1
|
Huang DX, Yang MX, Jiang ZM, Chen M, Chang K, Zhan YX, Gong X. Nerve trunk healing and neuroma formation after nerve transection injury. Front Neurol 2023; 14:1184246. [PMID: 37377855 PMCID: PMC10291201 DOI: 10.3389/fneur.2023.1184246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
The nerve trunk healing process of a transected peripheral nerve trunk is composed of angiogenesis, nerve fiber regeneration, and scarring. Nerve trunk healing and neuroma formation probably share identical molecular mediators and similar regulations. At the nerve transection site, angiogenesis is sufficient and necessary for nerve fiber regeneration. Angiogenesis and nerve fiber regeneration reveal a positive correlation in the early time. Scarring and nerve fiber regeneration show a negative correlation in the late phase. We hypothesize that anti-angiogenesis suppresses neuromas. Subsequently, we provide potential protocols to test our hypothesis. Finally, we recommend employing anti-angiogenic small-molecule protein kinase inhibitors to investigate nerve transection injuries.
Collapse
|
2
|
Poitras T, Zochodne DW. Unleashing Intrinsic Growth Pathways in Regenerating Peripheral Neurons. Int J Mol Sci 2022; 23:13566. [PMID: 36362354 PMCID: PMC9654452 DOI: 10.3390/ijms232113566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 10/17/2023] Open
Abstract
Common mechanisms of peripheral axon regeneration are recruited following diverse forms of damage to peripheral nerve axons. Whether the injury is traumatic or disease related neuropathy, reconnection of axons to their targets is required to restore function. Supporting peripheral axon regrowth, while not yet available in clinics, might be accomplished from several directions focusing on one or more of the complex stages of regrowth. Direct axon support, with follow on participation of supporting Schwann cells is one approach, emphasized in this review. However alternative approaches might include direct support of Schwann cells that instruct axons to regrow, manipulation of the inflammatory milieu to prevent ongoing bystander axon damage, or use of inflammatory cytokines as growth factors. Axons may be supported by a growing list of growth factors, extending well beyond the classical neurotrophin family. The understanding of growth factor roles continues to expand but their impact experimentally and in humans has faced serious limitations. The downstream signaling pathways that impact neuron growth have been exploited less frequently in regeneration models and rarely in human work, despite their promise and potency. Here we review the major regenerative signaling cascades that are known to influence adult peripheral axon regeneration. Within these pathways there are major checkpoints or roadblocks that normally check unwanted growth, but are an impediment to robust growth after injury. Several molecular roadblocks, overlapping with tumour suppressor systems in oncology, operate at the level of the perikarya. They have impacts on overall neuron plasticity and growth. A second approach targets proteins that largely operate at growth cones. Addressing both sites might offer synergistic benefits to regrowing neurons. This review emphasizes intrinsic aspects of adult peripheral axon regeneration, emphasizing several molecular barriers to regrowth that have been studied in our laboratory.
Collapse
Affiliation(s)
| | - Douglas W. Zochodne
- Neuroscience and Mental Health Institute, Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
3
|
A BRCA1-Dependent DNA Damage Response in the Regenerating Adult Peripheral Nerve Milieu. Mol Neurobiol 2017; 55:4051-4067. [PMID: 28585187 DOI: 10.1007/s12035-017-0574-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
It is not generally appreciated that DNA repair machinery has a critical role in the remodeling of neurons that adopt a regenerative phenotype. We identified that breast cancer 1 (BRCA1)-dependent DNA activity, previously well known to repair cancer cells, is active in adult peripheral neurons and Schwann cells during their injury and regeneration response. Temporary or partial loss of BRCA1 or blockade of its intraneuronal nuclear entry impaired outgrowth in neurons in vitro and impacted nerve regeneration and functional recovery in vivo. We found that distal axonal injury triggered a BRCA1-dependent DNA damage response (DDR) signal in neuronal soma. BRCA1 also supported an enabling transcriptional program of injured neurons and supporting Schwann cells. Our findings indicate that BRCA1 offers prominent functional roles in neurons and glial cells including key support for their physical and molecular integrity. Since BRCA1 mutations are common in humans, this function of BRCA1 in peripheral neurons and their glial partners warrants attention.
Collapse
|
4
|
Kriebel A, Hodde D, Kuenzel T, Engels J, Brook G, Mey J. Cell-free artificial implants of electrospun fibres in a three-dimensional gelatin matrix support sciatic nerve regeneration in vivo. J Tissue Eng Regen Med 2017; 11:3289-3304. [PMID: 28127889 DOI: 10.1002/term.2237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 11/06/2022]
Abstract
Surgical repair of larger peripheral nerve lesions requires the use of autologous nerve grafts. At present, clinical alternatives to avoid nerve transplantation consist of empty tubes, which are only suitable for the repair over short distances and have limited success. We developed a cell-free, three-dimensional scaffold for axonal guidance in long-distance nerve repair. Sub-micron scale fibres of biodegradable poly-ε-caprolactone (PCL) and collagen/PCL (c/PCL) blends were incorporated in a gelatin matrix and inserted in collagen tubes. The conduits were tested by replacing 15-mm-long segments of rat sciatic nerves in vivo. Biocompatibility of the implants and nerve regeneration were assessed histologically, with electromyography and with behavioural tests for motor functions. Functional repair was achieved in all animals with autologous transplants, in 12 of 13 rats that received artificial implants with an internal structure and in half of the animals with empty nerve conduits. In rats with implants containing c/PCL fibres, the extent of recovery (compound muscle action potentials, motor functions of the hind limbs) was superior to animals that had received empty implants, but not as good as with autologous nerve transplantation. Schwann cell migration and axonal regeneration were observed in all artificial implants, and muscular atrophy was reduced in comparison with animals that had received no implants. The present design represents a significant step towards cell-free, artificial nerve bridges that can replace autologous nerve transplants in the clinic. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Kriebel
- Institut für Biologie II, RWTH Aachen University, Germany.,EURON Graduate School of Neuroscience, Maastricht University, the Netherlands
| | - Dorothee Hodde
- Institut für Neuropathologie, Universitätsklinikum RWTH Aachen University, Germany
| | - Thomas Kuenzel
- Institut für Biologie II, RWTH Aachen University, Germany
| | - Jessica Engels
- Institut für Biologie II, RWTH Aachen University, Germany
| | - Gary Brook
- Institut für Neuropathologie, Universitätsklinikum RWTH Aachen University, Germany.,Jülich-Aachen Research Alliance, Translational Brain Medicine, Jülich, Germany
| | - Jörg Mey
- EURON Graduate School of Neuroscience, Maastricht University, the Netherlands.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
5
|
Law V, Dong S, Rosales JL, Jeong MY, Zochodne D, Lee KY. Enhancement of Peripheral Nerve Regrowth by the Purine Nucleoside Analog and Cell Cycle Inhibitor, Roscovitine. Front Cell Neurosci 2016; 10:238. [PMID: 27799897 PMCID: PMC5066473 DOI: 10.3389/fncel.2016.00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/30/2016] [Indexed: 02/03/2023] Open
Abstract
Peripheral nerve regeneration is a slow process that can be associated with limited outcomes and thus a search for novel and effective therapy for peripheral nerve injury and disease is crucial. Here, we found that roscovitine, a synthetic purine nucleoside analog, enhances neurite outgrowth in neuronal-like PC12 cells. Furthermore, ex vivo analysis of pre-injured adult rat dorsal root ganglion (DRG) neurons showed that roscovitine enhances neurite regrowth in these cells. Likewise, in vivo transected sciatic nerves in rats locally perfused with roscovitine had augmented repopulation of new myelinated axons beyond the transection zone. By mass spectrometry, we found that roscovitine interacts with tubulin and actin. It interacts directly with tubulin and causes a dose-dependent induction of tubulin polymerization as well as enhances Guanosine-5′-triphosphate (GTP)-dependent tubulin polymerization. Conversely, roscovitine interacts indirectly with actin and counteracts the inhibitory effect of cyclin-dependent kinases 5 (Cdk5) on Actin-Related Proteins 2/3 (Arp2/3)-dependent actin polymerization, and thus, causes actin polymerization. Moreover, in the presence of neurotrophic factors such as nerve growth factor (NGF), roscovitine-enhanced neurite outgrowth is mediated by increased activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways. Since microtubule and F-actin dynamics are critical for axonal regrowth, the ability of roscovitine to activate the ERK1/2 and p38 MAPK pathways and support polymerization of tubulin and actin indicate a major role for this purine nucleoside analog in the promotion of axonal regeneration. Together, our findings demonstrate a therapeutic potential for the purine nucleoside analog, roscovitine, in peripheral nerve injury.
Collapse
Affiliation(s)
- Vincent Law
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Sophie Dong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Jesusa L Rosales
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary Calgary, AB, Canada
| | - Myung-Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University Pusan, South Korea
| | - Douglas Zochodne
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
6
|
Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo. Brain Res 2016; 1636:93-106. [DOI: 10.1016/j.brainres.2016.01.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 11/23/2022]
|
7
|
Martinez JA, Kobayashi M, Krishnan A, Webber C, Christie K, Guo G, Singh V, Zochodne DW. Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen. Exp Neurol 2015. [DOI: 10.1016/j.expneurol.2015.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Krishnan A, Duraikannu A, Zochodne DW. Releasing 'brakes' to nerve regeneration: intrinsic molecular targets. Eur J Neurosci 2015; 43:297-308. [PMID: 26174154 DOI: 10.1111/ejn.13018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
Restoring critical neuronal architecture after peripheral nerve injury is challenging. Although immediate regenerative responses to peripheral axon injury involve the synthesis of regeneration-associated proteins in neurons and Schwann cells, an unfavorable balance between growth facilitatory and growth inhibitory signaling impairs the growth continuum of injured peripheral nerves. Molecules involved with the signaling network of tumor suppressors play crucial roles in shifting the balance between growth and restraint during axon regeneration. An understanding of the molecular framework of tumor suppressor molecules in injured neurons and its impact on stage-specific regeneration events may expose therapeutic intervention points. In this review we discuss how signaling networks of the specific tumor suppressors PTEN, Rb1, p53, p27 and p21 are altered in injured peripheral nerves and how this impacts peripheral nerve regeneration. Insights into the roles and importance of these pathways may open new avenues for improving the neurological deficits associated with nerve injury.
Collapse
Affiliation(s)
- Anand Krishnan
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Arul Duraikannu
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
9
|
Abstract
Development and maintenance of the peripheral nervous system (PNS) are essential for an organism to survive and reproduce, and damage to the PNS by disease or injury is often debilitating. Remarkably, the nerves of the PNS are capable of regenerating after trauma. However, full functional recovery after nerve injuries remains poor. Peripheral nerve regeneration has been studied extensively, with particular emphasis on elucidating the roles of Schwann cells and macrophages during degeneration and subsequent regeneration. In contrast, the roles of other essential nerve components, including perineurial glia, are poorly understood. Here, we use laser nerve transection and in vivo, time-lapse imaging in zebrafish to investigate the role and requirement of perineurial glia after nerve injury. We show that perineurial glia respond rapidly and dynamically to nerve transections by extending processes into injury sites and phagocytizing debris. Perineurial glia also bridge injury gaps before Schwann cells and axons, and we demonstrate that these bridges are essential for axon regrowth. Additionally, we show that perineurial glia and macrophages spatially coordinate early debris clearance and that perineurial glia require Schwann cells for their attraction to injury sites. This work highlights the complex nature of cell-cell interactions after injury and introduces perineurial glia as integral players in the regenerative process.
Collapse
|
10
|
Christie KJ, Krishnan A, Martinez JA, Purdy K, Singh B, Eaton S, Zochodne D. Enhancing adult nerve regeneration through the knockdown of retinoblastoma protein. Nat Commun 2014; 5:3670. [PMID: 24752312 PMCID: PMC5028199 DOI: 10.1038/ncomms4670] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/17/2014] [Indexed: 12/22/2022] Open
Abstract
Tumour suppressor pathways may offer novel targets capable of altering the plasticity of post-mitotic adult neurons. Here we describe a role for the retinoblastoma (Rb) protein, widely expressed in adult sensory neurons and their axons, during regeneration. In adult sensory neurons, Rb short interfering RNA (siRNA) knockdown or Rb1 deletion in vitro enhances neurite outgrowth and branching. Plasticity is achieved in part through upregulation of neuronal PPARυ; its antagonism inhibits Rb siRNA plasticity, whereas a PPARυ agonist increases growth. In an in vivo regenerative paradigm following complete peripheral nerve trunk transection, direct delivery of Rb siRNA prompts increased outgrowth of axons from proximal stumps and entrains Schwann cells to accompany them for greater distances. Similarly, Rb siRNA delivery following a nerve crush improves behavioural indices of motor and sensory recovery in mice. The overall findings indicate that inhibition of tumour suppressor molecules has a role to play in promoting adult neuron regeneration.
Collapse
Affiliation(s)
- Kimberly J Christie
- 1] Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1 [2]
| | - Anand Krishnan
- 1] Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1 [2]
| | - Jose A Martinez
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Kaylynn Purdy
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Bhagat Singh
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Shane Eaton
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Douglas Zochodne
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
11
|
Christie K, Zochodne D. Peripheral axon regrowth: New molecular approaches. Neuroscience 2013; 240:310-24. [DOI: 10.1016/j.neuroscience.2013.02.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
|
12
|
Chao T, Gupta R. Commentary on Kemp et al. (2011): Dose and duration of nerve growth factor (NGF) administration determine the extent of behavioral recovery following peripheral nerve injury in the rat. Exp Neurol 2011; 234:5-7. [PMID: 22222878 DOI: 10.1016/j.expneurol.2011.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Affiliation(s)
- Tom Chao
- University of California, Irvine, CA, USA
| | | |
Collapse
|
13
|
Webber CA, Christie KJ, Cheng C, Martinez JA, Singh B, Singh V, Thomas D, Zochodne DW. Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia 2011; 59:1503-17. [DOI: 10.1002/glia.21194] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/16/2011] [Indexed: 11/11/2022]
|
14
|
Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, Doddrell RDS, Nakayama M, Adams RH, Lloyd AC. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010; 143:145-55. [PMID: 20869108 DOI: 10.1016/j.cell.2010.08.039] [Citation(s) in RCA: 392] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/15/2010] [Accepted: 08/09/2010] [Indexed: 01/06/2023]
Abstract
The peripheral nervous system has astonishing regenerative capabilities in that cut nerves are able to reconnect and re-establish their function. Schwann cells are important players in this process, during which they dedifferentiate to a progenitor/stem cell and promote axonal regrowth. Here, we report that fibroblasts also play a key role. Upon nerve cut, ephrin-B/EphB2 signaling between fibroblasts and Schwann cells results in cell sorting, followed by directional collective cell migration of Schwann cells out of the nerve stumps to guide regrowing axons across the wound. Mechanistically, we find that cell-sorting downstream of EphB2 is mediated by the stemness factor Sox2 through N-cadherin relocalization to Schwann cell-cell contacts. In vivo, loss of EphB2 signaling impaired organized migration of Schwann cells, resulting in misdirected axonal regrowth. Our results identify a link between Ephs and Sox proteins, providing a mechanism by which progenitor cells can translate environmental cues to orchestrate the formation of new tissue.
Collapse
Affiliation(s)
- Simona Parrinello
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In vivo regeneration of peripheral neurons is constrained and rarely complete, and unfortunately patients with major nerve trunk transections experience only limited recovery. Intracellular inhibition of neuronal growth signals may be among these constraints. In this work, we investigated the role of PTEN (phosphatase and tensin homolog deleted on chromosome 10) during regeneration of peripheral neurons in adult Sprague Dawley rats. PTEN inhibits phosphoinositide 3-kinase (PI3-K)/Akt signaling, a common and central outgrowth and survival pathway downstream of neuronal growth factors. While PI3-K and Akt outgrowth signals were expressed and activated within adult peripheral neurons during regeneration, PTEN was similarly expressed and poised to inhibit their support. PTEN was expressed in neuron perikaryal cytoplasm, nuclei, regenerating axons, and Schwann cells. Adult sensory neurons in vitro responded to both graded pharmacological inhibition of PTEN and its mRNA knockdown using siRNA. Both approaches were associated with robust rises in the plasticity of neurite outgrowth that were independent of the mTOR (mammalian target of rapamycin) pathway. Importantly, this accelerated outgrowth was in addition to the increased outgrowth generated in neurons that had undergone a preconditioning lesion. Moreover, following severe nerve transection injuries, local pharmacological inhibition of PTEN or siRNA knockdown of PTEN at the injury site accelerated axon outgrowth in vivo. The findings indicated a remarkable impact on peripheral neuron plasticity through PTEN inhibition, even within a complex regenerative milieu. Overall, these findings identify a novel route to propagate intrinsic regeneration pathways within axons to benefit nerve repair.
Collapse
|
16
|
The nerve regenerative microenvironment: Early behavior and partnership of axons and Schwann cells. Exp Neurol 2010; 223:51-9. [DOI: 10.1016/j.expneurol.2009.05.037] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 11/19/2022]
|
17
|
Abstract
Peripheral neurons are targeted by a 'double hit' during diabetes mellitus. First, they are damaged directly; diabetic polyneuropathy is a progressive neurodegenerative disorder that involves sensory, autonomic and eventually motor neurons. The second 'hit' involves a profound impairment in the ability of peripheral axons to regenerate. This is important because the impairment impacts on how patients may recover from polyneuropathy. Moreover, diabetic patients also develop direct focal injures of peripheral nerves, such as carpal tunnel syndrome and ulnar neuropathy at the elbow. Their response to the treatment of these selective injuries is also impaired. Regeneration of peripheral neurons is normally a complex process that involves axon sprouting, upregulation of molecular regeneration programs, clearance of pathways for axon regrowth, maturation of new axons and reconnection to their targets. Schwann cells and perineuronal glial cells provide support during many of these processes. However, in diabetes mellitus a number of these steps may be independently impaired. In this brief article, we discuss evidence for several of these mechanisms of regenerative failure in diabetes.
Collapse
Affiliation(s)
- Douglas W Zochodne
- a Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 168 Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
18
|
Walsh S, Midha R. Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus 2009; 26:E2. [PMID: 19435443 DOI: 10.3171/foc.2009.26.2.e2] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review the authors intend to demonstrate the need for supplementing conventional repair of the injured nerve with alternative therapies, namely transplantation of stem or progenitor cells. Although peripheral nerves do exhibit the potential to regenerate axons and reinnervate the end organ, outcome following severe nerve injury, even after repair, remains relatively poor. This is likely because of the extensive injury zone that prevents axon outgrowth. Even if outgrowth does occur, a relatively slow growth rate of regeneration results in prolonged denervation of the distal nerve. Whereas denervated Schwann cells (SCs) are key players in the early regenerative success of peripheral nerves, protracted loss of axonal contact renders Schwann cells unreceptive for axonal regeneration. Given that denervated Schwann cells appear to become effete, one logical approach is to support the distal denervated nerve environment by replacing host cells with those derived exogenously. A number of different sources of stem/precursor cells are being explored for their potential application in the scenario of peripheral nerve injury. The most promising candidate, transplant cells are derived from easily accessible sources such as the skin, bone marrow, or adipose tissue, all of which have demonstrated the capacity to differentiate into Schwann cell-like cells. Although recent studies have shown that stem cells can act as promising and beneficial adjuncts to nerve repair, considerable optimization of these therapies will be required for their potential to be realized in a clinical setting. The authors investigate the relevance of the delivery method (both the number and differentiation state of cells) on experimental outcomes, and seek to clarify whether stem cells must survive and differentiate in the injured nerve to convey a therapeutic effect. As our laboratory uses skin-derived precursor cells (SKPCs) in various nerve injury paradigms, we relate our findings on cell fate to other published studies to demonstrate the need to quantify stem cell survival and differentiation for future studies.
Collapse
Affiliation(s)
- Sarah Walsh
- Hotchkiss Brain Institute, University of Calgary, Alberta
| | | |
Collapse
|
19
|
Pohlmeyer EA, Jordon LR, Kim P, Miller LE. A fully implanted drug delivery system for peripheral nerve blocks in behaving animals. J Neurosci Methods 2009; 182:165-71. [PMID: 19524613 DOI: 10.1016/j.jneumeth.2009.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
Inhibiting peripheral nerve function can be useful for many studies of the nervous system or motor control. Accomplishing this in a temporary fashion in animal models by using peripheral nerve blocks permits studies of the immediate effects of the loss, and/or any resulting short-term changes and adaptations in behavior or motor control, while avoiding the complications commonly associated with permanent lesions, such as sores or self-mutilation. We have developed a method of quickly and repeatedly inducing temporary, controlled motor deficits in rhesus macaque monkeys via a chronically implanted drug delivery system. This assembly consists of a nerve cuff and a subdermal injection dome, and has proved effective for delivering local anesthetics directly to peripheral nerves for many months. Using this assembly for median and ulnar nerve blocks routinely resulted in over 80% losses in hand and wrist strength for rhesus monkeys. The assembly was also effective for inducing ambulatory motor deficits in rabbits through blocks of the sciatic nerve. Interestingly, while standard anesthetics were sufficient for the rabbit nerve blocks, the inclusion of epinephrine was essential for achieving significant motor blockade in the monkeys.
Collapse
Affiliation(s)
- Eric A Pohlmeyer
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
20
|
Locally synthesized calcitonin gene-related Peptide has a critical role in peripheral nerve regeneration. J Neuropathol Exp Neurol 2009; 68:326-37. [PMID: 19225405 DOI: 10.1097/nen.0b013e31819ac71b] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regeneration of peripheral nerves involves complex and intimate interactions between axons and Schwann cells. Here, we show that local axon synthesis and action of the neuropeptide calcitonin gene-related peptide (CGRP) is critical for this collaboration. After peripheral sural sensory axon injury in rats, we observed an unexpectedly large proportion of axons that newly expressed CGRP during regeneration. Intense peptide expression accompanied local rises in alphaCGRP mRNA in the nerve trunk, and there was evidence of transport of alphaCGRP mRNA into regenerating axons, indicating intra-axonal peptide synthesis. Calcitonin gene-related peptide receptor and its receptor activity modifying protein were expressed onadjacent Schwann cells, where they were available for signaling. Moreover, exogenous CGRP induced proliferation in isolated adult Schwann cells. New axon outgrowth and CGRP expression depended on local peptide synthesis and were inhibited by exposure tolocal translation inhibitors. Local delivery of siRNAs to either alphaCGRP or receptor activity modifying protein 1 to sites of nerve transection was associated with severe disruption of axon outgrowth.These findings indicate that robust localized intra-axonal translation of the CGRP neuropeptide during regeneration signals Schwann cell proliferation, behavior that is critical for partnering during adult peripheral nerve regrowth.
Collapse
|
21
|
Kemp SWP, Walsh SK, Midha R. Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair. Neurol Res 2009; 30:1030-8. [PMID: 19079977 DOI: 10.1179/174313208x362505] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Despite the capacity for spontaneous axonal regeneration, recovery after severe peripheral nerve injury remains variable and often very poor. In addition, autologous nerve grafts, considered to be the 'gold standard' in nerve repair technique, are plagued by restricted donor tissue availability and donor site morbidity. Our primary objective is to highlight new and emerging methods of nerve repair, which have the potential to significantly improve both the functional and behavioral outcome after clinical nerve injury. METHODS A critical analysis of nerve injury and regeneration literature concentrating on outcome measures from both immediate and chronically denervated experimental works was conducted. RESULTS Results of numerous works employing both growth factor and stem cell enhanced nerve guidance conduits have shown encouraging results. However, further research is needed to optimize guidance conduit dynamics, bioavailability and delivery of both growth factors and stem cells to enhance peripheral nerve regeneration and functional recovery. DISCUSSION This review discusses current animal and clinical growth factor and stem cell studies, specifically focusing on future bio-engineering approaches in developing a nerve guidance conduit in the future.
Collapse
Affiliation(s)
- Stephen W P Kemp
- Department of Clinical Neuroscience, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alta, Canada.
| | | | | |
Collapse
|
22
|
Liu WQ, Martinez J, Durand J, Wildering W, Zochodne D. RGD-mediated adhesive interactions are important for peripheral axon outgrowth in vivo. Neurobiol Dis 2009; 34:11-22. [DOI: 10.1016/j.nbd.2008.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/02/2008] [Accepted: 11/19/2008] [Indexed: 11/28/2022] Open
|
23
|
RETRACTED: Local erythropoietin signaling enhances regeneration in peripheral axons. Neuroscience 2008; 154:767-83. [DOI: 10.1016/j.neuroscience.2008.03.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 12/12/2022]
|
24
|
Cheng C, Webber CA, Wang J, Xu Y, Martinez JA, Liu WQ, McDonald D, Guo GF, Nguyen MD, Zochodne DW. Activated RHOA and peripheral axon regeneration. Exp Neurol 2008; 212:358-69. [PMID: 18554585 DOI: 10.1016/j.expneurol.2008.04.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/17/2008] [Accepted: 04/08/2008] [Indexed: 11/16/2022]
Abstract
The regeneration of adult peripheral neurons after transection is slow, incomplete and encumbered by severe barriers to proper regrowth. The role of RHOA GTPase has not been examined in this context. We examined the expression, activity and functional role of RHOA GTPase and its ROK effector, inhibitors of regeneration, during peripheral axon outgrowth. We used qRT-PCR, quantitative immunohistochemistry, and assays of RHOA activation to examine expression in sensory neurons of rats with sciatic transection injuries. In vitro, we exposed dissociated adult sensory neurons, not grown on inhibitory substrates, to a RHOA-ROK inhibitor HA-1077 and measured neurite initiation and outgrowth. In vivo, we exposed early regenerating axons and Schwann cells directly to HA-1077 in a conduit connecting the proximal and distal stumps of transected sciatic nerves. Intact adult dorsal root ganglia sensory neurons expressed RHOA and ROK 1 mRNAs and protein and there were rises in RHOA after injury. Activated GTP-bound RHOA, undetectable in intact ganglia, was dramatically upregulated in both neurons and axons after injury. Adult rat sensory neurons in vitro demonstrated a dose-related increase in the initiation of neurite outgrowth, and in the proportion with long neurites when they were exposed to a ROK antagonist. Regenerative bridges that were directly exposed to the ROK inhibitor had a dose-related rise in the extent and distance of in vivo axon and partnered Schwann cell regrowth within them. RHOA activation and signaling are features of adult peripheral axon regeneration within its own milieu, independent of myelin. Inhibition of its activation may benefit peripheral axon lesions.
Collapse
Affiliation(s)
- C Cheng
- University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Toth C, Shim SY, Wang J, Jiang Y, Neumayer G, Belzil C, Liu WQ, Martinez J, Zochodne D, Nguyen MD. Ndel1 promotes axon regeneration via intermediate filaments. PLoS One 2008; 3:e2014. [PMID: 18431495 PMCID: PMC2291557 DOI: 10.1371/journal.pone.0002014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/13/2008] [Indexed: 01/27/2023] Open
Abstract
Failure of axons to regenerate following acute or chronic neuronal injury is attributed to both the inhibitory glial environment and deficient intrinsic ability to re-grow. However, the underlying mechanisms of the latter remain unclear. In this study, we have investigated the role of the mammalian homologue of aspergillus nidulans NudE, Ndel1, emergently viewed as an integrator of the cytoskeleton, in axon regeneration. Ndel1 was synthesized de novo and upregulated in crushed and transected sciatic nerve axons, and, upon injury, was strongly associated with neuronal form of the intermediate filament (IF) Vimentin while dissociating from the mature neuronal IF (Neurofilament) light chain NF-L. Consistent with a role for Ndel1 in the conditioning lesion-induced neurite outgrowth of Dorsal Root Ganglion (DRG) neurons, the long lasting in vivo formation of the neuronal Ndel1/Vimentin complex was associated with robust axon regeneration. Furthermore, local silencing of Ndel1 in transected axons by siRNA severely reduced the extent of regeneration in vivo. Thus, Ndel1 promotes axonal regeneration; activating this endogenous repair mechanism may enhance neuroregeneration during acute and chronic axonal degeneration.
Collapse
Affiliation(s)
- Cory Toth
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Su Yeon Shim
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Jian Wang
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Yulan Jiang
- Department of Biochemistry and Molecular Biology, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Gernot Neumayer
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Camille Belzil
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Wei-Qiao Liu
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Jose Martinez
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Douglas Zochodne
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Minh Dang Nguyen
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Abstract
Inflammation can both support and hinder regeneration. In this work, we asked whether regeneration of peripheral nerve axons is facilitated or interrupted when it proceeds through a zone of local but nondirected inflammation. Regeneration was examined in new nerve bridges forming through conduits connecting transected rat sciatic nerves. The conduits, infused with lipopolysaccharide to generate a sterile and nondirected inflammatory response, had substantial rises in inducible nitric oxide (iNOS) mRNA synthesis. iNOS was expressed within macrophages just beyond the zone of axon regrowth. Under these conditions, there was complete interruption of regenerative bridge formation in all instances without axon regrowth across the transection. In a separate cohort, infusion of a broad-spectrum NOS inhibitor (Nomega-nitro-L-arginine-methyl ester) into the conduit salvaged bridge formation in a proportion (3/8) of rats. Our findings indicate that local inflammatory conditions inhibit regenerative events and that nitric oxide may contribute to these events.
Collapse
|
27
|
Tannemaat MR, Boer GJ, Verhaagen J, Malessy MJ. GENETIC MODIFICATION OF HUMAN SURAL NERVE SEGMENTS BY A LENTIVIRAL VECTOR ENCODING NERVE GROWTH FACTOR. Neurosurgery 2007; 61:1286-94; discussion 1294-6. [DOI: 10.1227/01.neu.0000306108.78044.a2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Martijn R. Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of The Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard J. Boer
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of The Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of The Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martijn J.A. Malessy
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Lin W, Chen X, Wang X, Liu J, Gu X. Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro. In Vitro Cell Dev Biol Anim 2007; 44:31-40. [PMID: 17985192 DOI: 10.1007/s11626-007-9064-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 09/14/2007] [Indexed: 12/13/2022]
Abstract
Bone marrow stromal cells (MSCs) have the capability of differentiating into mesenchymal and non-mesenchymal lineages. In this study, MSCs isolated from adult Sprague-Dawley rats were cultured to proliferation, followed by in vitro induction under specific conditions. The results demonstrated that MSCs were transdifferentiated into cells with the Schwann cell (SC) phenotypes according to their morphology and immunoreactivities to SC surface markers including S-100, glial fibrillary acidic protein (GFAP) and low-affinity nerve growth factor receptor (p75). Consequently, rat adult MSCs can be induced in vitro to differentiate into SC-like cells, thus developing an abundant and accessible SC reservoir to meet the requirements of constructing tissue engineered nerve grafts for peripheral nerve repair.
Collapse
Affiliation(s)
- WeiWei Lin
- The Jiangsu Province Key Lab of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, China
| | | | | | | | | |
Collapse
|
29
|
Zochodne DW, Guo GF, Magnowski B, Bangash M. Regenerative failure of diabetic nerves bridging transection injuries. Diabetes Metab Res Rev 2007; 23:490-6. [PMID: 17315138 DOI: 10.1002/dmrr.716] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Failed regeneration compounds the deficits imposed by diabetes from peripheral neuropathy. In this work, we addressed how diabetes or local glucose toxicity might impact peripheral nerve trunk regeneration and reconstitution across major sciatic nerve transection injuries of rats. METHODS Specific conduits, amendable to manipulation of infused glucose concentrations through a T connection, were perfused with 5 or 30 mmol/L glucose in nondiabetics or 5 mmol/L glucose in rats with experimental diabetes. Quantitative early and later regenerative outgrowth was measured. RESULTS Local glucose exposure had no impact on early axon or Schwann cell outgrowth or partnering nor later myelinated axon regeneration. Despite only mildly attenuated early sprouting of axons with Schwann cells, diabetic bridges exhibited massive later failure of reconstitution by 3 weeks after injury. CONCLUSION Diabetes is associated with severe limitations in regenerative success, despite appropriate early axon outgrowth.
Collapse
Affiliation(s)
- Douglas W Zochodne
- University of Calgary, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Canada.
| | | | | | | |
Collapse
|
30
|
Kemp SWP, Walsh SK, Zochodne DW, Midha R. A novel method for establishing daily in vivo concentration gradients of soluble nerve growth factor (NGF). J Neurosci Methods 2007; 165:83-8. [PMID: 17624441 DOI: 10.1016/j.jneumeth.2007.05.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 11/24/2022]
Abstract
Despite the capacity for spontaneous axonal regeneration, recovery following injuries to the peripheral nervous system (PNS) following transection are often incomplete and limited to short distances. Nerve growth factor (NGF) has been previously shown to support neuron survival, and direct growth of both developing and regenerating nerve fibers along a concentration gradient, based largely on in vitro studies. Here, we present a novel in vivo model of administering daily concentration gradients of NGF by directly manipulating the placement of the catheter-nerve conduit junction. Our results show that a dose of 800 pg NGF can be reliably used to establish a chemotactic concentration gradient over both a transient time period, and chronically through repeated daily administrations of the drug. Results from these studies may lead to a better mechanistic understanding of how concentration gradients of soluble NGF influence in vivo peripheral nerve regeneration.
Collapse
Affiliation(s)
- Stephen W P Kemp
- Department of Clinical Neuroscience, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | |
Collapse
|
31
|
Toth C, Brussee V, Martinez JA, McDonald D, Cunningham FA, Zochodne DW. Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin. Neuroscience 2006; 139:429-49. [PMID: 16529870 DOI: 10.1016/j.neuroscience.2005.11.065] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/11/2005] [Accepted: 11/20/2005] [Indexed: 01/01/2023]
Abstract
Insulin peptide, acting through tyrosine kinase receptor pathways, contributes to nerve development or repair. In this work, we examined the direction, impact and repertoire of insulin signaling in vivo during peripheral nerve regeneration in rats. First, we demonstrated that insulin receptor is expressed on lumbar dorsal root ganglia neuronal perikarya using immunohistochemistry. Immunoblots and polymerase chain reactions confirmed the presence of both alpha and beta insulin receptor subunits in dorsal root ganglia. In vivo and in vitro assessment of dorsal root ganglion neurons showed preferential localization of insulin receptor to perikaryal sites. In vivo, intrathecal delivery of fluorescein isothiocyanate-labeled insulin identified localization around dorsal root ganglia neurons. The direction and impact of potential insulin signaling was evaluated by concurrently delivering insulin or carrier over a 2 week period using mini-osmotic pumps, either intrathecally, near nerve, or with both deliveries, following a selective sural nerve crush injury. Only intrathecal insulin increased the number and maturity of regenerating sensory sural nerve axons distal to the crush site. As well, only intrathecal insulin rescued retrograde loss of sural axons after crush. In a separate experiment, insulin also rescued retrograde loss and atrophy of deep peroneal, largely motor, axons post-injury. Intrathecal insulin increased the expression of calcitonin-gene-related peptide in regenerating sprouts, increased the number of visualized regenerating fiber clusters, and reduced downregulation of calcitonin-gene-related peptide in dorsal root ganglia neurons. Insulin delivered intrathecally does not appear to influence expression of insulin-like growth factor-1 at dorsal root ganglion neurons or near peripheral nerve injury, but was associated with upregulation of insulin receptor alpha subunit in dorsal root ganglia. Intrathecal insulin delivery was associated with greater recovery of thermal sensation and longer distances to stimulus response with the pinch test following sural nerve crush. Insulin signaling at neuron perikarya can drive distal sensory axon regrowth, rescue retrograde alterations of axons and alter axon peptide expression. Moreover, such actions are associated with upregulation of its own receptor.
Collapse
Affiliation(s)
- C Toth
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Room 168, 3330 Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- S Hall
- Department of Anatomy and Human Sciences, King's College London, School of Biomedical Sciences, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
33
|
Chen YY, McDonald D, Cheng C, Magnowski B, Durand J, Zochodne DW. Axon and Schwann Cell Partnership During Nerve Regrowth. J Neuropathol Exp Neurol 2005; 64:613-22. [PMID: 16042313 DOI: 10.1097/01.jnen.0000171650.94341.46] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regeneration of peripheral nerve involves an essential contribution by Schwann cells (SCs) in collaboration with regrowing axons. We examined such collaboration between new axons and Schwann cells destined to reform peripheral nerve trucks in a regeneration chamber bridging transected rat sciatic nerves. There was a highly intimate "dance" between axons that followed outgrowing and proliferating SCs. Axons without SCs only grew short distances and almost all axon processes had associated SC processes. When regeneration chambers were infused through an external access port with local mitomycin, a mitosis inhibitor, SC proliferation, migration and subsequent axon regrowth were dramatically reduced. Adding laminin to mitomycin did not reverse this regenerative lag and indicated that SCs provide more than laminin synthesis alone. Laminin infused alone supplemented endogenous laminin and facilitated first SC then axon regrowth. "Wrong way" misdirected axons were associated with misdirected SC processes and were more numerous in bridges exposed to mitomycin, but were fewer in laminin supplemented bridges. Later, by 21 days, there was myelinated axon repopulation of regenerative bridges but those exposed to mitomycin alone at early time points had substantial impairments in axon investment. Reforming peripheral nerve trucks involves a very close and intimate relationship between axons and SCs that must proliferate and migrate, facilitated by laminin.
Collapse
Affiliation(s)
- Yuan Yuan Chen
- University of Calgary, Department of Clinical Neuroscience, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Bunting S, Di Silvio L, Deb S, Hall S. Bioresorbable glass fibres facilitate peripheral nerve regeneration. ACTA ACUST UNITED AC 2005; 30:242-7. [PMID: 15862363 DOI: 10.1016/j.jhsb.2004.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/05/2004] [Indexed: 11/27/2022]
Abstract
This is a proof of principle report showing that fibres of Bioglass 45S5 can form a biocompatible scaffold to guide regrowing peripheral axons in vivo. We demonstrate that cultured rat Schwann cells and fibroblasts grow on Bioglass fibres in vitro using SEM and immunohistochemistry, and provide qualitative and quantitative evidence of axonal regeneration through a Silastic conduit filled with Bioglass fibres in vivo (across a 0.5 cm interstump gap in the sciatic nerves of adult rats). Axonal regrowth at 4 weeks is indistinguishable from that which occurs across an autograft. Bioglass fibres are not only biocompatible and bioresorbable, which are absolute requirements of successful devices, but are also amenable to bioengineering, and therefore have the potential for use in the most challenging clinical cases, where there are long inter-stump gaps to be bridged.
Collapse
Affiliation(s)
- S Bunting
- Wolfson Centre for Age-Related Diseases, King's College London, UK.
| | | | | | | |
Collapse
|