1
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020; 12:E192. [PMID: 32102252 PMCID: PMC7076453 DOI: 10.3390/pharmaceutics12020192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.
Collapse
Affiliation(s)
- Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Marília Torrado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara C. Silva-Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
From naturally-occurring neurotoxic agents to CNS shuttles for drug delivery. Eur J Pharm Sci 2015; 74:63-76. [DOI: 10.1016/j.ejps.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/19/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
|
4
|
Biomaterial-Based Vectors for Targeted Delivery of Nucleic Acids to the Nervous System. DRUG DELIVERY SYSTEMS: ADVANCED TECHNOLOGIES POTENTIALLY APPLICABLE IN PERSONALISED TREATMENT 2013. [DOI: 10.1007/978-94-007-6010-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Domingo-Espín J, Unzueta U, Saccardo P, Rodríguez-Carmona E, Corchero JL, Vázquez E, Ferrer-Miralles N. Engineered biological entities for drug delivery and gene therapy protein nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:247-98. [PMID: 22093221 PMCID: PMC7173510 DOI: 10.1016/b978-0-12-416020-0.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of genetic engineering techniques has speeded up the growth of the biotechnological industry, resulting in a significant increase in the number of recombinant protein products on the market. The deep knowledge of protein function, structure, biological interactions, and the possibility to design new polypeptides with desired biological activities have been the main factors involved in the increase of intensive research and preclinical and clinical approaches. Consequently, new biological entities with added value for innovative medicines such as increased stability, improved targeting, and reduced toxicity, among others have been obtained. Proteins are complex nanoparticles with sizes ranging from a few nanometers to a few hundred nanometers when complex supramolecular interactions occur, as for example, in viral capsids. However, even though protein production is a delicate process that imposes the use of sophisticated analytical methods and negative secondary effects have been detected in some cases as immune and inflammatory reactions, the great potential of biodegradable and tunable protein nanoparticles indicates that protein-based biotechnological products are expected to increase in the years to come.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Ugutz Unzueta
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Paolo Saccardo
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Escarlata Rodríguez-Carmona
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - José Luís Corchero
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Esther Vázquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| |
Collapse
|
6
|
Posadas I, Guerra FJ, Ceña V. Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine (Lond) 2010; 5:1219-36. [DOI: 10.2217/nnm.10.105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While efficient methods for cell line transfection are well described, for primary neurons a high-yield method different from those relying on viral vectors is lacking. Viral vector-based primary neuronal infection has several drawbacks, including complexity of vector preparation, safety concerns and the generation of immune and inflammatory responses, when used in vivo. This article will cover the different approaches that are being used to efficiently deliver genetic material (both DNA and small interfering RNA) to neuronal tissue using nonviral vectors, including the use of cationic lipids, polyethylenimine derivatives, dendrimers, carbon nanotubes and the combination of carbon-made nanoparticles with dendrimers. The effectiveness, both in vivo and in vitro, of the different methods to deliver genetic material to neural tissue is discussed.
Collapse
Affiliation(s)
- Inmaculada Posadas
- Unidad Asociada Neurodeath, CSIC-Universidad de Castilla-La Mancha. Departamento de Ciencias Médicas. Albacete, Spain Unidad Asociada Neurodeath, Facultad de Medicina, Avda. Almansa, 14, 02006 Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Spain
| | - Francisco Javier Guerra
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Química-IRICA, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- NanoDrugs, S.L. Parque Científico y Tecnológico, Albacete, Spain
| | | |
Collapse
|
7
|
Jain T, Muthuswamy J. Microelectrode array (MEA) platform for targeted neuronal transfection and recording. IEEE Trans Biomed Eng 2008; 55:827-32. [PMID: 18270028 DOI: 10.1109/tbme.2007.914403] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Techniques used for nonviral gene transfection often have poor spatial resolution. In this letter, we present a microelectrode array (MEA) system that can precisely transfect exogenous molecules into targeted primary neurons using microelectroporation. An optimal cathodic pulse 4 V in amplitude and 1 ms in duration resulted in a transfection efficiency of 56% and a viability of 82%. Finally, siRNA molecules were transfected into targeted neurons in culture using the aforementioned system.
Collapse
Affiliation(s)
- Tilak Jain
- Department of Bioengineering, Arizona State University, Tempe, AZ 85287 USA
| | | |
Collapse
|
8
|
Park IK, Lasiene J, Chou SH, Horner PJ, Pun SH. Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine). J Gene Med 2007; 9:691-702. [PMID: 17582226 PMCID: PMC2633605 DOI: 10.1002/jgm.1062] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The development of minimally invasive, non-viral gene delivery vehicles for the central nervous system (CNS) is an important technology goal in the advancement of molecular therapies for neurological diseases. One approach is to deliver materials peripherally that are recognized and retrogradely transported by motor neurons toward the CNS. Tet1 is a peptide identified by Boulis and coworkers to possess the binding characteristics of tetanus toxin, which interacts specifically with motor neurons and undergoes fast, retrograde delivery to cell soma. In this work, Tet1-poly(ethylenimine) (Tet1-PEI) was synthesized and evaluated as a neurontargeted delivery vehicle. METHODS Tet1-PEI and NT-PEI (neurotensin-PEI) were synthesized and complexed with plasmid DNA to form polyplexes. Polyplexes were assessed for binding and uptake in differentiated neuron-like PC-12 cells by flow cytometry and confocal microscopy. In order to determine gene delivery efficiency, polyplexes were exposed to PC-12 cells at various stages of differentiation. Targeted binding of polyplexes with primary neurons was studied using dorsal root ganglion cells. RESULTS Tet1-PEI and NT-PEI polyplexes bound specifically to differentiated PC-12 cells. The specificity of the interaction was confirmed by delivery to non-neuronal cells and by competition studies with free ligands. Tet1-PEI polyplexes preferentially transfected PC-12 cells undergoing NGF-induced differentiation. Finally, neuron-specific binding of Tet1-PEI polyplexes was confirmed in primary neurons. CONCLUSIONS These studies demonstrate the potential of Tet1-PEI as a neuron-targeted material for non-invasive CNS delivery. Tet1-PEI binds specifically and is internalized by neuron-like PC-12 cells and primary dorsal root ganglion. Future work will include evaluation of siRNA delivery with these vectors.
Collapse
Affiliation(s)
- In-Kyu Park
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jurate Lasiene
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Shinn-Huey Chou
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Philip J. Horner
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Correspondence to: Suzie H. Pun, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA. E-mail:
| |
Collapse
|
9
|
Parker AL, Eckley L, Singh S, Preece JA, Collins L, Fabre JW. (LYS)(16)-based reducible polycations provide stable polyplexes with anionic fusogenic peptides and efficient gene delivery to post mitotic cells. Biochim Biophys Acta Gen Subj 2007; 1770:1331-7. [PMID: 17651899 DOI: 10.1016/j.bbagen.2007.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 01/05/2023]
Abstract
Extracellular stability, endocytic escape, intracellular DNA release and nuclear translocation of DNA are all critical properties of non-viral vector/DNA particles. We have evaluated a (Lys)(16)-based linear, reducible polycation (RPC) in combination with an acid-dependent, anionic fusogenic peptide for gene delivery to dividing and post-mitotic cells. The RPC was formed from Cys(Lys)(16)Cys monomers. Molecular weight was 24,000 Da, corresponding to an average of 10.5 peptide monomers per RPC. Non-reducible polylysine (PLL) (27,000 Da) and monomeric (Lys)(16) peptide were evaluated for comparison. (Lys)(16)/DNA particles were disrupted at fusogenic peptide concentrations well below those used for gene delivery. By contrast, RPC/DNA an PLL/DNA particles were stable in the presence of high concentrations of the anionic peptide. Addition of 10% serum virtually abolished the transfection ability of (Lys)(16)/DNA/fusogenic peptide particles, but had little effect on RPC/DNA/fusogenic peptide particles. RPC/DNA/fusogenic peptide particles were highly effective for gene delivery to both cell lines and post-mitotic corneal endothelium. PLL/DNA/fusogenic peptide particles were moderately effective on cell lines, but gave no gene delivery with corneal endothelial cells. We conclude that (Lys)(16)-based RPC/DNA/fusogenic peptide particles provide a gene delivery system which is potentially stable in the extracellular environment and, on reductive depolymerisation, can release DNA plasmids for nuclear translocation.
Collapse
Affiliation(s)
- Alan L Parker
- Department of Clinical Sciences King's College London School of Medicine The Rayne Institute 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | | | | | |
Collapse
|
10
|
Haitao P, Qixin Z, Xiaodong G. A novel synthetic peptide vector system for optimal gene delivery to bone marrow stromal cells. J Pept Sci 2007; 13:154-63. [PMID: 17154339 DOI: 10.1002/psc.826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A 23-amino acid, bifunctional, integrin-targeted synthetic peptide was evaluated for ex vivo gene delivery to rabbit bone marrow stromal cells (BMSCs). The peptide (K)(16)GRGDSPC consists of an amino terminal domain of 16 lysines for electrostatic binding of DNA, and a 7-amino acid integrin-binding domain at the carboxyl terminal. PcDNA3-EGFP plasmids were transfected into BMSCs by (K)(16)GRGDSPC and the positive cells gave out a bright green fluorescence. High levels of gene delivery of pcDNA3-TGF-beta1 plasmids were obtained with 2 to 4 microg/ml DNA concentration, with (K)(16)GRGDSPC at an optimal peptide: DNA w/w ratio of 3:1, with a required exposure time of more than 4 h but shorter than 24 h for BMSC exposure to the peptide/DNA complexes with completely absent serum in the initial stage; with 100 microM chloroquine and at least 8 h exposure for BMSC exposure to chloroquine; with a fusogenic peptide at an optimal (K)(16)GRGDSPC/DNA/fusogenic peptide w/w ratio of 3:1:5; and with Lipofectamine 2000 at an optimal (K)(16)GRGDSPC/DNA/Lipofectamine 2000 w/w ratio of 3:1:2 at a constant DNA concentration of 2 microg/ml. Chloroquine, the fusogenic peptide and Lipofectamine 2000 all significantly promoted gene delivery, but chloroquine was more effective than the fusogenic peptide and had obvious synergistic effects with Lipofectamine 2000. Under optimal conditions, TGF-beta1 gene was transfected into BMSCs without observable toxicity, and the stable expression was examined by RT-PCR and Western blot analysis. The stable transgenic cells showed obvious bands. This novel synthetic peptide, providing a new way for the use of polylysine and RGD motif in DNA vector system, is potentially well suited to ex vivo gene delivery to BMSCs for experimental and clinical applications in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Pan Haitao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | |
Collapse
|
11
|
Kaouass M, Beaulieu R, Balicki D. Histonefection: Novel and potent non-viral gene delivery. J Control Release 2006; 113:245-54. [PMID: 16806557 DOI: 10.1016/j.jconrel.2006.04.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/26/2006] [Indexed: 11/21/2022]
Abstract
Protein/peptide-mediated gene delivery has recently emerged as a powerful approach in non-viral gene transfer. In previous studies, we and other groups found that histones efficiently mediate gene transfer (histonefection). Histonefection has been demonstrated to be effective with various members of the histone family. The DNA binding domains and natural nuclear localisation signal sequences make histones excellent candidates for effective gene transfer. In addition, their positive charge promotes binding to anionic molecules and helps them to overcome the negative charge of cells that is an important barrier to cellular penetration. Histonefection appears to have particular promise in cancer gene transfer and therapy.
Collapse
Affiliation(s)
- Mohammadi Kaouass
- Research Centre and Department of Medicine, Centre hospitalier de l'Université de Montréal, Canada
| | | | | |
Collapse
|
12
|
Arango-Rodriguez ML, Navarro-Quiroga I, Gonzalez-Barrios JA, Martinez-Arguelles DB, Bannon MJ, Kouri J, Forgez P, Rostene W, Garcia-Villegas R, Jimenez I, Martinez-Fong D. Biophysical characteristics of neurotensin polyplex for in vitro and in vivo gene transfection. Biochim Biophys Acta Gen Subj 2006; 1760:1009-20. [PMID: 16730907 DOI: 10.1016/j.bbagen.2006.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Revised: 02/09/2006] [Accepted: 02/28/2006] [Indexed: 12/31/2022]
Abstract
Previously we improved the neurotensin (NT)-polyplex by the coupling of HA2 fusogenic peptide (FP) and Vp1 SV40 karyophilic peptide (KP). We now report the proportion of [(125)I]-NT, [(3)H]-FP, and poly-l-lysine (PLL) in the NT-polyplex, and some of its biophysical properties. We concluded that the most efficient NT-polyplex comprised 1 NT, 4 FP, and 2 PLL molecules. Electrophoresis revealed that high acidity is detrimental for NT-polyplex stability. Electron microscopy and electrophoresis studies showed that 6 muM KP and 1% serum condensed the plasmid DNA (pDNA) before the appearance of toroid structures. Four plasmids were used to evaluate the transfection efficiency. In vitro, maximum expression was produced at molar ratios (pDNA : [(125)I]-NT-[(3)H]-FP-PLL conjugate) of 1:34 for pEGFP-N1 and 1:27 for pECFP-Nuc. Cotransfection of those plasmids was attained at their optimum molar ratios. In vivo, maximum expression of the pDAT-BDNF-flag in dopamine neurons was produced at a 1:45 molar ratio, whereas that of pDAT-EGFP was at 1:20. The NT-polyplex in the presence of 1 muM SR-48692, an NT-receptor specific antagonist, and untargeted polyplex did not cause transfection in vivo demonstrating the specificity of gene transfer via NT-receptor endocytosis. This information is essential for synthesizing an efficient NT-polyplex that can provide a useful tool for specific gene transfection.
Collapse
Affiliation(s)
- Martha L Arango-Rodriguez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Apartado postal 14-740, México D.F. 07000, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hu J, Zhang X, Dong X, Collins L, Sawyer GJ, Fabre JW. A remarkable permeability of canalicular tight junctions might facilitate retrograde, non-viral gene delivery to the liver via the bile duct. Gut 2005; 54:1473-9. [PMID: 15985562 PMCID: PMC1774706 DOI: 10.1136/gut.2005.070904] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
AIMS To establish the extent of retrograde bile duct infusion at an ultrastructural level, as a preliminary step before evaluating the efficacy of gene delivery to the rat liver via a branch of the bile duct. METHODS The extent of retrograde infusion into the biliary tree was established by light and electron microscopy, following infusion of 10 nm gold particles into the right lateral lobe. Canalicular permeability was further assessed by the infusion of a 67 kDa protein. For gene delivery, both naked DNA and a synthetic peptide vector system were evaluated. Because canalicular tight junction permeability can be compromised in damaged livers, both normal rats and rats recovering from the hepatotoxin D-galactosamine were studied. RESULTS The gold particles penetrated the peripheral one third of the hepatic lobules and, surprisingly, reached the space of Disse in normal rats. Equally surprisingly, blood levels of a 67 kDa protein were identical after bile duct infusion and portal vein injection. Gene delivery with peptide/DNA complexes was much more effective in rats treated with D-galactosamine. However, gene delivery with naked DNA was equally effective in normal and damaged livers. Localisation of gene expression showed a scattering of positive hepatocytes restricted to the right lateral lobe. CONCLUSIONS Retrograde infusion into the bile duct advances well into the hepatic lobule and reveals a remarkable permeability of the canalicular or cholangiole tight junctions in normal rats. It is an effective approach for delivering genes to a small population (approximately 1%) of hepatocytes.
Collapse
Affiliation(s)
- J Hu
- Department of Hepatology and Transplantation, Guys, Kings and St Thomas School of Medicine, The Rayne Institute, London, UK
| | | | | | | | | | | |
Collapse
|
14
|
Parker AL, Collins L, Zhang X, Fabre JW. Exploration of peptide motifs for potent non-viral gene delivery highly selective for dividing cells. J Gene Med 2005; 7:1545-54. [PMID: 16037993 DOI: 10.1002/jgm.809] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The immunogenicity of viral DNA vectors is an important problem for gene therapy. The use of peptide motifs for gene delivery would largely overcome this problem, and provide a simple, safe and powerful approach for non-viral gene therapy. METHODS We explored the functional properties of two motifs: the (Lys)(16) motif (for binding and condensing DNA, and probably also nuclear translocation of plasmids) and the fusogenic peptide motif of influenza virus (for acid-dependent endocytic escape of peptide/DNA particles). The physical properties and gene delivery efficiencies of (Lys)(16)-containing peptides in combination with free fusogenic peptide were evaluated, and compared with a single composite peptide incorporating both moieties. Post-mitotic corneal endothelial cells and growth-arrested HeLa were included, so as not to neglect the question of nuclear translocation of plasmids. RESULTS The fusogenic moiety in the composite peptide was able to adopt an alpha-helical configuration unhindered by the (Lys)(16) moiety, and retained acid-dependent fusogenic properties. The composite peptide gave remarkably high levels of gene delivery to dividing cell lines. However, in marked contrast to (Lys)(16)/DNA complexes plus free fusogenic peptide, the composite peptide was completely ineffective for gene delivery to post-mitotic and growth-arrested cells. CONCLUSIONS Attachment of the fusogenic peptide to (Lys)(16) appears to block (Lys)(16)-mediated nuclear translocation of plasmid, but not fusogenic peptide mediated endocytic escape. This strengthens the experimental basis for (Lys)(16)-mediated nuclear translocation of plasmids, and provides a single peptide with potent gene delivery properties, restricted to dividing cells. This property is potentially useful in experimental biology and clinical medicine.
Collapse
Affiliation(s)
- Alan L Parker
- Department of Clinical Sciences, Guys, Kings and St Thomas School of Medicine, The Rayne Institute, London SE5 9NU, UK
| | | | | | | |
Collapse
|
15
|
Liao H, Bu WY, Wang TH, Ahmed S, Xiao ZC. Tenascin-R plays a role in neuroprotection via its distinct domains that coordinate to modulate the microglia function. J Biol Chem 2004; 280:8316-23. [PMID: 15615725 DOI: 10.1074/jbc.m412730200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microglia are one of the main cell types activated by brain injury. In the present study, we have investigated how domains of the extracellular matrix molecule tenascin-R (TN-R) modulate microglia function. We found that epidermal growth factor-like repeats inhibited adhesion and migration of microglia via a protein kinase A-dependent mechanism. In contrast, fibronectin 6-8 repeats promoted adhesion and migration of the primary microglia via a protein kinase C-dependent mechanism. Both domains of TN-R induced an up-regulation in the secretion of cytokines, such as chemokine-induced cytokine 3 and tumor neurosis factor alpha. Interestingly, epidermal growth factor-like repeats and fibronectin 6-8 induced a dramatic up-regulation in the secretion of brain-derived neurotrophic factor/transforming growth factor-beta and nerve growth factor/transforming growth factor-beta, respectively, and conditioned medium from activated microglia was able to promote neurite outgrowth of N1E-115 cells and primary cortical neurons. These results suggest that TN-R plays a role in neuroprotection through distinct domains coordinating to modulate microglia function.
Collapse
Affiliation(s)
- Hong Liao
- Department of Clinical Research, Singapore General Hospital, Singapore 169609
| | | | | | | | | |
Collapse
|