1
|
Zhang X, Peng Y, Grace PM, Metcalf MD, Kwilasz AJ, Wang Y, Zhang T, Wu S, Selfridge BR, Portoghese PS, Rice KC, Watkins LR, Hutchinson MR, Wang X. Stereochemistry and innate immune recognition: (+)-norbinaltorphimine targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling. FASEB J 2019; 33:9577-9587. [PMID: 31162938 PMCID: PMC6988860 DOI: 10.1096/fj.201900173rrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
Deregulation of innate immune TLR4 signaling contributes to various diseases including neuropathic pain and drug addiction. Naltrexone is one of the rare TLR4 antagonists with good blood-brain barrier permeability and showing no stereoselectivity for TLR4. By linking 2 naltrexone units through a rigid pyrrole spacer, the bivalent ligand norbinaltorphimine was formed. Interestingly, (+)-norbinaltorphimine [(+)-1] showed ∼25 times better TLR4 antagonist activity than naltrexone in microglial BV-2 cell line, whereas (-)-norbinaltorphimine [(-)-1] lost TLR4 activity. The enantioselectivity of norbinaltorphimine was further confirmed in primary microglia, astrocytes, and macrophages. The activities of meso isomer of norbinaltorphimine and the molecular dynamic simulation results demonstrate that the stereochemistry of (+)-1 is derived from the (+)-naltrexone pharmacophore. Moreover, (+)-1 significantly increased and prolonged morphine analgesia in vivo. The efficacy of (+)-1 is long lasting. This is the first report showing enantioselective modulation of the innate immune TLR signaling.-Zhang, X., Peng, Y., Grace, P. M., Metcalf, M. D., Kwilasz, A. J., Wang, Y., Zhang, T., Wu, S., Selfridge, B. R., Portoghese, P. S., Rice, K. C., Watkins, L. R., Hutchinson, M. R., Wang, X. Stereochemistry and innate immune recognition: (+)-norbinaltorphimine targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Matthew D. Metcalf
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Brandon R. Selfridge
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mark R. Hutchinson
- Discipline of Physiology, Adelaide Medical School and Australian Research Council (ARC) Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, South Australia, Australia
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Wang B, Wang H, Xiao D, Han D. In vitro effects of brominated flame retardants, selected metals and their mixtures on ethoxyresorufin-O-deethylase activity in Mossambica tilapia liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:350-355. [PMID: 29890436 DOI: 10.1016/j.ecoenv.2018.05.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
The in vitro effects of individual brominated flame retardants (BFRs), selected metals, and their binary mixtures on ethoxyresorufin-O-deethylase (EROD) activity were evaluated using a plate-reader method. The BFRs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), decabromodiphenyl oxide (BDE-209), hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA), were tested at doses ranging from 0.1 ng/L to 100 µg/L. Selected metals (Cu2+, Cd2+, Hg2+, and Zn2+) were screened at doses of 0.1 mg/L to 50 mg/L. The activity of EROD was significantly induced by TBBPA, BDE-209, and Zn2+, while HBCD, Cu2+, Cd2+, and Hg2+ decreased EROD activity. Moreover, following exposure to binary mixtures of metals and BFRs, the EROD activity dose-response curves were similar to those of the metals alone, indicating that EROD activity was governed by the metals.
Collapse
Affiliation(s)
- Biyan Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, China
| | - Haiyan Wang
- Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, China.
| | - Dan Xiao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, China
| | - Daxiong Han
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Ren J, Song D, Bai Q, Verkhratsky A, Peng L. Fluoxetine induces alkalinization of astroglial cytosol through stimulation of sodium-hydrogen exchanger 1: dissection of intracellular signaling pathways. Front Cell Neurosci 2015; 9:61. [PMID: 25784857 PMCID: PMC4347488 DOI: 10.3389/fncel.2015.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 01/08/2023] Open
Abstract
Clinical evidence suggest astrocytic abnormality in major depression (MD) while treatment with anti-psychotic drugs affects astroglial functions. Astroglial cells are involved in pH homeostasis of the brain by transporting protons (through sodium-proton transporter 1, NHE1, glutamate transporters EAAT1/2 and proton-lactate co-transporter MCT1) and bicarbonate (through the sodium-bicarbonate co-transporter NBC or the chloride-bicarbonate exchanger AE). Here we show that chronic treatment with fluoxetine increases astroglial pHi by stimulating NHE1-mediated proton extrusion. At a clinically relevant concentration of 1 μM, fluoxetine significantly increased astroglial pHi from 7.05 to 7.34 after 3 weeks and from 7.18 to 7.58 after 4 weeks of drug treatment. Stimulation of NHE1 is a result of transporter phosphorylation mediated by several intracellular signaling cascades that include MAPK/ERK1/2, PI3K/AKT and ribosomal S6 kinase (RSK). Fluoxetine stimulated phosphorylation of ERK1/2, AKT and RSK in a concentration dependent manner. Positive crosstalk exists between two signal pathways, MAPK/ERK1/2 and PI3K/AKT activated by fluoxetine since ERK1/2 phosphrylation could be abolished by inhibitors of PI3K, LY294002 and AKT, triciribine, and AKT phosphorylation by inhibitor of MAPK, U0126. As a result, RSK phosphorylation was not only inhibited by U0126 but also by inhibitor of LY294002. The NHE1 phoshorylation resulted in stimulation of NHE1 activity as revealed by the NH4Cl-prepulse technique; the increase of NHE1 activity was dependent on fluoxetine concentration, and could be inhibited by both U0126 and LY294002. Our findings suggest that regulation of astrocytic pHi and brain pH may be one of the mechanisms underlying fluoxetine action.
Collapse
Affiliation(s)
- Jienan Ren
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Dan Song
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Qiufang Bai
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester Manchester, UK ; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science Bilbao, Spain ; University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
4
|
Song D, Man Y, Li B, Xu J, Hertz L, Peng L. Comparison between drug-induced and K+-induced changes in molar acid extrusion fluxes (JH +) and in energy consumption rates in astrocytes. Neurochem Res 2013; 38:2364-74. [DOI: 10.1007/s11064-013-1149-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/08/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
|
5
|
LaGier AJ, Manzo ND, Dye JA. Diesel exhaust particles induce aberrant alveolar epithelial directed cell movement by disruption of polarity mechanisms. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:71-85. [PMID: 23294296 DOI: 10.1080/15287394.2013.738169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Disruption of the respiratory epithelium contributes to the progression of a variety of respiratory diseases that are aggravated by exposure to air pollutants, specifically traffic-based pollutants such as diesel exhaust particles (DEP). Recognizing that lung repair following injury requires efficient and directed alveolar epithelial cell migration, this study's goal was to understand the mechanisms underlying alveolar epithelial cells response to DEP, particularly when exposure is accompanied with comorbid lung injury. Separate mechanistic steps of directed migration were investigated in confluent murine LA-4 cells exposed to noncytotoxic concentrations (0-100 μg/cm(2)) of either automobile-emitted diesel exhaust particles (DEP(A)) or carbon black (CB) particles. A scratch wound model ascertained how DEP(A) exposure affected directional cell migration and BCECF ratio fluorimetry-monitored intracellular pH (pHi). Cells were immunostained with giantin to assess cell polarity, and with paxillin to assess focal cell adhesions. Cells were immunoblotted for ezrin/radixin/moesin (ERM) to assess cytoskeletal anchoring. Data demonstrate herein that exposure of LA-4 cells to DEP(A) (but not CB) resulted in delayed directional cell migration, impaired de-adhesion of the trailing edge cell processes, disrupted regulation of pHi, and altered Golgi polarity of leading edge cells, along with modified focal adhesions and reduced ERM levels, indicative of decreased cytoskeletal anchoring. The ability of DEP(A) to disrupt directed cell migration at multiple levels suggests that signaling pathways such as ERM/Rho are critical for transduction of ion transport signals into cytoskeletal arrangement responses. These results provide insights into the mechanisms by which chronic exposure to traffic-based emissions may result in decrements in lung capacity.
Collapse
Affiliation(s)
- Adriana J LaGier
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, USA.
| | | | | |
Collapse
|
6
|
Fu H, Li B, Hertz L, Peng L. Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 2012; 61:187-94. [PMID: 22564531 DOI: 10.1016/j.neuint.2012.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 12/21/2022]
Abstract
myo-Inositol is important for cell signaling both in cytoplasm and in intracellular organelles. It is required in the plasma membrane and cytoplasm for maintained synthesis of the second messengers, inositoltrisphosphate (IP(3)) and diacylglycerol (DAG) from phosphatidylinositol bisphosphate (PIP(2)), and in organelles as precursor for synthesis of complex signaling phospholipids and inositolphosphates from IP(3) and PIP(2). myo-Inositol must be taken up into the cell where its is used, because neither neurons nor astrocytes synthesize it. It is also an osmolyte, taken up in response to surrounding hyperosmolarity and released during hypo-osmolarity. There are three myo-inositol transporters, the Na(+)-dependent SMIT1 and SMIT2, and HMIT, which co-transports myo-inositol with H(+). Their relative expressions in astrocytes and neurons are unknown. Uptake kinetics for myo-inositol in astrocytes has repeatedly been determined, but always on the assumption of only one component, leaving kinetics for the individual transporters unknown. This paper demonstrates that astrocytes obtained directly from the brain express SMIT1 and HMIT, but little SMIT2, and that all three transporters are expressed in neurons. Cultured mouse astrocytes show a high-affinity/low-capacity myo-inositol uptake (V(max): 60.0 ± 3.0 pmol/min per mg protein; K(m): 16.7 ± 2.6 μM), mediated by SMIT1 and perhaps partly by SMIT2. It was determined in cells pre-treated with HMIT-siRNA and confirmed by specific inhibition of SMIT. However at physiologically relevant myo-inositol concentrations most uptake is by a lower-affinity/higher-capacity uptake, mediated by HMIT (V(max): 358 ± 60 pmol/min per mg protein; K(m): 143 ± 36 μM) and determined by subtraction of SMIT-mediated from total uptake. At high myo-inositol concentrations, its uptake is inhibited by incubation in medium with increased pH, and increased during intracellular acidification with NH(4)Cl. This is in agreement with literature data for HMIT alone. At low concentration, where SMIT1/2 activity gains importance, myo-inositol uptake is reduced by ammonia-induced intracellular acidification, consistent with the transporter's pH sensitivity reported in the literature.
Collapse
Affiliation(s)
- Hui Fu
- Department of Clinical Pharmacology, College of Basic Medical Sciences, China Medical University, Shenyang, PR China
| | | | | | | |
Collapse
|
7
|
VanDemark KL, Guizzetti M, Giordano G, Costa LG. Ethanol inhibits muscarinic receptor-induced axonal growth in rat hippocampal neurons. Alcohol Clin Exp Res 2009; 33:1945-55. [PMID: 19673741 DOI: 10.1111/j.1530-0277.2009.01032.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND In utero alcohol exposure can lead to fetal alcohol spectrum (FAS) disorders characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. One mechanism through which ethanol has been shown to exert its effects is the perturbation of activated signaling cascades. The cholinergic agonist carbachol has been shown to induce axonal outgrowth through intracellular calcium mobilization, protein kinase C (PKC) activation, and ERK1/2 phosphorylation. This study investigated the effect of ethanol on the differentiation of rat hippocampal pyramidal neurons induced by carbachol as a possible mechanism involved in the developmental neurotoxicity of ethanol. METHODS Prenatal rat hippocampal pyramidal neurons were treated with ethanol (50 to 75 mM) in the presence or absence of carbachol for 24 hours. Neurite outgrowth was assessed spectrophotometrically; axonal length was measured in neurons fixed and immunolabeled with the neuron-specific betaIII tubulin antibody; cytotoxicity was analyzed using the thiazolyl blue tetrazolium bromide assay. The effect of ethanol on carbachol-stimulated intracellular calcium mobilization was assessed utilizing the fluorescent calcium probe, Fluo-3AM. The PepTag(R) assay for nonradioactive detection of PKC from Promega was used to measure PKC activity, and ERK1/2 activation was determined by densitometric analysis of Western blots probed for phospo-ERK1/2. RESULTS Ethanol treatment (50 to 75 mM) caused an inhibition of carbachol-induced axonal growth, without affecting neuronal viability. Neuron treatment for 15 minutes with ethanol did not inhibit the carbachol-stimulated rise in intracellular calcium, while inhibiting PKC activity at the highest tested concentration and ERK1/2 phosphorylation at both the concentrations used in this study. On the other hand, neuron treatment for 24 hours with ethanol significantly inhibited carbachol-induced increase in intracellular calcium. CONCLUSIONS Ethanol inhibited carbachol-induced neurite outgrowth by inhibiting PKC and ERK1/2 activation. These effects may be, in part, responsible for some of the cognitive deficits associated with in utero alcohol exposure.
Collapse
Affiliation(s)
- Kathryn L VanDemark
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
8
|
Song D, Du T, Li B, Cai L, Gu L, Li H, Chen Y, Hertz L, Peng L. Astrocytic alkalinization by therapeutically relevant lithium concentrations: implications for myo-inositol depletion. Psychopharmacology (Berl) 2008; 200:187-95. [PMID: 18506424 DOI: 10.1007/s00213-008-1194-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 04/27/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE One theory for therapeutic effects of the lithium ion (Li+) in bipolar disorder is that myo-inositol, needed for phospholipase C-mediated signaling, is depleted by Li(+)-induced inhibition of inositolphosphate hydrolysis or of myo-inositol uptake, an effect demonstrated in cultured mouse astrocytes at high myo-inositol concentrations. In contrast, myo-inositol uptake is inhibited at low concentrations, reflecting that it occurs both by the high-affinity Na(+)-dependent myo-inositol transporter (SMIT) and the lower-affinity H(+)-dependent inositol transporter (HMIT). Increased intracellular pH (pHi) stimulates SMIT but inhibits HMIT, suggesting that the effect of Li+ could be caused by intracellular alkalinization. In this study, we therefore investigated Li+ effects on intracellular pH in astrocytes, measured by 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence. RESULTS Chronic treatment with the therapeutically relevant Li+ concentration of 1 mM for 2 or 3 weeks increased pHi by approximately 0.10, whereas 0.5 mM was ineffective, and 2 mM caused a larger increase. The alkalinization resulted from acute stimulation of the Na+/H+ exchanger (NHE) by extracellular Li+, demonstrated after acid load with NH4Cl. In response to continuous stimulation, NHE1 mRNA was down-regulated, but protein was not. CONCLUSIONS Chronic treatment with pharmacologically relevant Li+ concentrations increases pHi in astrocytes, creating conditions for decreased uptake of high myo-inositol concentrations and increased uptake of low concentrations. The pharmacological relevance of this effect is supported by literature data suggesting brain acidosis in bipolar patients and by preliminary observations that carbamazepine and valproate also increase pHi in astrocytes. Stimulation of NHE1-stimulated sodium ion uptake might also trigger uptake of chloride ions and osmotically obliged water.
Collapse
Affiliation(s)
- Dan Song
- Department of Clinical Pharmacology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Song Y, Wei EQ, Zhang WP, Ge QF, Liu JR, Wang ML, Huang XJ, Hu X, Chen Z. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation. Brain Res 2006; 1085:57-67. [PMID: 16574083 DOI: 10.1016/j.brainres.2006.02.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 11/24/2022]
Abstract
Recently, we have reported that minocycline, a semi-synthetic tetracycline with neuroprotective effects, inhibits the in vitro ischemic-like injury and 5-lipoxygenase (5-LOX) activation in PC12 cells. In the present study, we further determined whether minocycline protects PC12 cells from excitotoxicity via inhibiting 5-LOX activation. We used N-methyl-d-aspartate (NMDA, 200 microM) to induce early (exposure for 6 h) and delayed (exposure for 6 h followed by 24 h recovery) injuries. We found that NMDA receptor antagonist ketamine, 5-LOX inhibitor caffeic acid and minocycline concentration dependently attenuated NMDA-induced early and delayed cell injuries (viability reduction and cell death). However, only ketamine (1 microM) inhibited NMDA-evoked elevation of intracellular calcium. In addition, immunohistochemical analysis showed that NMDA induced 5-LOX translocation to the nuclear membrane after 1- to 6-h exposure which was confirmed by Western blotting, indicating that 5-LOX was activated. Ketamine, caffeic acid and minocycline (each at 1 microM) inhibited 5-LOX translocation after early injury. After delayed injury, PC12 cells were shrunk, and 5-LOX was translocated to the nuclei and nuclear membrane; ketamine, caffeic acid and minocycline inhibited both cell shrinking and 5-LOX translocation. As a control, 12-LOX inhibitor baicalein showed a weak effect on cell viability and death, but no effect on 5-LOX translocation. Therefore, we conclude that the protective effect of minocycline on NMDA-induced injury is partly mediated by inhibiting 5-LOX activation.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Brischwein M, Grothe H, Otto AM, Ressler J, Lob V, Wiest J, Wolf B. Möglichkeiten und Grenzen der Mikrosensortechnologie in zellulärer Diagnostik und Pharmascreening. CHEM-ING-TECH 2005. [DOI: 10.1002/cite.200500067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Rojas H, Ramos M, Dipolo R. A genistein-sensitive Na+/Ca2+ exchange is responsible for the resting [Ca2+]i and most of the Ca2+ plasma membrane fluxes in stimulated rat cerebellar type 1 astrocytes. ACTA ACUST UNITED AC 2005; 54:249-62. [PMID: 15541203 DOI: 10.2170/jjphysiol.54.249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The differential role of Na+/Ca2+ exchange in the regulation of intracellular ionized calcium ([Ca2+]i) in immunological and pharmacologically identified type 1 astrocytes and Purkinje cells was studied in rat cerebellar culture, using Ca2+ (Fluo-3, Fura-2) and Na+ (SBFI) fluorescence measurements. The mean resting [Ca2+]i was significantly higher (191 +/- 8 nM, n=25) in type 1 astrocytes than in Purkinje cells (92 +/- 2.5 nM, n=35). In contrast to Purkinje cells, in unstimulated cerebellar type 1 astrocytes, forward and reverse Na+/Ca2+ modes operate under resting physiological conditions, being responsible for most of the total Ca2+ transplasma membrane fluxes. Four observations support this hypothesis: (1) under resting conditions of temperature and ionic composition, Na+o removal causes a remarkable increase in [Ca2+]i, being inhibited by 2',4' dichlorobenzamil (DCB), and 2-[2-[4-(nitrobenzilloxiphenyl ethyl] isothiourea metanesulfonate (KB-R7943); (2) Ca2+o removal in the presence of Na+o causes an important drop in [Ca2+]i, which is absent in Li+o or NMG+o (N-methyl-D-glucamine) containing medium; (3) the reverse mode exchange inhibitor KB-R7943 mimics the removal of Ca2+o only in the presence of Na+o; and (4) under loaded [Na+]i conditions (ouabain or the activation of taurine-Na+-cotransport), reverse mode exchange increases in both astrocytes and Purkinje cells. In type 1 astrocytes stimulated with endothelin-3 (ET-3), the recovery of the Ca2+i signal occurs largely through the Na+/Ca2+ exchanger. Genistein, a tyrosine kinase inhibitor, completely and reversibly blocks all exchange activity, but not its inactive analogue daidzein, thus suggesting that the Na+/Ca2+ exchanger of cerebellar type 1 astrocytes may be modulated by phosphorylation. Our main conclusion is that in rat cerebellar type 1 astrocytes under resting physiological conditions, most of the total transplasma membrane Ca2+ fluxes take place through the Na+/Ca2+ exchanger, thus accounting for the resting [Ca(2+)]i.
Collapse
Affiliation(s)
- H Rojas
- Laboratorio de Permeabilidad Iónica, Centro de Biofísica y Bioquímica, IVIC Apartado 21827, Caracas 1020 A, Venezuela
| | | | | |
Collapse
|
12
|
Besanger TR, Bhanabhai H, Brennan JD. Interferences in Fluo-3 based ion-flux assays for ligand-gated-ion channels. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Abstract
A method is introduced to measure chloride permeability in cultured epithelial cells using 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ) and 6-methoxy-N-ethylquinolinium iodide quinolinium (MEQ) as fluorescent chloride-sensitive probes. The method involves growing cells in multiwell plates, incubating cells with SPQ or MEQ, and then exchanging intracellular or extracellular halide ions with nitrate. The resulting time course of SPQ or MEQ fluorescence is followed by repetitive readings with a multiwell fluorescence plate reader. Exchange times are extracted by fitting the time course with a single exponential function of time. The method was validated by measuring the effect of chloride channel activators and blockers in A6 and MDCK cells. The baseline iodide/nitrate exchange time was 200-300 s. Isoproterenol (a modulator of cAMP-activated chloride channels) increased the exchange rate by a factor of 1.4+/-0.1; A23187 (a modulator of calcium-activated chloride channels) increased the rate by 3.4+/-0.4; bradykinin (also a modulator of calcium-activated chloride channels) increased the rate by 2.0+/-0.4; forskolin (a direct stimulator of adenylate cyclase) increased the rate by 2.7+/-0.3. Diphenylamine-2-carboxylate (a chloride channel blocker) decreased the rate by 0.12+/-0.03. These results indicate that our method is a valid indicator of halide-nitrate exchange in cultured epithelial cells.
Collapse
Affiliation(s)
- Dick A F D Mahlangu
- Department of Chemistry, State University of New York, Box 6000, Binghamton, NY 13902-6000, USA
| | | |
Collapse
|
14
|
Rao TS, Lariosa-Willingham KD, Lin FF, Palfreyman EL, Yu N, Chun J, Webb M. Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res 2004; 990:182-94. [PMID: 14568343 DOI: 10.1016/s0006-8993(03)03527-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphate; LPA) and sphingosine-1-phosphate (S1P) are bioactive phospholipids which respectively act as agonists for the G-protein-coupled lpA receptors (LPA1, LPA2, and LPA3) and s1p receptors (S1P1, S1P2, S1P3, S1P4, and S1P5), collectively referred to as lysophospholipid receptors (lpR). Since astrocytes are responsive to LPA and S1P, we examined mechanisms of lpR signaling in rat cortical secondary astrocytes. Rat cortical astrocyte mRNA expression by quantitative TaqMan polymerase chain reaction (PCR) analysis revealed the following order of relative expression of lpR mRNAs: s1p3>s1p1>lpa1>s1p2=lpa3>>s1p5. Activation of lpRs by LPA or S1P led to multiple pharmacological effects, including the influx of calcium, phosphoinositide (PI) hydrolysis, phosphorylation of extracellular receptor regulated kinase (ERK) and release of [3H]-arachidonic acid (AA). These signalling events downstream of lpR activation were inhibited to varying degrees by pertussis toxin (PTX) pretreatment or by the inhibition of sphingosine kinase (SK), a rate-limiting enzyme in the biosynthesis of S1P from sphingosine. These results suggest that astrocyte lpR signalling mechanisms likely involve both Gi- and Gq-coupled GPCRs and that receptor-mediated activation of SK leads to intracellular generation of S1P, which in turn amplifies the lpR signalling in a paracrine/autocrine manner.
Collapse
Affiliation(s)
- Tadimeti S Rao
- Merck Research Laboratories, 3535 General Atomics Court, Building 1, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Fitch RW, Garraffo HM, Spande TF, Yeh HJC, Daly JW. Bioassay-guided isolation of epiquinamide, a novel quinolizidine alkaloid and nicotinic agonist from an Ecuadoran poison frog, Epipedobates tricolor. JOURNAL OF NATURAL PRODUCTS 2003; 66:1345-1350. [PMID: 14575435 DOI: 10.1021/np030306u] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Analytical HPLC fractionation, combined with an off-line 96-well fluorescent bioassay screen, has been developed and used for the separation and screening of a natural product extract. This method was used to guide the isolation of a novel quinolizidine alkaloid from the methanolic skin extracts of an Ecuadoran frog, Epipedobates tricolor. The structure was determined on the basis of MS, IR, and NMR analysis as (1R,10R)-1-acetamidoquinolizidine (alkaloid 196). We have named this compound epiquinamide, reflecting its origin and structure. The activity of the isolated compound was determined in five cell lines expressing various nicotinic acetylcholine receptor subtypes. The bioactivity of epiquinamide was evaluated on the basis of membrane potential fluorescence and was found to be beta2 selective. This compound represents a new structural class of nicotinic agonists and a potential lead compound for the development of new therapeutics and pharmacological probes for nicotinic receptors. The off-line screening technique was found to be very sensitive for the detection of compounds active at nicotinic receptors.
Collapse
Affiliation(s)
- Richard W Fitch
- Section on Pharmacodynamics, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Fitch RW, Xiao Y, Kellar KJ, Daly JW. Membrane potential fluorescence: a rapid and highly sensitive assay for nicotinic receptor channel function. Proc Natl Acad Sci U S A 2003; 100:4909-14. [PMID: 12657731 PMCID: PMC153654 DOI: 10.1073/pnas.0630641100] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven cell lines expressing native and transfected nicotinic receptor subtypes were evaluated functionally by using fluorescent assays based on membrane potential and calcium dynamics with "no-wash" dye systems. Both assays provided the same rank orders of potency for (+/-)-epibatidine, 2S-(-)-nicotine, 7R,9S-(-)-cytisine, and 1,1-dimethyl-4-phenylpiperazinium in a cell line expressing rat alpha 3 beta 4 receptors. Nicotinic antagonists mecamylamine and dihydro-beta-erythroidine inhibited responses in both assays. Both agonist and antagonist activity were assessed within the same experiment. Agonists seemed more potent in the membrane potential assay than in the calcium assay, whereas the converse was true for antagonists. The membrane potential assay afforded robust responses in K-177 cells expressing human alpha 4 beta 2 receptors, in IMR-32 and SH-SY5Y cells expressing human ganglionic receptors, and in TE-671 cells expressing human neuromuscular receptors. These lines gave weak to modest calcium responses. Moreover, membrane potential responses were obtained in cell lines expressing rat alpha 4 beta 2 and alpha 4 beta 4 receptors, which were devoid of calcium responses. Thus, membrane potential serves as a sensitive measure of nicotinic activity, and the resulting depolarization may be as important as calcium in cell signaling.
Collapse
Affiliation(s)
- Richard W Fitch
- Section on Pharmacodynamics, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
17
|
Yu N, Lariosa-Willingham KD, Lin FF, Webb M, Rao TS. Characterization of lysophosphatidic acid and sphingosine-1-phosphate-mediated signal transduction in rat cortical oligodendrocytes. Glia 2003; 45:17-27. [PMID: 14648542 DOI: 10.1002/glia.10297] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been proposed to play a key role in oligodendrocyte maturation and myelinogenesis. In this study, we examined lysophospholipid receptor gene expression in differentiated rat oligodendrocyte cultures and signaling downstream of lysophospholipid receptor activation by LPA and S1P. Differentiated oligodendrocytes express mRNAs encoding lysophospholipid receptors with the relative abundance of lpa1>s1p5>s1p1=s1p2=lpa3>s1p3. LPA and S1P transiently increased phosphorylation of extracellular signal-regulated kinase (ERK) with EC50 values of 956 and 168 nM, respectively. LPA- and S1P-induced ERK phosphorylation was dependent on the activation of mitogen-activated protein kinase (MAPK), phospholipase C (PLC), and protein kinase C (PKC), but was insensitive to pertussis toxin (PTX). LPA increased intracellular calcium levels in oligodendrocytes and these increases were partially blocked by a PLC inhibitor but not by PTX. In contrast, S1P was not found to induce measurable changes of intracellular calcium. These results taken together suggest that lysophospholipid receptor activation involves receptor coupling to heterotrimeric Gq subunits with consequent activation of PLC, PKC, and MAPK pathways leading to ERK phosphorylation.
Collapse
Affiliation(s)
- Naichen Yu
- Molecular Neuroscience, Merck Research Laboratories, San Diego, California 92121, USA.
| | | | | | | | | |
Collapse
|
18
|
Manning TJ, Parker JC, Sontheimer H. Role of lysophosphatidic acid and rho in glioma cell motility. CELL MOTILITY AND THE CYTOSKELETON 2000; 45:185-99. [PMID: 10706774 DOI: 10.1002/(sici)1097-0169(200003)45:3<185::aid-cm2>3.0.co;2-g] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have studied the effects of the bioactive phospholipid lysophosphatidic acid (LPA) on cell lines derived from highly invasive human glioblastoma multiforme (GBM). Using transwell migration assays, we show that LPA stimulates both chemokinetic and chemotactic migration of glioma cells. Blood brain barrier breakdown and leakage of serum components that most likely include LPA are common features of GBM. Therefore, the effects of LPA on glioma cell motility are intriguing given the fact that, in vivo, GBM cells often migrate great distances from the main tumor, rendering successful therapy extremely difficult. We show here that LPA initiates a variety of signaling cascades in glioma cells. LPA-enhanced transwell migration was sensitive to pertussis toxin (PTX) treatment suggesting an important role for G(i) subtype of G proteins. LPA also stimulated Ca(2+) fluctuations and activation of extracellular signal-regulated kinases (ERKS) 1 and 2, although blocking either pathway had little effect on glioma cell migration. Exposure of glioma cells to LPA resulted in phosphorylation of the regulatory light chain (RLC) of myosin II and the formation of stress fibers and focal adhesions. These effects were blocked by Y-27632, an inhibitor of Rho-activated ROCK kinases. Time-lapse video microscopy revealed that Y-27632-treatment caused cells to assume long thin morphologies that suggested deficiencies in the contractile apparatus. Furthermore, many cells exhibited a conspicuous extension of processes when Rho/ROCK kinase cascades were inhibited. The above results suggest that LPA/Rho signaling cascades play important roles in glioma cell motility and that exposure of tumor cells to LPA in vivo may contribute to their invasive phenotype.
Collapse
Affiliation(s)
- T J Manning
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|