1
|
Haghkhah M, Hemati Z, Derakhshandeh A, Namazi F, Chaubey KK, Singh SV. Immuno-reactivity evaluation of Mce-truncated subunit candidate vaccine against Mycobacterium avium subspecies paratuberculosis challenge in the goat models. BMC Vet Res 2023; 19:157. [PMID: 37710242 PMCID: PMC10500891 DOI: 10.1186/s12917-023-03715-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Detection of an appropriate antigen with high immunogenicity can be a big step in the production of an effective vaccine for control of Johne's disease (JD). The aim of this study was to evaluate the efficacy of Mce-truncated protein as a subunit vaccine candidate for the control of JD in experimentally challenged goats. MATERIALS AND METHODS Six healthy goat kids were immunized with Mce-truncated protein, and two goats were kept as controls. All kids were twice challenged orally with live Mycobacterium avium subspecies paratuberculosis(MAP) strain and half the goats from both the categories were sacrificed at 7 and 10 months after start of challenge study. Culture of MAP was performed from all the necropsied tissues to determine the true JD infection status. RESULTS Mce-truncated protein only reacted with pooled vaccinated goat sera in western-blot. A significant increase in humoral immune response against Mce protein was also observed in vaccinated goats. Compared to the control group, vaccinated goats gained higher body weights and none of them shed MAP or showed histopatological lesions or colonization of MAP in their necropsy tissues. CONCLUSIONS The new Mce protein based vaccine provided significant immunity in goats as they could meet the challenge with live MAP bacilli. Although the vaccine used in this study showed the high potential as a new effective vaccine for the control of JD, further validation study is still required to successfully implement the vaccine for JD control program.
Collapse
Affiliation(s)
- Masoud Haghkhah
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Zahra Hemati
- Department of Pathobiology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran.
| | - Fatemeh Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Ajhai, Mathura, Uttar Pradesh, India
| |
Collapse
|
2
|
Shao M, Cui N, Tang Y, Chen F, Cui Y, Dang G, Liu S. A candidate subunit vaccine induces protective immunity against Mycobacterium avium subspecies paratuberculosis in mice. NPJ Vaccines 2023; 8:72. [PMID: 37210376 DOI: 10.1038/s41541-023-00675-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes paratuberculosis (PTB), which is a granulomatous enteritis in ruminants that threatens the dairy industry's healthy development and public health safety worldwide. Because the commercial inactivated vaccines are not completely protective and interfere with bovine tuberculosis diagnostics, we tested four fusion proteins, namely 66NC, 66CN, 90NC, and 90CN, which were constructed with MAP3527, Ag85B, and Hsp70 of MAP in different tandem combinations. Notably, 66NC, which encodes a 66 kDa fusion protein that combines in linear order MAP3527N40-232, Ag85B41-330, and MAP3527C231-361, induced a powerful and specific IFN-γ response. Immunization of C57BL/6 mice with the 66NC fusion protein formulated in Montanide ISA 61 VG adjuvant generated robust Th1, Th2, and Th17 type immune responses and strong antibody responses. The 66NC vaccine protected C57BL/6 mice against virulent MAP K-10 infection. This resulted in a reduction of bacterial load and improvement of pathological damage in the liver and intestine, in addition to a reduction of body weight loss; significantly better protection than the reported 74 F vaccine was also induced. Furthermore, vaccine efficacy correlated with the levels of IFN-γ-, TNF-α-, and IL-17A-secreting antigen-specific CD4+ and CD8+ T lymphocytes as well as with serum IFN-γ and TNF-α levels after vaccination. These results demonstrate that recombinant protein 66NC is an efficient candidate for further development into a protective vaccine in terms of inducing specific protection against MAP.
Collapse
Affiliation(s)
- Mingzhu Shao
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Ning Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Yangyang Tang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Fanruo Chen
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China.
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China.
| |
Collapse
|
3
|
Cell-mediated and humoral immune responses after immunization of calves with a recombinant multiantigenic Mycobacterium avium subsp. paratuberculosis subunit vaccine at different ages. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:551-8. [PMID: 23389934 DOI: 10.1128/cvi.05574-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neonates and juvenile ruminants are very susceptible to paratuberculosis infection. This is likely due to a high degree of exposure from their dams and an immature immune system. To test the influence of age on vaccine-induced responses, a cocktail of recombinant Mycobacterium avium subsp. paratuberculosis proteins (MAP0217, MAP1508, MAP3701c, MAP3783, and MAP1609c/Ag85B) was formulated in a cationic liposome adjuvant (CAF01) and used to vaccinate animals of different ages. Male jersey calves were divided into three groups that were vaccinated at 2, 8, or 16 weeks of age and boosted twice at weeks 4 and 12 relative to the first vaccination. Vaccine-induced immune responses, the gamma interferon (IFN-γ) cytokine secretion and antibody responses, were followed for 20 weeks. In general, the specific responses were significantly elevated in all three vaccination groups after the first booster vaccination with no or only a minor effect from the second booster. However, significant differences were observed in the immunogenicity levels of the different proteins, and it appears that the older age group produced a more consistent IFN-γ response. In contrast, the humoral immune response is seemingly independent of vaccination age as we found no difference in the IgG1 responses when we compared the three vaccination groups. Combined, our results suggest that an appropriate age of vaccination should be considered in vaccination protocols and that there is a possible interference of vaccine-induced immune responses with weaning (week 8).
Collapse
|
4
|
Mikkelsen H, Aagaard C, Nielsen SS, Jungersen G. Review of Mycobacterium avium subsp. paratuberculosis antigen candidates with diagnostic potential. Vet Microbiol 2011; 152:1-20. [DOI: 10.1016/j.vetmic.2011.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/02/2011] [Accepted: 03/10/2011] [Indexed: 11/25/2022]
|
5
|
Gioffré A, Echeverría-Valencia G, Arese A, Morsella C, Garbaccio S, Delgado F, Zumárraga M, Paolicchi F, Cataldi A, Romano M. Characterization of the Apa antigen from M. avium subsp. paratuberculosis: A conserved Mycobacterium antigen that elicits a strong humoral response in cattle. Vet Immunol Immunopathol 2009; 132:199-208. [DOI: 10.1016/j.vetimm.2009.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 02/17/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
|
6
|
Bovine viral diarrhea virus infection affects the expression of proteins related to professional antigen presentation in bovine monocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:14-22. [PMID: 18930168 DOI: 10.1016/j.bbapap.2008.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/22/2022]
Abstract
The complete annotation of the cattle genome allows reliable protein identification by tandem mass spectrometry (MS(2)) and greatly facilitates proteomics. Previously, we reported that differential detergent fractionation (DDF) analysis of bovine monocytes reveals proteins related to antigen pattern recognition, uptake and presentation to immunocompetent lymphocytes. Here we have identified 47 bovine proteins, involved in immune function of professional antigen-presenting cells (APC) that have been significantly altered after cytopathic (cp) Bovine Viral Diarrhea Virus (BVDV) infection. In particular, proteins related to immune responses such as cell adhesion, apoptosis, antigen uptake, processing and presentation, acute phase response proteins, MHC class I- and II-related proteins and other molecules involved in immune function of professional antigen presentation have been significantly altered after BVDV infection. Our data suggest that cp BVDV, while promoting monocyte activation and differentiation, is inhibiting their antigen presentation to immunocompetent T cells, thus resulting in the uncontrolled inflammation mediated by activated macrophages, enhanced viral spread, and impaired anti-viral defense mechanisms in the host.
Collapse
|
7
|
Kathaperumal K, Park SU, McDonough S, Stehman S, Akey B, Huntley J, Wong S, Chang CF, Chang YF. Vaccination with recombinant Mycobacterium avium subsp. paratuberculosis proteins induces differential immune responses and protects calves against infection by oral challenge. Vaccine 2008; 26:1652-63. [PMID: 18304707 DOI: 10.1016/j.vaccine.2008.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 01/03/2008] [Accepted: 01/14/2008] [Indexed: 11/19/2022]
Abstract
We previously reported the in vitro cellular immune responses to recombinant antigens (rAgs) of Mycobacterium avium subsp. paratuberculosis (MAP). Here we report the differential immune responses and protective efficacy of four rAgs of MAP (85A, 85B, 85C, and superoxide dismutase (SOD)) used with two adjuvants (monophosphoryl lipid A (MPLA) containing synthetic trehalose dicorynomycolate, cell wall skeleton (MPLA) and bovine IL-12), against MAP challenge in calves. Group I was administered the four rAgs with MPLA and IL-12. Group II was administered the four rAgs and MPLA. Group III received MPLA and IL-12, and Group IV MPLA. rAgs induced significant lymphoproliferative responses in vaccinated animals (Groups I and II). All the rAgs induced significant IFN-gamma production from 11 to 23 wk after primary vaccination (APV), except for SOD. Significant increases were noted in CD3(+), CD4(+), CD8(+), CD21(+), CD25(+), and gammadelta(+) cells against all four rAgs in vaccinated animals. rAg-specific expression of IL-2, IL-12p40, IFN-gamma and TNF-alpha was significantly higher in the two vaccinated groups. Culture results found 4/8 animals in Group I, 3/8 animals in Group II, and 3/4 animals in Groups III and IV were positive for MAP in one or more tissues. Among the seven positive animals in Groups I and II, all but one had had <10CFU. Isolation was confined to one tissue in these animals, except in one animal in which MAP was isolated from two tissues. In the control groups (III and IV), MAP was cultured from up to five different tissues with >250CFU. Preliminary data from this study indicates that all four rAgs induced a good Th1 response and conferred protection against MAP infection in calves.
Collapse
Affiliation(s)
- Kumanan Kathaperumal
- Animal Health Diagnostic Center, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen LH, Kathaperumal K, Huang CJ, McDonough SP, Stehman S, Akey B, Huntley J, Bannantine JP, Chang CF, Chang YF. Immune responses in mice to Mycobacterium avium subsp. paratuberculosis following vaccination with a novel 74F recombinant polyprotein. Vaccine 2008; 26:1253-62. [PMID: 18243427 DOI: 10.1016/j.vaccine.2007.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 12/09/2007] [Accepted: 12/13/2007] [Indexed: 10/22/2022]
Abstract
Johne's disease (JD) is a chronic infectious disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Here, we report the cloning and expression of a 74kDa recombinant polyprotein (Map74F) and its protective efficacy against MAP infection in mice. Map74F was generated by the sequential linkage of the ORFs of the approximately 17.6-kDa C-terminal fragment of Map3527 to the full-length ORF of Map1519, followed at the C-terminus with approximately 14.6-kDa N-terminal portion of Map3527. Mice immunized with Map74F had a significant IgG1 response but not IgG2a. In immunized animals, the IgG1/IgG2a ratio increased until 4 weeks after MAP challenge. The ratio decreased from 8 weeks indicating a shift to a Th1 response. Antigen specific IFN-gamma response, CD3+ and CD4+ T cells increased significantly in immunized mice. Following challenge, MAP burden was significantly lower in liver, spleen and mesenteric lymph nodes of immunized animals compared to control animals indicating protection against MAP infection. This was further evident by the improved liver and spleen pathology of the immunized animals, which had fewer granulomas and lower numbers of acid-fast bacilli. Results of this study indicated that immunization of mice with Map74F protected mice against MAP infection.
Collapse
Affiliation(s)
- Li-Hsuen Chen
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Henderson B, Allan E, Coates ARM. Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 2006; 74:3693-706. [PMID: 16790742 PMCID: PMC1489680 DOI: 10.1128/iai.01882-05] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X, United Kingdom.
| | | | | |
Collapse
|
10
|
Miyazawa K, Aso H, Honda M, Kido T, Minashima T, Kanaya T, Watanabe K, Ohwada S, Rose MT, Yamaguchi T. Identification of bovine dendritic cell phenotype from bovine peripheral blood. Res Vet Sci 2005; 81:40-5. [PMID: 16253299 DOI: 10.1016/j.rvsc.2005.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/08/2005] [Accepted: 09/01/2005] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells, which initiate primary immune responses and also play an important role in the generation of peripheral tolerance. There is no reliable method established for the isolation of bovine peripheral blood DCs, and furthermore, the phenotypes and the functions of bovine DCs are still not fully clear. In the present study, we have attempted to identify bovine peripheral blood DCs by negative-selection. In bovine peripheral blood mononuclear cells (PBMC), we have newly characterized the phenotype of DCs, which is CD11c+/CD172a+. These cells display features of myeloid type DCs. In the thymic medulla, CD11c+/CD172a+ cells were also present and CD1+/CD172a+ cells were additionally detected as a population of DCs. The data suggest that one of the bovine DCs phenotypes from PBMC is derived from myeloid lineages lacking a CD1 molecule, which then drift to several tissues, and that they then may express a CD1 molecule upon their functional differentiation.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, 981-8555 Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Langelaar MFM, Hope JC, Rutten VPMG, Noordhuizen JPTM, van Eden W, Koets AP. Mycobacterium avium ssp. paratuberculosis recombinant heat shock protein 70 interaction with different bovine antigen-presenting cells. Scand J Immunol 2005; 61:242-50. [PMID: 15787741 DOI: 10.1111/j.1365-3083.2005.01559.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract Heat shock proteins (Hsp) can deliver antigen into the major histocompatibility complex class I presentation pathway of antigen-presenting cells (APC), a process called cross priming, thus stimulating antigen-specific CD8+ T-cell reactions. Hsp were shown to elicit proinflammatory responses in APC. Both processes require interaction of Hsp with APC via specific receptors. This study describes the interaction of recombinant Hsp70 (rHsp70) of Mycobacterium avium subspecies paratuberculosis with bovine peripheral blood mononuclear cells that was restricted to CD14+ cells. Characterized monocyte-derived macrophages, monocyte-derived dendritic cells (DC) and BoMac, an immortalized bovine macrophage cell line, were used to investigate the interaction of rHsp70 with different bovine APC. Saturation of immature DC with high concentrations of rHsp70 is demonstrated, and it was found that interaction of rHsp70 with DC was related to the maturation stage of the DC. Involvement of CD91 as a cellular receptor for rHsp70 was demonstrated; however, competition studies with immature DC demonstrated that other receptors exist on bovine APC. These data suggest that rHsp70-based vaccines may be useful for the successful immunization of cattle.
Collapse
Affiliation(s)
- M F M Langelaar
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Detanico T, Rodrigues L, Sabritto AC, Keisermann M, Bauer ME, Zwickey H, Bonorino C. Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin Exp Immunol 2004; 135:336-42. [PMID: 14738465 PMCID: PMC1808950 DOI: 10.1111/j.1365-2249.2004.02351.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytokines are key modulators of the immune responses that take place in the inflamed synovium of arthritis patients. Consequently, substances that can reverse the inflammatory profile of the inflamed joint are potential tools for clinical management of the disease. Mycobacterial heat shock protein 70 (MTBHSP70) has been found to protect rats from experimentally induced arthritis through the induction of interleukin (IL)-10-producing T cells. In this study, we have demonstrated that MTBHSP70 induces IL-10 production in synoviocytes from arthritis patients and peripheral blood monoculear cells (PBMCs) from both patients and healthy controls. IL-10 production was accompanied by a decrease in tumour necrosis factor (TNF)-alpha production by synovial cells. Separation studies showed that the target cells were mainly monocytes. Accordingly, we observed that MTBHSP70 delayed maturation of murine bone marrow-derived dendritic cells. Our results suggest that MTBHSP may act on antigen-presenting cells (APCs) to modulate the cytokine response in arthritis and support an anti-inflammatory role for this protein, suggesting that it may be of therapeutic use in the modulation of arthritis.
Collapse
Affiliation(s)
- T Detanico
- National Jewish Medical & Research Center, Denver, CO, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Harmala LAE, Ingulli EG, Curtsinger JM, Lucido MM, Schmidt CS, Weigel BJ, Blazar BR, Mescher MF, Pennell CA. The adjuvant effects of Mycobacterium tuberculosis heat shock protein 70 result from the rapid and prolonged activation of antigen-specific CD8+ T cells in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5622-9. [PMID: 12421941 DOI: 10.4049/jimmunol.169.10.5622] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heat shock protein 70 (hsp70) is a potent adjuvant that links innate and adaptive immune responses. To study how hsp70 activates naive CD8(+) T cells in vivo, we tracked Ag-specific CD8(+) T cells in mice immunized with a fusion protein containing chicken OVA linked to hsp70 derived from Mycobacterium tuberculosis (OVA.TBhsp70). On a molar basis, OVA.TBhsp70 was several hundred times more effective than OVA peptide plus CFA in eliciting specific CD8(+) T cell responses. Immunization with OVA.TBhsp70 activated >90% of detectable OVA-specific CD8(+) T cells within 3 days and led to the persistence of cytotoxic effectors for at least 17 days. These studies demonstrate that the potent adjuvant effect of M. tuberculosis hsp70 results from the relatively complete, rapid, and durable activation of Ag-specific CD8(+) T cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Adoptive Transfer
- Animals
- Antigens, Differentiation/biosynthesis
- Bacterial Proteins
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/transplantation
- Cell Division/genetics
- Cell Division/immunology
- Cell Line/transplantation
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Egg Proteins/administration & dosage
- Egg Proteins/genetics
- Egg Proteins/immunology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Freund's Adjuvant/administration & dosage
- Genetic Vectors/administration & dosage
- Genetic Vectors/analysis
- Genetic Vectors/immunology
- HSP70 Heat-Shock Proteins/administration & dosage
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/physiology
- Lipopolysaccharides/analysis
- Lipopolysaccharides/pharmacology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Ovalbumin/administration & dosage
- Ovalbumin/genetics
- Ovalbumin/immunology
- Peptide Fragments
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lisa A E Harmala
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|