1
|
Bashor L, Rawlinson JE, Kozakiewicz CP, Behzadi E, Miller C, Kim J, Conry M, Nehring M, Carver S, Abdo Z, VandeWoude S. Impacts of Antiretroviral Therapy on the Oral Microbiome and Periodontal Health of Feline Immunodeficiency Virus Positive Cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602918. [PMID: 39026780 PMCID: PMC11257590 DOI: 10.1101/2024.07.10.602918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Feline immunodeficiency virus (FIV) is the domestic cat analogue of HIV infection in humans. Both viruses induce oral disease in untreated individuals, with clinical signs that include gingivitis and periodontal lesions. Oral disease manifestations in HIV patients are abated by highly effective combination antiretroviral therapy (cART), though certain oral manifestations persist despite therapy. Microorganisms associated with oral cavity opportunistic infections in patients with HIV cause similar pathologies in cats. To further develop this model, we evaluated characteristics of feline oral health and oral microbiome during experimental FIV infection over an 8-month period following cART. Using 16S metagenomics sequencing, we evaluated gingival bacterial communities at four timepoints in uninfected and FIV-infected cats treated with cART or placebo. Comprehensive oral examinations were also conducted by a veterinary dental specialist over the experimental period. Gingival inflammation was higher in FIV-infected cats treated with placebo compared to cART-treated cats and controls at study endpoint. Oral microbiome alpha diversity increased in all groups, while beta diversity differed among treatment groups, documenting a significant effect of cART therapy on microbiome community composition. This finding has not previously been reported and indicates cART ameliorates immunodeficiency virus-associated oral disease via preservation of oral mucosal microbiota. Further, this study illustrates the value of the FIV animal model for investigations of mechanistic associations and therapeutic interventions for HIV oral manifestations.
Collapse
Affiliation(s)
- Laura Bashor
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer E Rawlinson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P Kozakiewicz
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Elisa Behzadi
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Craig Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Jeffrey Kim
- Comparative Medicine Research Unit, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Megan Conry
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary Nehring
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Scott Carver
- Odum School of Ecology, University of Georgia, Athens, GA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Shatnawi S, Gunasekara S, Bashor L, Tamil Selvan M, Nehring M, Cowan S, Ritchey J, VandeWoude S, Taylor B, Miller C, Rudd JM. Utilizing Feline Lentiviral Infection to Establish a Translational Model for COVID-19 in People with Human Immunodeficiency Virus Infection. Microorganisms 2024; 12:1289. [PMID: 39065058 PMCID: PMC11278576 DOI: 10.3390/microorganisms12071289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
People living with human immunodeficiency virus (PLWH) are a significant population globally. Research delineating our understanding of coinfections in PLWH is critical to care for those navigating infection with other pathogens. The recent COVID-19 pandemic underscored the urgent need for studying the effects of SARS-CoV-2 infections in therapy-controlled and uncontrolled immunodeficiency viral infections. This study established the utility of a feline model for the in vivo study of coinfections. Domestic cats are naturally infected with SARS-CoV-2 and Feline Immunodeficiency Virus, a lentivirus molecularly and pathogenically similar to HIV. In this study, comparisons are made between FIV-positive and FIV-negative cats inoculated with SARS-CoV-2 (B.1.617.2.) in an experimental setting. Of the FIV+ cats, three received Zidovudine (AZT) therapy in the weeks leading up to SARS-CoV-2 inoculation, and two did not. SARS-CoV-2 viral RNA was quantified, histopathologic comparisons of respiratory tissues were made, and T-cell populations were analyzed for immune phenotype shifts between groups. CD4+ T lymphocyte responses varied, with FIV+-untreated cats having the poorest CD4+ response to SARS-CoV-2 infection. While all cats had significant pulmonary inflammation, key histopathologic features of the disease differed between groups. Additionally, viral genomic analysis was performed, and results were analyzed for the presence of emerging, absent, amplified, or reduced mutations in SARS-CoV-2 viral RNA after passage through the feline model. Positive selection is noted, especially in FIV+ cats untreated with AZT, and mutations with potential relevance were identified; one FIV+-untreated cat had persistent, increasing SARS-CoV-2 RNA in plasma five days post-infection. These findings and others support the utility of the feline model for studying coinfection in people with HIV and highlight the importance of antiretroviral therapy in clearing SARS-CoV-2 coinfections to minimize transmission and emergence of mutations that may have deleterious effects.
Collapse
Affiliation(s)
- Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Laura Bashor
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Mary Nehring
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Jerry Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Susan VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Brianne Taylor
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Craig Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| | - Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.S.)
| |
Collapse
|
3
|
TANABE T, FUKUDA Y, KAWASHIMA K, YAMAMOTO S, KASHIMOTO T, SATO H. Transcriptional inhibition of feline immunodeficiency virus by alpha-amanitin. J Vet Med Sci 2021; 83:158-161. [PMID: 33250482 PMCID: PMC7870409 DOI: 10.1292/jvms.20-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/15/2020] [Indexed: 11/22/2022] Open
Abstract
Alpha-amanitin, one of the amatoxins in egg amanita, has a cyclic peptide structure, and was reported as having antiviral activity against several viruses. We investigated whether α-amanitin has antiviral activity against feline immunodeficiency virus (FIV). FL-4 cells persistently infected with FIV Petaluma were cultured with α-amanitin. Reverse transcriptase (RT) activity in the supernatant of FL-4 cells was significantly inhibited by α-amanitin. In addition, the production of FIV core protein in FL-4 cells was inhibited by α-amanitin when analyzed by western blotting. Furthermore, α-amanitin inhibited the transcription of FIV in real-time RT-PCR. These data suggested that α-amanitin showed anti-FIV activity by inhibiting the RNA transcription level.
Collapse
Affiliation(s)
- Taishi TANABE
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yurina FUKUDA
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | - Satomi YAMAMOTO
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Takashige KASHIMOTO
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Hisaaki SATO
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
4
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
5
|
Miller C, Powers J, Musselman E, Mackie R, Elder J, VandeWoude S. Immunopathologic Effects of Prednisolone and Cyclosporine A on Feline Immunodeficiency Virus Replication and Persistence. Viruses 2019; 11:v11090805. [PMID: 31480322 PMCID: PMC6783960 DOI: 10.3390/v11090805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Feline immunodeficiency virus (FIV) induces opportunistic disease in chronically infected cats, and both prednisolone and cyclosporine A (CsA) are clinically used to treat complications such as lymphoma and stomatitis. However, the impact of these compounds on FIV infection are still unknown and understanding immunomodulatory effects on FIV replication and persistence is critical to guide safe and effective therapies. To determine the immunologic and virologic effects of prednisolone and CsA during FIV infection, FIV-positive cats were administered immunosuppressive doses of prednisolone (2 mg/kg) or CsA (5 mg/kg). Both prednisolone and CsA induced acute and transient increases in FIV DNA and RNA loads as detected by quantitative PCR. Changes in the proportion of lymphocyte immunophenotypes were also observed between FIV-infected and naïve cats treated with CsA and prednisolone, and both treatments caused acute increases in CD4+ lymphocytes that correlated with increased FIV RNA. CsA and prednisolone also produced alterations in cytokine expression that favored a shift toward a Th2 response. Pre-treatment with CsA slightly enhanced the efficacy of antiretroviral therapy but did not enhance clearance of FIV. Results highlight the potential for drug-induced perturbation of FIV infection and underscore the need for more information regarding immunopathologic consequences of therapeutic agents on concurrent viral infections.
Collapse
Affiliation(s)
- Craig Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Jordan Powers
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Esther Musselman
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ryan Mackie
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - John Elder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Immunogenicity and Efficacy of a Novel Multi-Antigenic Peptide Vaccine Based on Cross-Reactivity between Feline and Human Immunodeficiency Viruses. Viruses 2019; 11:v11020136. [PMID: 30717485 PMCID: PMC6409633 DOI: 10.3390/v11020136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
For the development of an effective HIV-1 vaccine, evolutionarily conserved epitopes between feline and human immunodeficiency viruses (FIV and HIV-1) were determined by analyzing overlapping peptides from retroviral genomes that induced both anti-FIV/HIV T cell-immunity in the peripheral blood mononuclear cells from the FIV-vaccinated cats and the HIV-infected humans. The conserved T-cell epitopes on p24 and reverse transcriptase were selected based on their robust FIV/HIV-specific CD8⁺ cytotoxic T lymphocyte (CTL), CD4⁺ CTL, and polyfunctional T-cell activities. Four such evolutionarily conserved epitopes were formulated into four multiple antigen peptides (MAPs), mixed with an adjuvant, to be tested as FIV vaccine in cats. The immunogenicity and protective efficacy were evaluated against a pathogenic FIV. More MAP/peptide-specific CD4⁺ than CD8⁺ T-cell responses were initially observed. By post-third vaccination, half of the MAP/peptide-specific CD8⁺ T-cell responses were higher or equivalent to those of CD4⁺ T-cell responses. Upon challenge, 15/19 (78.9%) vaccinated cats were protected, whereas 6/16 (37.5%) control cats remained uninfected, resulting in a protection rate of 66.3% preventable fraction (p = 0.0180). Thus, the selection method used to identify the protective FIV peptides should be useful in identifying protective HIV-1 peptides needed for a highly protective HIV-1 vaccine in humans.
Collapse
|
7
|
Properties and Functions of Feline Immunodeficiency Virus Gag Domains in Virion Assembly and Budding. Viruses 2018; 10:v10050261. [PMID: 29772651 PMCID: PMC5977254 DOI: 10.3390/v10050261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is an important cat pathogen worldwide whose biological and pathophysiological properties resemble those of human immunodeficiency virus type 1 (HIV-1). Therefore, the study of FIV not only benefits its natural host but is also useful for the development of antiviral strategies directed against HIV-1 infections in humans. FIV assembly results from the multimerization of a single but complex viral polypeptide, the Gag precursor. In this review, we will first give an overview of the current knowledge of the proteins encoded by the FIV pol, env, rev, vif, and orf-A genes, and then we will describe and discuss in detail the critical roles that each of the FIV Gag domains plays in virion morphogenesis. Since retroviral assembly is an attractive target for therapeutic interventions, gaining a better understanding of this process is highly desirable.
Collapse
|
8
|
Nag M, De Paris K, E Fogle J. Epigenetic Modulation of CD8⁺ T Cell Function in Lentivirus Infections: A Review. Viruses 2018; 10:v10050227. [PMID: 29710792 PMCID: PMC5977220 DOI: 10.3390/v10050227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cells are critical for controlling viremia during human immunodeficiency virus (HIV) infection. These cells produce cytolytic factors and antiviral cytokines that eliminate virally- infected cells. During the chronic phase of HIV infection, CD8+ T cells progressively lose their proliferative capacity and antiviral functions. These dysfunctional cells are unable to clear the productively infected and reactivated cells, representing a roadblock in HIV cure. Therefore, mechanisms to understand CD8+ T cell dysfunction and strategies to boost CD8+ T cell function need to be investigated. Using the feline immunodeficiency virus (FIV) model for lentiviral persistence, we have demonstrated that CD8+ T cells exhibit epigenetic changes such as DNA demethylation during the course of infection as compared to uninfected cats. We have also demonstrated that lentivirus-activated CD4+CD25+ T regulatory cells induce forkhead box P3 (Foxp3) expression in virus-specific CD8+ T cell targets, which binds the interleukin (IL)-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ promoters in these CD8+ T cells. Finally, we have reported that epigenetic modulation reduces Foxp3 binding to these promoter regions. This review compares and contrasts our current understanding of CD8+ T cell epigenetics and mechanisms of lymphocyte suppression during the course of lentiviral infection for two animal models, FIV and simian immunodeficiency virus (SIV).
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
9
|
Medeiros SDO, Abreu CM, Delvecchio R, Ribeiro AP, Vasconcelos Z, Brindeiro RDM, Tanuri A. Follow-up on long-term antiretroviral therapy for cats infected with feline immunodeficiency virus. J Feline Med Surg 2016; 18:264-72. [PMID: 25855689 PMCID: PMC11112254 DOI: 10.1177/1098612x15580144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Feline immunodeficiency virus (FIV) is a lentivirus that induces AIDS-like disease in cats. Some of the antiretroviral drugs available to treat patients with HIV type 1 are used to treat FIV-infected cats; however, antiretroviral therapy (ART) is not used in cats as a long-term treatment. In this study, the effects of long-term ART were evaluated in domestic cats treated initially with the nucleoside transcriptase reverse inhibitor (NTRI) zidovudine (AZT) over a period ranging from 5-6 years, followed by a regimen of the NTRI lamivudine (3TC) plus AZT over 3 years. METHODS Viral load, sequencing of pol (reverse transcriptase [RT]) region and CD4:CD8 lymphocyte ratio were evaluated during and after treatment. Untreated cats were evaluated as a control group. RESULTS CD4:CD8 ratios were lower, and uncharacterized resistance mutations were found in the RT region in the group of treated cats. A slight increase in viral load was observed in some cats after discontinuing treatment. CONCLUSIONS AND RELEVANCE The data strongly suggest that treated cats were resistant to therapy, and uncharacterized resistance mutations in the RT gene of FIV were selected for by AZT. Few studies have been conducted to evaluate the effect of long-term antiretroviral therapy in cats. To date, resistance mutations have not been described in vivo.
Collapse
Affiliation(s)
- Sheila de Oliveira Medeiros
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina Monteiro Abreu
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Delvecchio
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Rodrigo de Moraes Brindeiro
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Wilkes RP, Hartmann K. Update on Antiviral Therapies. AUGUST'S CONSULTATIONS IN FELINE INTERNAL MEDICINE, VOLUME 7 2016. [PMCID: PMC7152142 DOI: 10.1016/b978-0-323-22652-3.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus. Vet Sci 2015; 2:456-476. [PMID: 29061953 PMCID: PMC5644647 DOI: 10.3390/vetsci2040456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is one of the most common infectious agents affecting cats worldwide .FIV and human immunodeficiency virus (HIV) share many properties: both are lifelong persistent lentiviruses that are similar genetically and morphologically and both viruses propagate in T-lymphocytes, macrophages, and neural cells. Experimentally infected cats have measurable immune suppression, which sometimes progresses to an acquired immunodeficiency syndrome. A transient initial state of infection is followed by a long latent stage with low virus replication and absence of clinical signs. In the terminal stage, both viruses can cause severe immunosuppression. Thus, FIV infection in cats has become an important natural model for studying HIV infection in humans, especially for evaluation of antiviral compounds. Of particular importance for chemotherapeutic studies is the close similarity between the reverse transcriptase (RT) of FIV and HIV, which results in high in vitro susceptibility of FIV to many RT-targeted antiviral compounds used in the treatment of HIV-infected patients. Thus, the aim of this article is to provide an up-to-date review of studies on antiviral treatment of FIV, focusing on commercially available compounds for human or animal use.
Collapse
|
12
|
Hartmann K. Efficacy of antiviral chemotherapy for retrovirus-infected cats: What does the current literature tell us? J Feline Med Surg 2015; 17:925-39. [PMID: 26486979 PMCID: PMC10816252 DOI: 10.1177/1098612x15610676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GLOBAL IMPORTANCE The two feline retroviruses, feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV), are global and widespread, but differ in their potential to cause disease. VIRAL INFECTION - FIV FIV, a lentivirus that shares many properties with human immunodeficiency virus (HIV), can cause an acquired immune deficiency syndrome, which predisposes cats to other infections, stomatitis, neurological disorders and tumours. Although secondary infections are common, specific opportunistic infections or acquired immunodeficiency virus-defining infections, such as those that occur with HIV, are not commonly reported in FIV-infected cats. In most naturally infected cats, FIV does not cause a severe clinical syndrome; with appropriate care, FIV-infected cats can live many years before succumbing to conditions unrelated to their FIV infection. Thus, overall survival time is not necessarily shorter than in uninfected cats, and quality of life is usually high over many years or lifelong. VIRAL INFECTION - FELV FeLV, an oncornavirus, is more pathogenic than FIV. Historically, it was considered to account for more disease-related deaths and clinical syndromes in cats than any other infectious agent. Recently, the prevalence and importance of FeLV have been decreasing, mainly because of testing and eradication programmes and the use of FeLV vaccines. Progressive FeLV infection can cause tumours, bone marrow suppression and immunosuppression, as well as neurological and other disorders, and leads to a decrease in life expectancy. However, with appropriate care, many FeLV-infected cats can also live several years with a good quality of life. PRACTICAL RELEVANCE A decision regarding treatment or euthanasia should never be based solely on the presence or absence of a retrovirus infection. Antiviral chemotherapy is of increasing interest in veterinary medicine, but is still not used commonly. EVIDENCE BASE This article reviews the current literature on antiviral chemotherapy in retrovirus-infected cats, focusing on drugs that are currently available on the market and, thus, could potentially be used in cats.
Collapse
Affiliation(s)
- Katrin Hartmann
- Medizinische Kleintierklinik, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, 80539 Munich, Germany
| |
Collapse
|
13
|
Taffin E, Paepe D, Goris N, Auwerx J, Debille M, Neyts J, Van de Maele I, Daminet S. Antiviral treatment of feline immunodeficiency virus-infected cats with (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine. J Feline Med Surg 2015; 17:79-86. [PMID: 24782459 PMCID: PMC10816418 DOI: 10.1177/1098612x14532089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Feline immunodeficiency virus (FIV), the causative agent of an acquired immunodeficiency syndrome in cats (feline AIDS), is a ubiquitous health threat to the domestic and feral cat population, also triggering disease in wild animals. No registered antiviral compounds are currently available to treat FIV-infected cats. Several human antiviral drugs have been used experimentally in cats, but not without the development of serious adverse effects. Here we report on the treatment of six naturally FIV-infected cats, suffering from moderate to severe disease, with the antiretroviral compound (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine ([R]-PMPDAP), a close analogue of tenofovir, a widely prescribed anti-HIV drug in human medicine. An improvement in the average Karnofsky score (pretreatment 33.2 ± 9.4%, post-treatment 65±12.3%), some laboratory parameters (ie, serum amyloid A and gammaglobulins) and a decrease of FIV viral load in plasma were noted in most cats. The role of concurrent medication in ameliorating the Karnofsky score, as well as the possible development of haematological side effects, are discussed. Side effects, when noted, appeared mild and reversible upon cessation of treatment. Although strong conclusions cannot be drawn owing to the small number of patients and lack of a placebo-treated control group, the activity of (R)-PMPDAP, as observed here, warrants further investigation.
Collapse
Affiliation(s)
- Elien Taffin
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominique Paepe
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Mariella Debille
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Isabel Van de Maele
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Schwartz AM, McCrackin MA, Schinazi RF, Hill PB, Vahlenkamp TW, Tompkins MB, Hartmann K. Antiviral efficacy of nine nucleoside reverse transcriptase inhibitors against feline immunodeficiency virus in feline peripheral blood mononuclear cells. Am J Vet Res 2014; 75:273-81. [DOI: 10.2460/ajvr.75.3.273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Sykes JE, Papich MG. Antiviral and Immunomodulatory Drugs. CANINE AND FELINE INFECTIOUS DISEASES 2014. [PMCID: PMC7152038 DOI: 10.1016/b978-1-4377-0795-3.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
16
|
Abstract
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.
Collapse
|
17
|
Miller MM, Fogle JE. Administration of Fozivudine tidoxil as a single-agent therapeutic during acute feline immunodeficiency virus infection does not alter chronic infection. Viruses 2012; 4:954-62. [PMID: 22816034 PMCID: PMC3397356 DOI: 10.3390/v4060954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/19/2012] [Accepted: 06/05/2012] [Indexed: 11/24/2022] Open
Abstract
Initiating combination antiretroviral therapy (ART) during acute HIV infection has been correlated with decreased viral set point and improved lymphocyte function. However, the long term effects of single-agent therapy administered only during the acute stage of infection (interrupted treatment) remain largely uncharacterized. In this study we provide longitudinal data using the feline immunodeficiency virus (FIV) model for HIV infection. Infected cats were treated with a prophylactic single-agent therapy, Fozivudine tidoxil (FZD), for six weeks, starting one day before infection. The initial acute infection study, reported elsewhere, demonstrated a decrease in plasma- and cell-associated viremia at two weeks post-infection (PI) in FZD-treated cats as compared to placebo-treated cats. We hypothesized that this early alteration in plasma- and cell-associated viremia would alter the virus set point and ultimately affect the outcome of chronic infection. Here we provide data at one, two and three years PI for plasma- and/or cell-associated viremia, total lymphocyte counts and CD4:CD8 ratios. There was no difference in viremia or cell counts between treated and nontreated groups at all time points tested. Contrary to our hypothesis, these results suggest that treatment with a single agent anti-retroviral drug during acute lentivirus infection does not significantly alter viral load and immune function during the chronic, asymptomatic stage of infection.
Collapse
Affiliation(s)
- Michelle M Miller
- Immunology Program, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| | | |
Collapse
|
18
|
Evaluation of different antiretroviral drug protocols on naturally infected feline immunodeficiency virus (FIV) cats in the late phase of the asymptomatic stage of infection. Viruses 2012; 4:924-39. [PMID: 22816032 PMCID: PMC3397354 DOI: 10.3390/v4060924] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/14/2012] [Accepted: 05/24/2012] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to evaluate the efficacy of the antiretrovirals: Zidovudine (ZDV) alone; ZDV + Recombinant Human Interferon-α (rHuIFN-α); ZDV + Lamivudine (3TC) and ZDV + valproic acid (Valp) on naturally feline immunodeficiency virus (FIV)-infected cats, in the late phase of the asymptomatic stage of infection. The follow-up was performed over one year, through clinical evaluation and the determination of viral loads and CD4+/CD8+ ratios. Neurological signs were studied by visual and auditory evoked potentials (VEP, AEP) and the responses were abnormal in 80% of the FIV-infected cats. After one year, an improvement in VEP and AEP was observed in the ZDV + Valp group and a worsening in the group receiving ZDV + rHuIFN-α. The CD4+/CD8+ ratio showed a significant increase (both intra and inter-groups) only in ZDV and ZDV + 3TC, between their pre-treatment and one year values, as well as among the other groups. Viral load only showed a significant decrease in ZDV and ZDV + 3TC groups, when comparing the values at one year of treatment vs. pre-treatment values and when the different groups were compared. In addition, the viral load decrease was significantly more pronounced in the ZDV + 3TC vs. ZDV group. We conclude that ZDV and ZDV + 3TC produce significant reductions in viral load and stimulate a recovery of the CD4+/CD8+ ratio, compared with the other protocols. It is clear that the addition of 3TC resulted in a greater reduction in viral load than use of ZDV as a single drug. Therefore, the combination ZDV + 3TC could be more effective than the sole use of ZDV.
Collapse
|
19
|
Mohammadi H, Bienzle D. Pharmacological inhibition of feline immunodeficiency virus (FIV). Viruses 2012; 4:708-24. [PMID: 22754645 PMCID: PMC3386625 DOI: 10.3390/v4050708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/10/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats.
Collapse
Affiliation(s)
- Hakimeh Mohammadi
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
20
|
Hartmann K, Stengel C, Klein D, Egberink H, Balzarini J. Efficacy and adverse effects of the antiviral compound plerixafor in feline immunodeficiency virus-infected cats. J Vet Intern Med 2012; 26:483-90. [PMID: 22551322 DOI: 10.1111/j.1939-1676.2012.00904.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/04/2012] [Accepted: 01/27/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bicyclam derivatives inhibit feline immunodeficiency virus (FIV) replication through selective blockage of chemokine receptor CXCR4. HYPOTHESIS/OBJECTIVES CXCR4 antagonist plerixafor (AMD3100, 1,1'-bis-1,4,8,11-tetraazacyclotetradekan) alone or combination with adefovir (PMEA, 9-(2-phosphonylmethoxyethyl)adenine) safe and effective for treating FIV-infected cats. ANIMALS Forty naturally FIV-infected, privately owned cats. MATERIALS AND METHODS Prospective, placebo-controlled, double-blind clinical trial. Cats randomly classified into 4 treatment groups. Received AMD3100, PMEA, AMD3100 in combination with PMEA, or placebo for 6 weeks. Clinical and laboratory parameters, including CD4(+) and CD8(+) cell counts, FIV proviral and viral load measured by quantitative polymerase chain reaction (qPCR) evaluated. Additionally, FIV isolates from cats treated with AMD3100 tested for drug resistance. RESULTS FIV-infected cats treated with AMD3100 caused significant decrease in proviral load compared to placebo group (2.3 ± 3.8% to 1.9 ± 3.1%, of blood lymphocytes P < .05), but did not lead to improvement of clinical or immunological variables; it caused a decrease in serum magnesium concentration without clinical signs. No development of resistance of FIV isolates to AMD3100 found during treatment period. PMEA administration improved stomatitis (stomatitis score [degree 1 - 100] PMEA group: 23 ± 19 to 11 ± 10, P < .001; AMD3100 + PMEA group: 12 ± 17 to 3 ± 5, P < .05), but did not decrease proviral or viral load and caused anemia (RBC [× 10(6) /μL] PMEA group: 9.07 ± 1.60 to 6.22 ± 2.16, P < .05; AMD3100 ± PMEA group: 8.80 ± 1.23 to 5.84 ± 1.58, P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE Administration of CXCR4 antagonists, as AMD3100, can induce reduction of proviral load and may represent viable treatment of FIV-infected cats. Combination treatment with PMEA not recommended.
Collapse
Affiliation(s)
- K Hartmann
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
21
|
Infectious Diseases. THE CAT 2012. [PMCID: PMC7161403 DOI: 10.1016/b978-1-4377-0660-4.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Fogle JE, Tompkins WA, Campbell B, Sumner D, Tompkins MB. Fozivudine tidoxil as single-agent therapy decreases plasma and cell-associated viremia during acute feline immunodeficiency virus infection. J Vet Intern Med 2011; 25:413-8. [PMID: 21457319 DOI: 10.1111/j.1939-1676.2011.0699.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) is a lentivirus that infects domestic and wild felidae and the course of disease is similar to that of human immunodeficiency virus infection. The thymidine nucleoside analog fozivudine (FZD) tidoxil is a lipid-zidovudine (ZDV) conjugate and member of the family of nucleoside reverse transcriptase (RT) inhibitors (NRTIs). HYPOTHESIS FZD administration to cats during acute FIV infection produces antiviral activity with fewer adverse effects than its parent compound ZDV (AZT). ANIMALS Male, neutered cats approximately 7 months of age (n = 12). METHODS FZD (45 mg/kg q12h, n = 6) or placebo (n = 6) was administered PO in a nonblinded trial for 6 weeks to cats infected with the NCSU(1) isolate of FIV. Peripheral blood was collected preinfection and at 2, 4, and 6 weeks postinfection for CBC, evaluation of CD4(+) and CD8(+) cell counts by flow cytometry, and quantification of plasma and cell-associated viremia by real time RT-PCR. RESULTS Treatment of cats with FZD during the acute stage of FIV infection decreased plasma and cell-associated viremia during the first 2 weeks of infection, but was not protective against FIV, as all cats were infected by 6 weeks. CONCLUSIONS At the dosage used in this study, treatment with FZD results in a short-term decrease in viral load with no adverse effects. Further investigation of FZD is warranted to assess pharmacokinetics, optimal dosage, and to directly compare the antiviral activity of FZD to ZDV in naturally infected cats.
Collapse
Affiliation(s)
- J E Fogle
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | | | | | | | | |
Collapse
|
23
|
Van Rompay KKA. Evaluation of antiretrovirals in animal models of HIV infection. Antiviral Res 2009; 85:159-75. [PMID: 19622373 DOI: 10.1016/j.antiviral.2009.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
Abstract
Animal models of HIV infection have played an important role in the development of antiretroviral drugs. Although each animal model has its limitations and never completely mimics HIV infection of humans, a carefully designed study allows experimental approaches that are not feasible in humans, but that can help to better understand disease pathogenesis and to provide proof-of-concept of novel intervention strategies. While rodent and feline models are useful for initial screening, further testing is best done in non-human primate models, such as simian immunodeficiency virus (SIV) infection of macaques, because they share more similarities with HIV infection of humans. In the early years of the HIV pandemic, non-human primate models played a relatively minor role in the antiretroviral drug development process. Since then, a better understanding of the disease and the development of better drugs and assays to monitor antiviral efficacy have increased the usefulness of the animal models. In particular, non-human primate models have provided proof-of-concept for (i) the benefits of chemoprophylaxis and early treatment, (ii) the preclinical efficacy of novel drugs such as tenofovir, (iii) the virulence and clinical significance of drug-resistant viral mutants, and (iv) the role of antiviral immune responses during drug therapy. Ongoing comparison of results obtained in animal models with those observed in human studies will further validate and improve these animal models so they can continue to help advance our scientific knowledge and to guide clinical trials. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Garré B, Gryspeerdt A, Croubels S, De Backer P, Nauwynck H. Evaluation of orally administered valacyclovir in experimentally EHV1-infected ponies. Vet Microbiol 2009; 135:214-21. [DOI: 10.1016/j.vetmic.2008.09.062] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/01/2008] [Accepted: 09/15/2008] [Indexed: 11/24/2022]
|
25
|
Baba K, Goto-Koshino Y, Mizukoshi F, Setoguchi-Mukai A, Fujino Y, Ohno K, Tsujimoto H. Inhibition of the replication of feline immunodeficiency virus by lentiviral vector-mediated RNA interference in feline cell lines. J Vet Med Sci 2008; 70:777-83. [PMID: 18772551 DOI: 10.1292/jvms.70.777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA interference (RNAi) is a sequence-specific RNA degradation process. To inhibit feline immunodeficiency virus (FIV) replication by RNAi, we generated a lentiviral vector expressing a short hairpin RNA (shRNA) that targeted the gag gene of FIV (shGag). shGag transfer significantly inhibited viral replication in cell lines that were chronically infected with FIV, i.e., the 3201/UK8 low, 3201/UK8 high, FL4, and CRFK/FIV cell lines. Moreover, 3201 cells were transduced with the lentiviral vectors and then inoculated with FIV. Although the amount of FIV proviral DNA in shGag-transduced cells was similar to that in the cells transduced with unrelated shRNA or mock-transduced cells, the amount of reverse transcriptase (RT) activity was significantly reduced in the culture supernatant of shGag-expressing cells from 15 to 27 days after inoculation. Thirty days after inoculation, no significant difference was observed in the RT activities but virus with a mutation in the target region of shGag was detected in approximately 21% of the replicated viruses. Therefore, abolishment of the silencing effect of shGag may be due to reasons other than the emergence of escape mutants. These results are useful for developing an RNAi-based gene therapy strategy for controlling FIV infection.
Collapse
Affiliation(s)
- Kenji Baba
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Phylogenetic and genetic analysis of feline immunodeficiency virus gag, pol, and env genes from domestic cats undergoing nucleoside reverse transcriptase inhibitor treatment or treatment-naïve cats in Rio de Janeiro, Brazil. J Virol 2008; 82:7863-74. [PMID: 18550661 DOI: 10.1128/jvi.00310-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is the Lentivirus responsible for an immunodeficiency-like disease in domestic cats (Felis catus). FIV is divided into five phylogenetic subtypes (A, B, C, D, and E), based on genetic diversity. Knowledge of the geographical distribution of subtypes is relevant for understanding different disease progressions and for vaccine development. In this study, viral sequences of 26 infected cats from Rio de Janeiro, 8 undergoing treatment with zidovudine (AZT) for at least 5 years, were successfully amplified from blood specimens. gag capsid (CA), pol reverse transcriptase (RT), and env gp120 (V3-V4) regions were analyzed to determine subtypes and to evaluate potential mutations related to antiretroviral drug resistance among treated cats. Subtyping based on phylogenetic analysis was performed by the neighbor-joining and maximum likelihood methods. All of the sequences clustered with subtype B in the three regions, exhibiting low genetic variability. Additionally, we found evidence that the same virus is circulating in animals in close contact. The analysis of FIV RT sequences identified two new putative mutations related to drug resistance located in the RT "finger" domain, which has 60% identity to human immunodeficiency virus (HIV) sequence. Amino acid change K-->R at codons 64 and 69 was found in 25% and 37.5% of the treated animals, respectively. These signatures were comparable to K65R and K70R thymidine-associated mutations found in the HIV-1 HXB2 counterpart. This finding strongly suggests a position correlation between the mutations found in FIV and the K65R and K70R substitutions from drug-resistant HIV-1 strains.
Collapse
|
27
|
Kolenda-Roberts HM, Kuhnt LA, Jennings RN, Mergia A, Gengozian N, Johnson CM. Immunopathogenesis of feline immunodeficiency virus infection in the fetal and neonatal cat. FRONT BIOSCI-LANDMRK 2007; 12:3668-82. [PMID: 17485330 PMCID: PMC2278015 DOI: 10.2741/2343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The global incidence of pediatric HIV infection is estimated at 2.3 million children, most acquiring the infection from their mothers in utero, peripartum, or postpartum. Pediatric HIV infection typically causes a rapidly progressive disease when compared with adult infection, due in part to the profound susceptibility of the neonatal thymus to productive infection or degenerative changes. Failed production of naive T-lymphocytes further limits the success of antiviral therapy to restore immunologic function. In this review, we explore the use of feline immunodeficiency virus (FIV) infection of domestic cats as an animal model for pediatric HIV infection. Cats infected with FIV represent the smallest host of a naturally occurring lentivirus, and the immunodeficiency syndrome elicited by FIV infection is similar to that of HIV-AIDS. The feline-FIV model uniquely reproduces several key aspects of immunosuppressive lentivirus infection of the thymus, allowing investigators to define viral determinants of pathogenicity, influence of host age on disease outcome, and therapeutic strategies to restore thymus function.
Collapse
Affiliation(s)
- Holly M. Kolenda-Roberts
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Leah A. Kuhnt
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Ryan N. Jennings
- Veterinary Medical Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Ayalew Mergia
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Nazareth Gengozian
- Department of Medicine, Graduate School of Medicine, University of Tennessee, and the Thompson Cancer Survival Center, Knoxville, TN
| | - Calvin M. Johnson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
28
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
29
|
Feline immunodeficiency virus neuropathogenesis: from cats to calcium. J Neuroimmune Pharmacol 2006; 2:154-70. [PMID: 18040840 DOI: 10.1007/s11481-006-9045-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
Invasion of human immunodeficiency virus (HIV) into the central and peripheral nervous system produces a wide range of neurological symptoms, which continue to persist even with adequate therapeutic suppression of the systemic viremia. The development of therapies designed to prevent the neurological complications of HIV require a detailed understanding of the mechanisms of virus penetration into the nervous system, infection, and subsequent neuropathogenesis. These processes, however, are difficult to study in humans. The identification of animal lentiviruses similar to HIV has provided useful models of HIV infection that have greatly facilitated these efforts. This review summarizes contributions made from in vitro and in vivo studies on the infectious and pathological interactions of feline immunodeficiency virus (FIV) with the nervous system. In vivo studies on FIV have provided insights into the natural progression of CNS disease as well as the contribution of various risk factors. In vitro studies have contributed to our understanding of immune cell trafficking, CNS infection and neuropathogenesis. Together, these studies have made unique contributions to our understanding of (1) lentiviral interactions at the blood-cerebrospinal fluid (CSF) barrier within the choroid plexus, (2) early FIV invasion and pathogenesis in the brain, and (3) lentiviral effects on intracellular calcium deregulation and neuronal dysfunction. The ability to combine in vitro and in vivo studies on FIV offers enormous potential to explore neuropathogenic mechanisms and generate information necessary for the development of effective therapeutic interventions.
Collapse
|
30
|
Baba K, Mizukoshi F, Goto-Koshino Y, Setoguchi-Mukai A, Fujino Y, Ohno K, Tsujimoto H. Application of RNA interference for inhibiting the replication of feline immunodeficiency virus in chronically infected cell lines. Vet Microbiol 2006; 120:207-16. [PMID: 17125939 PMCID: PMC7117143 DOI: 10.1016/j.vetmic.2006.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 10/23/2006] [Accepted: 10/25/2006] [Indexed: 11/24/2022]
Abstract
RNA interference (RNAi) is a process in which double-stranded RNA induces the post-transcriptional sequence-specific degradation of homologous messenger RNA. The present study was carried out to apply the RNAi technology to inhibit the replication of feline immunodeficiency virus (FIV). Four small interfering RNAs (siRNAs) homologous to the FIV gag gene were synthesized and transfected into a feline fibroblastic cell line chronically infected with FIV (CRFK/FIV). These synthetic siRNAs efficiently inhibited the replication of FIV. Next, we examined the effect of retroviral vector-mediated transfer of FIV-specific short hairpin RNA (shRNA) on the replication of FIV in a feline T-cell line chronically infected with FIV (FL4). The retroviral vector-mediated transfer of FIV-specific shRNA was shown to markedly inhibit the replication of FIV in the FL4 cells. These results provide useful information for the development of RNAi-based gene therapy strategy to control FIV infection.
Collapse
Affiliation(s)
- Kenji Baba
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Pan G, Kilby M, McDonald JM. Modulation of osteoclastogenesis induced by nucleoside reverse transcriptase inhibitors. AIDS Res Hum Retroviruses 2006; 22:1131-41. [PMID: 17147500 PMCID: PMC1994207 DOI: 10.1089/aid.2006.22.1131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Osteopenia is a common and debilitating side-effect of HAART, yet little is known concerning the effects of HAART on bone metabolism. We reported previously that zidovudine (AZT) stimulates osteoclastogenesis in vitro and causes osteopenia in mice. Here, we confirmed that the AZT-induced osteoclastogenesis is dependent on RANKL in that osteoclastogenesis is blocked by osteoprotegestin. Alendronate, which is used for the treatment of osteopenia and osteoporosis, failed to inhibit AZT-induced osteoclastogenesis in vitro. Osteoclastogenesis in vitro was not affected by tumor necrosis factor-alpha. Two other NRTI drugs, ddl and 3TC, also induced osteoclastogenesis in vitro and induced osteopenia in mice. The osteopenia was associated with an elevation of parameters of osteoclasts, but not with osteoblasts. Combinations of the NRTIs did not result in additive or synergistic effects in vitro or in vivo. Finally, AZT induced osteoclastogenesis of human osteoclast precursors in a RANKL-dependent manner. This in vitro osteoclastogenesis assay using human peripheral blood mononuclear cells could be useful in evaluating bone turnover and the risk of developing osteopenia in AIDS patients on HAART.
Collapse
Affiliation(s)
- George Pan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
32
|
Phillips K, Arai M, Tanabe T, Raskin R, Volz M, Uhl E, Yamamoto J. FIV-infected cats respond to short-term rHuG-CSF treatment which results in anti-G-CSF neutralizing antibody production that inactivates drug activity. Vet Immunol Immunopathol 2005; 108:357-71. [PMID: 16098604 PMCID: PMC7112681 DOI: 10.1016/j.vetimm.2005.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 05/18/2005] [Accepted: 06/21/2005] [Indexed: 10/28/2022]
Abstract
The hematological and virological effects of recombinant human granulocyte colony-stimulating factor (rHuG-CSF) were evaluated in feline immunodeficiency virus (FIV)-infected cats. Six age-matched, FIV-infected cats used in this cross-over study were injected subcutaneously with 5 microg/kg of rHuG-CSF daily for 3 weeks, while six control cats received a placebo. Five of six rHuG-CSF-treated cats had significant increases in neutrophil counts that peaked on days 11-21 of treatment. All rHuG-CSF-treated cats exhibited an increase in myeloid:erythroid ratios of the bone marrow cells without significant changes in lymphocyte, CD4 counts, CD4/CD8 ratios, RBC counts, FIV antibody titers, and FIV loads in peripheral blood, and without clinical and hematological toxicities. Five of six rHuG-CSF-treated cats developed antibodies to rHuG-CSF by 14-21 days of treatment, which correlated with decreasing neutrophil counts and increasing neutralizing antibodies to rHuG-CSF. Three cats re-treated with rHuG-CSF rapidly developed neutralizing antibodies to rHuG-CSF, while one cat also developed neutralizing antibodies to recombinant feline G-CSF (rFeG-CSF). Overall, rHuG-CSF treatment increased neutrophil counts in FIV-infected cats without affecting the infection status of cats. However, long-term use of rHuG-CSF is not recommended in cats because of the neutralizing antibody production to rHuG-CSF that affects the drug activity. In addition, a preliminary finding suggests that repeated treatment cycle can also induce cross-neutralizing antibodies to rFeG-CSF, which may potentially affect the homeostasis of endogenous FeG-CSF.
Collapse
Affiliation(s)
- K. Phillips
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - M. Arai
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - T. Tanabe
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - R. Raskin
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - M. Volz
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - E.W. Uhl
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - J.K. Yamamoto
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
- Corresponding author. Tel.: +1 352 392 4700x3945; fax: +1 352 392 7128.
| |
Collapse
|
33
|
Operario DJ, Reynolds HM, Kim B. Comparison of DNA polymerase activities between recombinant feline immunodeficiency and leukemia virus reverse transcriptases. Virology 2005; 335:106-21. [PMID: 15823610 DOI: 10.1016/j.virol.2005.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 12/22/2004] [Accepted: 02/11/2005] [Indexed: 11/29/2022]
Abstract
In this study, we present enzymatic differences found between recombinant RTs derived from feline leukemia virus and feline immunodeficiency virus. Firstly, FIV RT showed low steady state K(m) values for dNTPs compared to FeLV RT. Consistent with this, FIV RT synthesized DNA more efficiently than FeLV RT at low dNTP concentrations. We observed similar concentration-dependent activity differences between other lentiviral (HIV-1 and SIV) and non-lentiviral (MuLV and AMV) RTs. Second, FeLV RT showed less efficient misincorporation with biased dNTP pools and mismatch primer extension capabilities, compared to FIV RT. In M13mp2 lacZalpha forward mutation assays, FeLV RT displayed approximately 11-fold higher fidelity than FIV RT. Finally, FeLV RT was less sensitive to 3TCTP and ddATP than FIV RT. This study represents the comprehensive enzymatic characterization of RTs from a lentivirus and a non-lentivirus retrovirus from the same host species. The data presented here support enzymatic divergences seen among retroviral RTs.
Collapse
Affiliation(s)
- Darwin J Operario
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA
| | | | | |
Collapse
|
34
|
Zhang W, Mauldin JK, Schmiedt CW, Brockus CW, Boudinot FD, McCrackin Stevenson MA. Pharmacokinetics of zidovudine in cats. Am J Vet Res 2004; 65:835-40. [PMID: 15198225 DOI: 10.2460/ajvr.2004.65.835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the pharmacokinetics of zidovudine (AZT) in cats. ANIMALS 6 sexually intact 9-month-old barrier-reared domestic shorthair cats. PROCEDURE Cats were randomly alloted into 3 groups, and zidovudine (25 mg/kg) was administered i.v., intragastrically (i.g.), and p.o. in a 3-way crossover study design with 2-week washout periods between experiments. Plasma samples were collected for 12 hours after drug administration, and zidovudine concentrations were determined by high-performance liquid chromatography. Maximum plasma concentrations (Cmax), time to reach Cmax (Tmax), and bioavailability were compared between i.g. and p.o. routes. Area under the curve (AUC) and terminal phase half-life (t(1/2)) among the 3 administration routes were also compared. RESULTS Plasma concentrations of zidovudine declined rapidly with t(1/2) of 1.4 +/- 0.19 hours, 1.4 +/- 0.16 hours, and 1.5 +/- 0.28 hours after i.v., i.g., and p.o. administration, respectively. Total body clearance and steady-state volume of distribution were 0.41 +/- 0.10 L/h/kg and 0.82 +/- 0.15 L/kg, respectively. Mean Tmax for i.g. administration (0.22 hours) was significantly shorter than Tmax for p.o. administration (0.67 hours). The AUC after i.v. and p.o. administration was 64.7 +/- 16.6 mg x h/L and 60.5 +/- 17.0 mg x h/L, respectively, whereas AUC for the i.g. route was significantly less at 42.5 +/- 9.41 mg x h/L. Zidovudine was well absorbed after i.g. and p.o. administration with bioavailability values of 70 +/- 24% and 95 +/- 23%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Cats had slower clearance of zidovudine, compared with other species. Plasma concentrations of zidovudine were maintained above the minimum effective concentration for inhibiting FIV replication by 50% (0.07 microM [0.019 microg/mL] for wild-type FIV clinical isolate) for at least 12 hours after i.v., i.g., or p.o. administration.
Collapse
Affiliation(s)
- Weijiang Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-7390, USA
| | | | | | | | | | | |
Collapse
|
35
|
Zhang W, Mauldin JK, Schmiedt CW, Brockus CW, Boudinot FD, McCrackin SMA. Pharmacokinetics of lamivudine in cats. Am J Vet Res 2004; 65:841-6. [PMID: 15198226 DOI: 10.2460/ajvr.2004.65.841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Objective—To characterize the pharmacokinetics of
lamivudine (3TC) in cats.
Animals—6 sexually intact 9-month-old barrier-reared
domestic shorthair cats.
Procedure—Cats were randomly alloted into 3
groups, and lamivudine (25 mg/kg) was administered
IV, intragastrically (IG), and PO in a 3-way crossover
study design with 2-week washout periods between
experiments. Plasma samples were collected for 12
hours after drug administration, and lamivudine concentrations
were determined by high-performance liquid
chromatography. Maximum plasma concentrations
(Cmax), time to reach Cmax (Tmax), and bioavailability
were compared between IG and PO routes.
Area under the curve (AUC) and terminal phase halflife
(t½) among the 3 administration routes were also
compared.
Results—Plasma concentrations of lamivudine
declined rapidly with a t½ of 1.9 ± 0.21 hours, 2.6 ±
0.66 hours, and 2.7 ± 1.50 hours after IV, IG, and PO
administration, respectively. Total body clearance and
steady-state volume of distribution were 0.22 ± 0.09
L/h/kg and 0.60 ± 0.22 L/kg, respectively. Mean Tmax
for IG administration (0.5 hours) was significantly
shorter than Tmax for PO administration (1.1 hours).
The AUC after IV, IG, and PO administration was 130
± 55.2 mg·h/L, 115 ± 97.5 mg·h/L, and 106 ± 94.9
mg·h/L, respectively. Lamivudine was well absorbed
after IG and PO administration with bioavailability values
of 88 ± 45% and 80 ± 52%, respectively.
Conclusions and Clinical Relevance—Cats had a
shorter t½ but slower total clearance of lamivudine,
compared with humans. Plasma concentrations of
lamivudine were maintained above the minimum
effective concentration for inhibiting FIV replication by
50% (0.14µM [0.032 µg/mL] for wild-type FIV clinical
isolate) for at least 12 hours after IV, IG, or PO administration.
(Am J Vet Res 2004;65:841–846)
Collapse
Affiliation(s)
- Weijiang Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-7390, USA
| | | | | | | | | | | |
Collapse
|
36
|
D'Cruz OJ, Waurzyniak B, Uckun FM. Antiretroviral spermicide WHI-07 prevents vaginal and rectal transmission of feline immunodeficiency virus in domestic cats. Antimicrob Agents Chemother 2004; 48:1082-8. [PMID: 15047505 PMCID: PMC375320 DOI: 10.1128/aac.48.4.1082-1088.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WHI-07 [5-bromo-6-methoxy-5,6-dihydro-3'-azidothymidine-5'-(p-bromophenyl)-methoxy alaninyl phosphate] is a novel dual-function aryl phosphate derivative of zidovudine with potent anti-human immunodeficiency virus (HIV) and spermicidal activities. WHI-07 was active against the feline immunodeficiency virus (FIV). This study evaluated whether topical application of WHI-07 as a single agent and in combination with an organometallic vanadium complex, vanadocene dithiocarbamate (VDDTC), via a nontoxic gel microemulsion can block vaginal as well as rectal transmission of feline AIDS (FAIDS) by chronically FIV-infected feline T cells in the natural host model. Genital transmission of FIV was monitored in recipient cats by the appearance of viral antibodies to FIV Gag proteins and by virus isolation of blood leukocytes as measured by FIV reverse transcriptase activity and FIV-specific PCR. Microbicidal activity was considered effective when the treated cats did not show evidence of FIV infection for up to 18 weeks postchallenge. An aggregate analysis of 46 specific-pathogen-free cats revealed that a single dose of the infected cell inoculum efficiently transmitted FIV infection when delivered into the vagina (100%) or rectum (66%). Pretreatment of the vagina or rectum with 2% WHI-07 alone or in combination with 0.25% VDDTC significantly (P = 0.004) protected cats from genital transmission by the highly infectious inoculum (7 million FIV(Bangston)-infected feline T cells). Collectively, using the vaginal and rectal transmucosal model for FAIDS, our studies demonstrated that WHI-07 either alone or in combination with a vanadocene has clinical potential for the development of a dual-function anti-HIV microbicide for sexually active women.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Drug Discovery Program, Parker Hughes Institute, St. Paul, Minnesota 55113, USA.
| | | | | |
Collapse
|
37
|
Uckun FM, Chen CL, Samuel P, Pendergrass S, Venkatachalam TK, Waurzyniak B, Qazi S. In vivo antiretroviral activity of stampidine in chronically feline immunodeficiency virus-infected cats. Antimicrob Agents Chemother 2003; 47:1233-40. [PMID: 12654652 PMCID: PMC152500 DOI: 10.1128/aac.47.4.1233-1240.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the antiretroviral activity of the experimental nucleoside reverse transcriptase inhibitor (NRTI) compound stampidine in cats chronically infected with feline immunodeficiency virus (FIV). Notably, a single oral bolus dose of 50 or 100 mg of stampidine per kg resulted in a transient >/=1-log decrease in the FIV load of circulating peripheral blood mononuclear cells in five of six FIV-infected cats and no side effects. A 4-week stampidine treatment course with twice-daily administration of hard gelatin capsules containing 25 to 100 mg of stampidine per kg was also very well tolerated by cats at cumulative dose levels as high as 8.4 g/kg and exhibited a dose-dependent antiretroviral effect. One of three cats treated at the 25-mg/kg dose level, three of three cats treated at the 50-mg/kg dose level, and three of three cats treated at the 100-mg/kg dose level (but none of three control cats treated with placebo pills) showed a therapeutic response, as evidenced by a >/=1-log reduction in the FIV load in peripheral blood mononuclear cells within 2 weeks. The previously documented in vitro and in vivo antiretroviral activity of stampidine against primary clinical human immunodeficiency virus type 1 isolates with genotypic and/or phenotypic NRTI resistance, together with its favorable animal toxicity profile, pharmacokinetics, and in vivo antiretroviral activity in FIV-infected cats, warrants further development of this promising new NRTI compound.
Collapse
Affiliation(s)
- Fatih M Uckun
- Drug Discovery Program, Parker Hughes Cancer Center, St. Paul, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|