Results obtained by flow cytometry were in a good agreement with those from DLS and AFM. It was proved that, flow cytometry, when proper fluorescent dyes are used, is an adequate method for liposomes assessment. The proposed method enables fast and reliable analysis of liposomes in their native environment.
Collapse
Affiliation(s)
- Anna Bryła
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 4 Berdychowo Street, 60-965 Poznan, Poland.
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland.
| | - Marek Weiss
- Institute of Physics, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznan, Poland.
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland.
| |
Collapse
|
34
|
|
35
|
Pentak D, Maciążek-Jurczyk M. Self-assembled nanostructures formed by phospholipids and anticancer drugs. Serum albumin-nanoparticle interactions. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Pereira S, Egbu R, Jannati G, Al-Jamal WT. Docetaxel-loaded liposomes: The effect of lipid composition and purification on drug encapsulation and in vitro toxicity. Int J Pharm 2016; 514:150-159. [DOI: 10.1016/j.ijpharm.2016.06.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 10/20/2022]
|
37
|
Narenji M, Talaee M, Moghimi H. Investigating the effects of size, charge, viscosity and bilayer flexibility on liposomal delivery under convective flow. Int J Pharm 2016; 513:88-96. [DOI: 10.1016/j.ijpharm.2016.08.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/26/2022]
|
38
|
Ran C, Chen D, Xu M, Du C, Li Q, Jiang Y. A study on characteristic of different sample pretreatment methods to evaluate the entrapment efficiency of liposomes. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:56-62. [DOI: 10.1016/j.jchromb.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/24/2016] [Accepted: 06/06/2016] [Indexed: 11/28/2022]
|
39
|
Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E125. [PMID: 28335253 PMCID: PMC5224599 DOI: 10.3390/nano6070125] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/19/2023]
Abstract
The development of smart nanocarriers for the delivery of therapeutic drugs has experienced considerable expansion in recent decades, with the development of new medicines devoted to cancer treatment. In this respect a wide range of strategies can be developed by employing liposome nanocarriers with desired physico-chemical properties that, by exploiting a combination of a number of suitable soft interactions, can facilitate the transit through the biological barriers from the point of administration up to the site of drug action. As a result, the materials engineer has generated through the bottom up approach a variety of supramolecular nanocarriers for the encapsulation and controlled delivery of therapeutics which have revealed beneficial developments for stabilizing drug compounds, overcoming impediments to cellular and tissue uptake, and improving biodistribution of therapeutic compounds to target sites. Herein we present recent advances in liposome drug delivery by analyzing the main structural features of liposome nanocarriers which strongly influence their interaction in solution. More specifically, we will focus on the analysis of the relevant soft interactions involved in drug delivery processes which are responsible of main behaviour of soft nanocarriers in complex physiological fluids. Investigation of the interaction between liposomes at the molecular level can be considered an important platform for the modeling of the molecular recognition processes occurring between cells. Some relevant strategies to overcome the biological barriers during the drug delivery of the nanocarriers are presented which outline the main structure-properties relationships as well as their advantages (and drawbacks) in therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Domenico Lombardo
- National Research Council, Institute for Chemical and Physical Processes, Messina 98158, Italy.
| | - Pietro Calandra
- National Research Council, Institute of Nanostructured Materials, Roma 00015, Italy.
| | - Davide Barreca
- Department of Chemical Sciences, biological, pharmaceutical and environmental, University of Messina, Messina 98166, Italy.
| | - Salvatore Magazù
- Department of Physics and Earth Sciences, University of Messina, Messina 98166, Italy.
| | - Mikhail A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow 141980, Russia.
| |
Collapse
|
40
|
Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering. J Chromatogr A 2015; 1418:185-191. [DOI: 10.1016/j.chroma.2015.09.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022]
|
41
|
Mikhalin AA, Evdokimov NM, Frolova LV, Magedov IV, Kornienko A, Johnston R, Rogelj S, Tartis MS. Lipophilic prodrug conjugates allow facile and rapid synthesis of high-loading capacity liposomes without the need for post-assembly purification. J Liposome Res 2015; 25:232-260. [PMID: 25534989 PMCID: PMC4478286 DOI: 10.3109/08982104.2014.992022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dihydropyridopyrazoles are simplified synthetic analogues of podophyllotoxin that can effectively mimic its molecular scaffold and act as potent mitotic spindle poisons in dividing cancer cells. However, despite nanomolar potencies and ease of synthetic preparation, further clinical development of these promising anticancer agents is hampered due to their poor aqueous solubility. In this article, we developed a prodrug strategy that enables incorporation of dihydropyridopyrazoles into liposome bilayers to overcome the solubility issues. The active drug was covalently connected to either myristic or palmitic acid anchor via carboxylesterase hydrolyzable linkage. The resulting prodrugs were self-assembled into liposome bilayers from hydrated lipid films using ultrasound without the need for post-assembly purification. The average particle size of the prodrug-loaded liposomes was about 90 nm. The prodrug incorporation was verified by differential scanning calorimetry, spectrophotometry and gel filtration reaching maximum at 0.3 and 0.35 prodrug/lipid molar ratios for myristic and palmitic conjugates, respectively. However, the ratio of 0.2 was used in the particle size and biological activity experiments to maintain long-term stability of the prodrug-loaded liposomes against phase separation during storage. Antiproliferative activity was tested against HeLa and Jurkat cancer cell lines in vitro showing that the liposomal prodrug retained antitubulin activity of the parent drug and induced apoptosis-mediated cancer cell death. Overall, the established data provide a powerful platform for further clinical development of dihydropyridopyrazoles using liposomes as the drug delivery system.
Collapse
Affiliation(s)
- Alexander A. Mikhalin
- Department of Biology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Nikolai M. Evdokimov
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Liliya V. Frolova
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Igor V. Magedov
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Alexander Kornienko
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Robert Johnston
- Department of Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Snezna Rogelj
- Department of Biology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Michaelann S. Tartis
- Department of Biology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
- Department of Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| |
Collapse
|
42
|
Abstract
Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- Chemical Methodology Institute, CNR, Rome, Italy ; Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese Molinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
43
|
Characterization of insulin-loaded liposome using column-switching HPLC. Int J Pharm 2015; 479:302-5. [DOI: 10.1016/j.ijpharm.2014.12.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/26/2014] [Accepted: 12/24/2014] [Indexed: 11/18/2022]
|
44
|
Kato M, Sasaki M, Ueyama Y, Koga A, Sano A, Higashi T, Santa T. Comparison of the migration behavior of nanoparticles based on polyethylene glycol and silica using micellar electrokinetic chromatography. J Sep Sci 2015; 38:468-74. [DOI: 10.1002/jssc.201401086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Masaru Kato
- Graduate School of Pharmaceutical Sciences and GPLLI Program; The University of Tokyo; Tokyo Japan
| | - Minoru Sasaki
- Graduate School of Pharmaceutical Sciences and GPLLI Program; The University of Tokyo; Tokyo Japan
| | - Yukari Ueyama
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; Noda-shi Chiba Japan
| | - Ayaka Koga
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; Noda-shi Chiba Japan
| | - Akira Sano
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; Noda-shi Chiba Japan
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; Noda-shi Chiba Japan
| | - Tomofumi Santa
- Graduate School of Pharmaceutical Sciences and GPLLI Program; The University of Tokyo; Tokyo Japan
| |
Collapse
|
45
|
Habel J, Ogbonna A, Larsen N, Cherré S, Kynde S, Midtgaard SR, Kinoshita K, Krabbe S, Jensen GV, Hansen JS, Almdal K, Hèlix-Nielsen C. Selecting analytical tools for characterization of polymersomes in aqueous solution. RSC Adv 2015. [DOI: 10.1039/c5ra16403f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We present 17 techniques to analyze polymersomes, in terms of their size, bilayer properties, elastic properties or surface charge.
Collapse
Affiliation(s)
- Joachim Habel
- Technical University of Denmark
- Department of Environmental Engineering
- 2800 Kgs. Lyngby
- Denmark
- Aquaporin A/S
| | | | - Nanna Larsen
- University of Copenhagen
- Copenhagen Biocenter
- 2200 Copenhagen
- Denmark
| | - Solène Cherré
- Technical University of Denmark
- Department of Micro- and Nanotechnology
- 2800 Kgs. Lyngby
- Denmark
| | - Søren Kynde
- University of Copenhagen
- Niels Bohr Institute
- 2100 Copenhagen
- Denmark
| | | | - Koji Kinoshita
- University of Southern Denmark
- Department of Physics
- Chemistry and Pharmacy
- 5230 Odense
- Denmark
| | - Simon Krabbe
- University of Copenhagen
- Department of Biology
- 2100 Copenhagen
- Denmark
| | | | | | - Kristoffer Almdal
- Technical University of Denmark
- Department of Micro- and Nanotechnology
- 2800 Kgs. Lyngby
- Denmark
| | - Claus Hèlix-Nielsen
- Technical University of Denmark
- Department of Environmental Engineering
- 2800 Kgs. Lyngby
- Denmark
- Aquaporin A/S
| |
Collapse
|
46
|
Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater 2014; 10:4071-102. [PMID: 24954909 DOI: 10.1016/j.actbio.2014.06.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 01/02/2023]
Abstract
Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth. In addition, this review will also summarize studies on the controlled formation of nano-/microstructures on the surface of bulk ceramics, and the preparation of macroscopical bone grafts with 3-D architecture nano-/microstructured surfaces. Moreover, the possible directions of future research and development in this field, such as the detailed mechanisms behind the size and shape control in various strategies, the importance of theoretical simulation, self-assembly, biomineralization and sacrificial precursor strategies in the fabrication of biomimetic bone-like and enamel-like CaP materials are proposed.
Collapse
Affiliation(s)
- Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| |
Collapse
|
47
|
Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes. J Control Release 2014; 187:158-66. [PMID: 24878185 DOI: 10.1016/j.jconrel.2014.05.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/24/2022]
Abstract
Collagen is one of the most attractive materials for the development of matrices for tissue engineering, due to its excellent biocompatibility and non-toxic bioresorption. The present work describes a collagen-based externally controlled drug-eluting scaffold which consists of drug encapsulated thermoresponsive liposomes covalently attached to the surface of a functionalized collagen-based scaffold. The model drug used in this work was PTHrP 107-111, a pentapeptide with pro-osteogenic and antiosteoclastic activity. An osteoconductive collagen-hydroxyapatite scaffold, designed specifically for bone repair, was used as a model scaffold. The results demonstrate that it is possible to modify the kinetics of release of the drug from the scaffold with the application of an external thermal stimulus (42°C, 20min). In vitro studies carried out with pre-osteoblastic MC3T3-E1 cells demonstrated that neither the attachment of liposomes to the surface of the scaffolds nor the hyperthermic pulse negatively affected the ability of cells to attach and proliferate on the scaffolds. Importantly, the on-demand release of PTHrP 107-111 had a pro-osteogenic effect, as shown by the enhancement of alkaline phosphatase activity, an early osteogenic marker, which correlated with increased expression of the osteogenic genes osteopontin and osteocalcin. In conclusion, the scaffold-based release system developed in this study has immense potential for tuning the delivery of a diverse range of drugs which can be applied for the regeneration of a variety of tissue types.
Collapse
|
48
|
Pentak D. Physicochemical properties of liposomes as potential anticancer drugs carriers. Interaction of etoposide and cytarabine with the membrane: spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:451-460. [PMID: 24326261 DOI: 10.1016/j.saa.2013.11.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 06/03/2023]
Abstract
The interactions between etoposide, cytarabine and 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine bilayers were studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). These techniques have proven to be a very powerful tool in studying the structure and dynamics of phospholipid bilayers. In particular, DSC can provide information on the phase transition temperature and cooperativity of the lipid molecules in the absence and presence of the drug. Vibrational spectroscopy is well suited to the study of drug-lipid interactions, since it allows for an investigation of the conformation of phospholipid molecules at different levels in lipid bilayers and follows structural changes that occur during the gel to liquid-crystalline phase transition. NMR supported the determination of the main phase transition temperatures (TC) of 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). The main phase transition temperature (TC) determined by (1)H NMR is comparable with values obtained by DSC for all studied liposomes. The location of cytarabine and etoposide in liposomes was also determined by NMR. Atomic force microscopy (AFM) images, acquired immediately after sample deposition on a mica surface, revealed the spherical shape of lipid vesicles.
Collapse
Affiliation(s)
- Danuta Pentak
- Department of Materials Chemistry and Chemical Technology, Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland.
| |
Collapse
|
49
|
Rate of solute incorporation to liposomes evaluated from encapsulated enzymes activities. Biophys Rev 2014; 6:161-167. [PMID: 28509966 DOI: 10.1007/s12551-013-0136-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022] Open
Abstract
There are numerous studies on systems comprising an enzyme encapsulated in unilamellar liposomes and its substrate initially present in the external aqueous media. Most of these studies are focused on enzyme stability and activity in a restricted media. However, the rate of the process is also determined by the capacity of the substrate to permeate towards the liposome inner pool. In spite of this, there are few studies aimed at a quantitative evaluation of the substrate permeation rate and its lifetime inside the liposome pool. In the present work, we describe, in terms of a very simple mechanism, the permeation of glucose and hydrogen peroxide in DPPC unilamellar liposomes. To this aim, we evaluated the rate of the process employing encapsulated glucose oxidase and catalase in the kinetic diffusion controlled limit. Under this condition, the rate of the process becomes zero order in the enzyme and allows a direct evaluation of the rate constant for the permeation process and the lifetime of a substrate molecule incorporated into the liposome inner pool.
Collapse
|
50
|
Varga Z, Yuana Y, Grootemaat AE, van der Pol E, Gollwitzer C, Krumrey M, Nieuwland R. Towards traceable size determination of extracellular vesicles. J Extracell Vesicles 2014; 3:23298. [PMID: 24511372 PMCID: PMC3916677 DOI: 10.3402/jev.v3.23298] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 12/31/2022] Open
Abstract
Background Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS) and size exclusion chromatography coupled with dynamic light scattering detection. Results The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.
Collapse
Affiliation(s)
- Zoltán Varga
- Department of Biological Nanochemistry, Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Yuana Yuana
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Anita E Grootemaat
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands ; Department of Biomedical Engineering and Physics, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | | | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Rienk Nieuwland
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|