1
|
Lake D, Corrêa SAL, Müller J. NMDA receptor-dependent signalling pathways regulate arginine vasopressin expression in the paraventricular nucleus of the rat. Brain Res 2019; 1722:146357. [PMID: 31369731 DOI: 10.1016/j.brainres.2019.146357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
The antidiuretic hormone arginine vasopressin (AVP) regulates water homeostasis, blood pressure and a range of stress responses. It is synthesized in the hypothalamus and released from the posterior pituitary into the general circulation upon a range of stimuli. While the mechanisms leading to AVP secretion have been widely investigated, the molecular mechanisms regulating AVP gene expression are mostly unclear. Here we investigated the neurotransmitters and signal transduction pathways that activate AVP gene expression in the paraventricular nucleus (PVN) of the rat using acute brain slices and quantitative real-time PCR. We show that stimulation with l-glutamate robustly induced AVP gene expression in acute hypothalamic brain slices containing the PVN. More specifically, we show that AVP transcription was stimulated by NMDA. Using pharmacological treatments, our data further reveal that the activation of ERK1/2 (PD184352), CaMKII (KN-62) and PI3K (LY294002; 740 Y-P) is involved in the NMDA-induced AVP gene expression in the PVN. Together, this study identifies NMDA-mediated cell signalling pathways that regulate AVP gene expression in the rat PVN.
Collapse
Affiliation(s)
- David Lake
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Sonia A L Corrêa
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Jürgen Müller
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
2
|
Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; 30:e12633. [PMID: 29998612 DOI: 10.1111/jne.12633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/08/2018] [Indexed: 01/06/2023]
Abstract
Vasopressin (AVP) and oxytocin (OT) are essential for the control of extracellular fluid osmolality and volume. Secretion of these hormones is modulated by several mechanisms, including NMDA and AMPA L-glutamate receptors in magnocellular cells of paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei. Thus, to better understand the participation of L-glutamate on the neuroendocrine control of AVP and OT, this work evaluated the effects of intracerebroventricular (icv) NMDA and AMPA receptor antagonists on plasma AVP and OT levels induced by extracellular volume expansion (EVE). Cannulated rats received icv NMDA (AP5) and AMPA (NBQX) antagonists in 10 and 30nmol/5μl/rat doses and were subjected to either isotonic (0.15 M NaCl, 2ml/100g) or hypertonic (0.30 M NaCl, 2ml/100g) EVE. Blood samples were collected for plasma AVP and OT determination. Isotonic EVE did not change plasma AVP and OT levels, but hypertonic EVE increased both AVP and OT plasma levels. AP5 reduced plasma AVP, but it did not change the OT level induced by hypertonic EVE. On the other hand, NBQX reduced plasma OT, but did not alter the AVP plasma level. Our data shows that L-glutamate controls the secretion of neurohypophyseal hormones through the NMDA receptor for AVP release, and through the AMPA receptor for OT release, both in response to hypertonic EVE. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tatiane Vilhena-Franco
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Evandro Valentim-Lima
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lucila L K Elias
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - André S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Doherty FC, Sladek CD. NMDA receptor subunit expression in the supraoptic nucleus of adult rats: dominance of NR2B and NR2D. Brain Res 2011; 1388:89-99. [PMID: 21397592 DOI: 10.1016/j.brainres.2011.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 12/19/2022]
Abstract
The supraoptic nucleus (SON) of the hypothalamus contains magnocellular neurosecretory neurons (MNC) which synthesize and release the peptide hormones vasopressin and oxytocin. Glutamate is a prominent excitatory neurotransmitter in the SON and regulates MNC excitability. NMDA receptors (NMDAR), a type of ionotropic glutamate receptor, mediate synaptic plasticity of MNCs and are necessary for characteristic burst firing patterns which serve to maximize hormone release. NMDARs are di- or tri-heteromeric complexes of NR1 and NR2 subunits. Receptor properties depend on NR2 subunit composition and variable splicing of NR1. We investigated the expression profile of NR1 and NR2 subunits in the SON at the mRNA and protein levels plus protein expression of NR1 splice variants in control and salt-loaded adult rats. There was robust mRNA expression of all subunits, with NR2D levels being the highest. At the protein level, NR1, NR2B, and NR2D were robustly expressed, while NR2A was weakly expressed. NR2C protein was not detected with either of the two antibodies tested. All four NR1 splice variant cassettes (N1, C1, C2, C2') were detected in the SON, although NR1 N1 expression was too low for accurate analysis. Three days of salt-loading did not alter mRNA, protein, or splice variant expression of NMDAR subunits in the SON. Robust NR2D protein expression has not been previously shown in MNCs and is uncommon in the adult brain. Although the functional significance of this unusual expression profile is unknown, it may contribute to important physiological characteristics of SON neurons, such as burst firing and resistance to excitotoxicity.
Collapse
Affiliation(s)
- Faye C Doherty
- University of Colorado, School of Medicine, Department of Physiology and Biophysics, RC-1 North Tower, P18-7127, Mail Stop 8307, Aurora, CO 80045, USA.
| | | |
Collapse
|
4
|
Kodavanti PRS, Curras-Collazo MC. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol 2010; 31:479-96. [PMID: 20609372 DOI: 10.1016/j.yfrne.2010.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 02/08/2023]
Abstract
Organohalogen compounds are global environmental pollutants. They are highly persistent, bioaccumulative, and cause adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination may be a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. This review focuses on PCBs and PBDEs as old and new organohalogens, respectively, and their effects on two neuroendocrine systems; thyroid hormones and the arginine vasopressin system (AVP). Regarding neuroendocrine effects of organohalogens, there is considerable information on the thyroid system as a target and evidence is now accumulating that the AVP system and associated functions are also susceptible to disruption. AVP-mediated functions such as osmoregulation, cardiovascular function as well as social behavior, sexual function and learning/memory are discussed. For both thyroid and AVP systems, the timing of exposure seems to play a major role in the outcome of adverse effects. The mechanism of organohalogen action is well understood for the thyroid system. In comparison, this aspect is understudied in the AVP system but some similarities in neural processes, shown to be targeted by these pollutants, serve as promising possibilities for study. One challenge in understanding modes of action within neuroendocrine systems is their complexity stemming, in part, from interdependent levels of organization. Further, because of the interplay between neuroendocrine and neural functions and behavior, further investigation into organohalogen-mediated effects is warranted and may yield insights with wider scope. Indeed, the current literature provides scattered evidence regarding the role of organohalogen-induced neuroendocrine disruption in the neuroplasticity related to both learning functions and brain structure but future studies are needed to establish the role of endocrine disruption in nervous system function and development.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, B 105-06, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
5
|
Millet LJ, Bora A, Sweedler JV, Gillette MU. Direct cellular peptidomics of supraoptic magnocellular and hippocampal neurons in low-density co-cultures. ACS Chem Neurosci 2010; 1:36-48. [PMID: 20401326 DOI: 10.1021/cn9000022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genomic and proteomic studies of brain regions of specialized function provide evidence that communication among neurons is mediated by systems of diverse chemical messengers. These analyses are largely tissue- or population-based, whereas the actual communication is from cell-to-cell. To understand the complement of intercellular signals produced by individual neurons, new methods are required. We have developed a novel neuron-to-neuron, serum-free, co-culture approach that was used to determine the higher-level cellular peptidome of individual primary mammalian neurons. We isolated magnocellular neurons from the supraoptic nucleus of early postnatal rat and maintained them in serum-free low density cultures without glial support layers; under these conditions they required low-density co-cultured neurons. Co-culturing magnocellular neurons with hippocampal neurons permitted local access to individual neurons within the culture for mass spectrometry. Using direct sampling, peptide profiles were obtained for spatially distinct, identifiable neurons within the co-culture. We repeatedly detected 10 peaks that we assign to previously characterized peptides and 17 peaks that remain unassigned. Peptides from the vasopressin prohormone and secretogranin-2 are attributed to magnocellular neurons, whereas neurokinin A, peptide J, and neurokinin B are attributed to cultured hippocampal neurons. This approach enables the elucidation of cell-specific prohormone processing and the discovery of cell-cell signaling peptides.
Collapse
Affiliation(s)
- Larry J. Millet
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Adriana Bora
- Neuroscience Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
6
|
Stachniak TJE, Bourque CW. Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions. Am J Physiol Regul Integr Comp Physiol 2006; 291:R68-76. [PMID: 16469834 DOI: 10.1152/ajpregu.00830.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in neuronal culturing techniques have supplied a new set of tools for studying neural tissue, providing effective means to study molecular aspects of regulatory elements in the supraoptic nucleus of the hypothalamus (SON). To combine molecular biology techniques with electrophysiological recording, we modified an organotypic culture protocol to permit transfection and whole cell patch-clamp recordings from SON cells. Neonatal mouse brain coronal sections containing the SON were dissected out, placed on a filter insert in culture medium, and incubated for at least 4 days to allow attachment to the insert. The SON was identifiable using gross anatomical landmarks, which remained intact throughout the culturing period. Immunohistochemical staining identified both vasopressinergic and oxytocinergic cells present in the cultures, typically appearing in well-defined clusters. Whole cell recordings from these cultures demonstrated that certain properties of the neonatal mouse SON were comparable to adult mouse magnocellular neurons. SON neurons in both neonatal cultures and acute adult slices showed similar sustained outward rectification above -60 mV and action potential broadening during evoked activity. Membrane potential, input resistance, and rapidly inactivating potassium current density (IA) were reduced in the cultures, whereas whole cell capacitance and spontaneous synaptic excitation were increased, perhaps reflecting developmental changes in cell physiology that warrant further study. The use of the outlined organotypic culturing procedures will allow the study of such electrophysiological properties of mouse SON using whole cell patch-clamp, in addition to various molecular, techniques that require longer incubation times.
Collapse
Affiliation(s)
- Tevye J E Stachniak
- Center for Research in Neuroscience, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
7
|
Roychowdhury S, Noack J, Engelmann M, Wolf G, Horn TFW. AMPA receptor-induced intracellular calcium response in the paraventricular nucleus is modulated by nitric oxide: calcium imaging in a hypothalamic organotypic cell culture model. Nitric Oxide 2006; 14:290-9. [PMID: 16442320 DOI: 10.1016/j.niox.2005.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 11/25/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
An organotypic cell culture (OCC) model of the rat hypothalamic paraventricular nucleus (PVN) was established to monitor intracellular calcium levels ([Ca(2+)](i)) of magnocellular neurons in response to glutamate and nitric oxide (NO). The histoarchitectural organization of these cultures was characterized either by immunohistochemical labeling of vasopressin, neuronal nitric oxide synthase (nNOS) and the neuronal marker NeuN or by the enzyme histochemical NADPH-diaphorase staining. A distinct NeuN positive cell population in 14-days old OCC's was confirmed as being the PVN by its vasopressin- and nNOS-immunostained neurons as well as by its NADPH-diaphorase labeling. Life cell imaging was performed using the [Ca(2+)](i) sensor Fluo-4 to measure [Ca(2+)](i) transients in response to bath applications of glutamate, high potassium (60 mM), and ATP. The glutamate-induced [Ca(2+)](i) response was mimicked by AMPA but not NMDA in the PVN. NMDA, however, elicited a [Ca(2+)](i) transient in a different area of the OCC that corresponds to the suprachiasmatic nucleus indicating the potential effectiveness of the stimulus. The AMPA-receptor blocker NBQX abolished the glutamate-induced response in the PVN. An inhibition of endogenous NO production by the NOS inhibitor L-NAME decreased the amplitude of AMPA- and glutamate-induced [Ca(2+)](i) rises. Taken together, these data suggest that AMPA mediates the glutamate-induced [Ca(2+)](i) rises within the PVN, where endogenous NO is able to modulate such glutamate signaling in OCC.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Institute of Medical Neurobiology, Otto von Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Pak CW, Currás-Collazo MC. Expression and plasticity of glutamate receptors in the supraoptic nucleus of the hypothalamus. Microsc Res Tech 2002; 56:92-100. [PMID: 11810712 DOI: 10.1002/jemt.10017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Magnocellular neuroendocrine cells (MNCs) of the supraoptic nucleus of the hypothalamus (SON) produce and release the hormones vasopressin (VP) and oxytocin (OT) in response to a variety of stimuli to regulate body water and salt, parturition and lactation. Hormone release is influenced by the pattern of neuronal firing of these MNCs, which, in turn, is governed by intrinsic conductances and synaptic inputs, including those mediated by the neurotransmitter glutamate. Functional and molecular evidence has confirmed the expression of AMPA-, NMDA-, and metabotropic-type glutamate receptors in the SON, that together may orchestrate the effects of glutamatergic transmission on neuroendocrine function. However, the specific roles of the different subtypes of glutamate receptors is not yet clear. As with other central neurons, the subunit composition of glutamate receptors on MNCs will likely determine their properties and may potentially help define the differential properties of VP- and OT-producing MNCs. Possible functions of glutamate receptors on SON MNCs include altering excitatory synaptic transmission of osmotic information, neuronal firing, hormone production and release, and calcium signaling. Of interest are the anatomical, molecular, and functional changes at glutamatergic synapses in the SON that occur in response to pertinent physiological stimuli or development. These types of plasticity may include changes in glutamatergic synaptic density, glutamate receptor levels, or glutamate receptor subunit expression, all of which can affect the efficiency of synaptic transmission.
Collapse
Affiliation(s)
- C Wook Pak
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
9
|
Currás-Collazo MC, Chin C, Díaz G, Stivers C, Bozzetti L, Tran LY, Kíaz G. Immunolabeling reveals cellular localization of the N-methyl-D-aspartate receptor subunit NR2B in neurosecretory cells but not astrocytes of the rat magnocellular nuclei. J Comp Neurol 2000; 427:93-108. [PMID: 11042593 DOI: 10.1002/1096-9861(20001106)427:1<93::aid-cne6>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous studies suggest that activation of N-methyl-D-aspartate (NMDA) receptors facilitates phasic firing and spike clustering displayed by magnocellular neuroendocrine cells (MNCs) of the supraoptic (SON) and paraventricular nucleus of the hypothalamus (PVN). Osmotic stimulation produces similar activity patterns which, in turn, can lead to enhanced release of vasopressin and oxytocin from MNCs. Our laboratory has shown that dehydration regulates the expression of the NMDA receptor subunits, NR1 and NR2B, in the SON and PVN, suggesting their involvement in osmoregulation. In the present study, we examined the cellular localization of NR2B, one of the glutamate-binding subunits of the NMDA receptor, with an NR2B-specific antibody. Using double-label immunohistochemistry and three different detection methods with metallic, peroxidase, and fluorescence markers, it was found that both vasopressin and oxytocin-producing MNC populations synthesize NR2B. The incidence of NR2B colocalization with vasopressin-neurophysin in the SON and lateral magnocellular PVN (PVL) was 0.95 and 0.91, respectively. For oxytocin-neurophysin, the corresponding values were 0.97 and 0.95, respectively. Furthermore, the extent of colocalization in MNCs of the SON, PVL, retrochiasmatic SON, and accessory neurosecretory nuclei was similar. Astrocytes associated with the SON, and identified with antibodies targeting glial fibrillary acidic protein (GFAP) or vimentin, were not colabeled with NR2B. Our results demonstrate that NR2B protein is expressed by almost all MNCs and that it is equally prevalent in vasopressinergic and oxytocinergic populations of various magnocellular neuroendocrine nuclei supporting a role of NMDA receptors in MNC-mediated neurosecretory processes. Although NR2B may form part of functional NMDA receptors on MNCs, it is probably not present on astrocytes associated with nearby MNCs.
Collapse
Affiliation(s)
- M C Currás-Collazo
- Department of Neuroscience, University of California at Riverside, Riverside, California 92521, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Meeker R, Fernandes A. Osmotic and glutamate receptor regulation of c-Jun NH(2)-terminal protein kinase in neuroendocrine cells. Am J Physiol Endocrinol Metab 2000; 279:E475-86. [PMID: 10950813 DOI: 10.1152/ajpendo.2000.279.3.e475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of a c-Jun NH(2)-terminal protein kinase (JNK), also known as stress-activated protein kinase (SAPK) in rodents, has been implicated in the ability of cells to respond to a variety of stressors. In nonmammalian cells, JNK participates in the regulation of cell volume in response to hyperosmotic stress. To explore the possibility that JNK may participate in the transduction of osmotic information in mammals, we evaluated the expression of JNK immunoreactivity in neuroendocrine cells of the supraoptic nucleus. Low basal expression of JNK-2 (SAPK-alpha) and JNK-3 (SAPK-beta) was seen in vivo and in vitro. During water deprivation, JNK-2 increased in the supraoptic nucleus but not in the cortex. Osmotic or glutamate receptor stimulation in vitro also resulted in an increase in JNK-2 that was tetrodotoxin (TTX) insensitive and paralleled by increased nuclear phospho-c-Jun immunoreactivity. A TTX-sensitive increase in JNK-3 was seen in smaller neurons. Thus different JNK pathways may mediate individual cellular responses to osmotic stress, with JNK-2 linked to osmotic and glutamate receptor stimulation in magnocellular neuroendocrine cells.
Collapse
Affiliation(s)
- R Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, 27599, USA.
| | | |
Collapse
|
11
|
Khan AM, Stanley BG, Bozzetti L, Chin C, Stivers C, Curr�s-Collazo MC. N-methyl-D-aspartate receptor subunit NR2B is widely expressed throughout the rat diencephalon: An immunohistochemical study. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001218)428:3<428::aid-cne4>3.0.co;2-b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Currás-Collazo MC, Dao J. Osmotic activation of the hypothalamo-neurohypophysial system reversibly downregulates the NMDA receptor subunit, NR2B, in the supraoptic nucleus of the hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:187-96. [PMID: 10407167 DOI: 10.1016/s0169-328x(99)00129-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NMDA receptor activation produces a characteristic pattern of neuronal firing in magnocellular neuroendocrine cells (MNCs) of the supraoptic nucleus of the hypothalamus (SON) which has been associated with greater hormone release in vivo and in vitro. In addition, i.c.v. administered NMDA receptor blockers suppress the dehydration-induced rise in plasma vasopressin and drinking. To investigate the role of NMDA receptor subunits in the neuroendocrine functions of the magnocellular neuroendocrine cells of the hypothalamus, we examined the effects of osmotic stimulation on the protein expression of the NMDA receptor subunits, NR1 and NR2B, important in binding glycine and glutamate, respectively. Homogenates of SON, paraventricular nucleus of the hypothalamus (PVN), cortex and lateral hypothalamus from control rats and rats given 2% saline water to drink for 4-10 days were subjected to SDS-PAGE and Western blot analysis. This saline water drinking regimen produced a significant rise in plasma osmolality levels. NR1 and NR2B immunoreactivity was detected in SON, PVN, lateral hypothalamus and cortex but not in liver homogenates using subunit-specific polyclonal antibodies and quantified using computer-assisted densitometry. Mean NR2B immunoreactivity was significantly lower in SON (29%) and PVN homogenates (23%) from saline-treated rats than in those from control rats. In addition, the effect of dehydration on NR2B was regionally specific since no significant changes in NR2B expression were observed in homogenates of cortex and lateral hypothalamus. Rehydration allowed recovery of plasma osmolality as well as NR2B protein levels in the SON. These results suggest that changes in NMDA receptor subunit expression contribute to the plasticity manifested by in magnocellular neuroendocrine cells in response to osmotic activation of the hypothalamo-neurohypophysial system. In addition, our results indicate that NMDA receptors on SON and PVN MNCs may contribute to neuroendocrinological functions associated with body fluid homeostasis.
Collapse
Affiliation(s)
- M C Currás-Collazo
- Department of Neuroscience, University of California at Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|