1
|
Pessoa VC, Branco-Ferreira M, Jónsdóttir S, Marti E, Tilley P. Comparison of Skin Prick Tests (SPT), Intradermal Tests (IDT) and In Vitro Tests in the Characterization of Insect Bite Hypersensitivity (IBH) in a Population of Lusitano Horses: Contribution for Future Implementation of SPT in IBH Diagnosis. Animals (Basel) 2023; 13:2733. [PMID: 37684997 PMCID: PMC10486572 DOI: 10.3390/ani13172733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Thirty controls (C) and 30 IBH-affected (T) Lusitano horses were evaluated. T horses were included based on anamnesis and physical examination, supported by questionnaires. All horses were submitted to skin tests, Intrademal (IDT) and Skin Prick Tests (SPT), on the neck with 14 specific allergens, 13 recombinant proteins (r-proteins) from Culicoides nubeculosus (Cul n) and Culicoides obsoletus (Cul o) salivary glands and Culicoides nubeculosus Whole Body Extract (Cul n WBE). Addicionally, a cluster of six T and six C horses were also tested with Cul n 3 and Cul n 4 produced in insect cells and barley, as well as E. coli produced Cul o 3 and Cul o WBE. Allergen concentrations were 10 µg/mL for IDT and 100 µg/mL for SPT, and wheal diameters assessed at 20 min, 6 and 48 h. IDTs were considered positive when wheal diameter was ≥50% of the histamine wheal and SPT's ≥ 0.9 cm. In vitro tests, allergen-specific serum IgE and sulfidoleukotriene (sLT) release assay were also carried out. Results showed that Cul n WBE, Cul n 7, 8, 9, Cul o1P and Cul o 2P were the best performing allergens for SPTs (p ≤ 0.0001) for the 1st allergen panel and Cul o WBE, Cul n 3 Bar and Cul n 4 Bac (p ≤ 0.05) for the 2nd, presenting a higher discriminatory diagnostic potential than IDTs, at a concentration of 100 µg/mL, with readings assessed at 20 min. Regarding in vitro tests overall, the sLT release assay performed best.
Collapse
Affiliation(s)
- Vera Carvalho Pessoa
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- AL4Animals—Associate Laboratory for Animal and Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Manuel Branco-Ferreira
- Immunoallergology University Clinic, Faculty of Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
| | - Sigridur Jónsdóttir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, 102 Reykjavik, Iceland;
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Paula Tilley
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- AL4Animals—Associate Laboratory for Animal and Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| |
Collapse
|
2
|
Marsella R, White S, Fadok VA, Wilson D, Mueller R, Outerbridge C, Rosenkrantz W. Equine allergic skin diseases: Clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2023; 34:175-208. [PMID: 37154488 DOI: 10.1111/vde.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Allergic skin diseases are common in horses worldwide. The most common causes are insect bites and environmental allergens. OBJECTIVES To review the current literature and provide consensus on pathogenesis, diagnosis, treatment and prevention. MATERIALS AND METHODS The authors reviewed the literature up to November 2022. Results were presented at North America Veterinary Dermatology Forum (2021) and European Veterinary Dermatology Congress (2021). The report was available to member organisations of the World Association for Veterinary Dermatology for feedback. CONCLUSIONS AND CLINICAL RELEVANCE Insect bite hypersensitivity (IBH) is the best characterised allergic skin disease. An immunoglobulin (Ig)E response against Culicoides salivary antigens is widely documented. Genetics and environmental factors play important roles. Tests with high sensitivity and specificity are lacking, and diagnosis of IBH is based on clinical signs, seasonality and response to insect control. Eosinophils, interleukin (IL)-5 and IL-31 are explored as therapeutic targets. Presently, the most effective treatment is insect avoidance. Existing evidence does not support allergen-specific immunotherapy (ASIT) using commercially available extracts of Culicoides. Hypersensitivity to environmental allergens (atopic dermatitis) is the next most common allergy. A role for IgE is supported by serological investigation, skin test studies and positive response to ASIT. Prospective, controlled, randomised studies are limited, and treatment relies largely on glucocorticoids, antihistamines and ASIT based on retrospective studies. Foods are known triggers for urticaria, yet their role in pruritic dermatitis is unknown. Recurrent urticaria is common in horses, yet our understanding is limited and focussed on IgE and T-helper 2 cell response. Prospective, controlled studies on treatments for urticaria are lacking. Glucocorticoids and antihistamines are primary reported treatments.
Collapse
Affiliation(s)
- R Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - S White
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - V A Fadok
- Zoetis, US PET CARE, Bellaire, Texas, USA
| | - D Wilson
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - R Mueller
- Medizinische Keleintierklinik, Zentrum für klinische Tiermedizin, LMU, Munich, Germany
| | - C Outerbridge
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
3
|
Marti E, Novotny EN, Cvitas I, Ziegler A, Wilson AD, Torsteinsdottir S, Fettelschoss‐Gabriel A, Jonsdottir S. Immunopathogenesis and immunotherapy of
Culicoides
hypersensitivity in horses: an update. Vet Dermatol 2021. [DOI: 10.1111/vde.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Dermfocus, Vetsuisse Faculty University of Bern Langgassstrasse 120 Bern 3001 Switzerland
| | - Ella N. Novotny
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Iva Cvitas
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Anja Ziegler
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - A. Douglas Wilson
- School of Clinical Veterinary Sciences University of Bristol Langford House Bristol BS40 5DU UK
| | | | - Antonia Fettelschoss‐Gabriel
- Department of Dermatology University Hospital Zurich Wagistrasse 12 Schlieren 8952 Switzerland
- Faculty of Medicine University of Zurich Switzerland
- Evax AG Hörnlistrasse 3 Münchwilen 9542 Switzerland
| | - Sigridur Jonsdottir
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Institute for Experimental Pathology, Keldur Biomedical Center University of Iceland Reykjavik Iceland
| |
Collapse
|
4
|
Larson EM, Wagner B. Viral infection and allergy - What equine immune responses can tell us about disease severity and protection. Mol Immunol 2021; 135:329-341. [PMID: 33975251 DOI: 10.1016/j.molimm.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022]
Abstract
Horses have many naturally occurring diseases that mimic similar conditions in humans. The ability to conduct environmentally controlled experiments and induced disease studies in a genetically diverse host makes the horse a valuable intermediate model between mouse studies and human clinical trials. This review highlights important similarities in the immune landscape between horses and humans using current research on two equine diseases as examples. First, equine herpesvirus type 1 (EHV-1) infection initiates a series of innate inflammatory signals at its mucosal entry site in the upper respiratory tract. These inflammatory markers are highly synchronized and predictable between individuals during viral respiratory infection and ultimately lead to adaptive immune induction and protection. The timing of early inflammatory signals, followed by specific adaptive immune markers correlating with immunity and protection, allow accurate outbreak tracking and also provide a foundation for understanding the importance of local mucosal immunity during other viral respiratory infections. Second, rare peripheral blood immune cells that promote allergic inflammation can be analyzed during Culicoides hypersensitivity, a naturally occurring type I IgE-mediated allergic disease of horses. Rare immune cells, such as IgE-binding monocytes or basophils, can be studied repeatedly in the horse model to unravel their larger mechanistic role in inflammation during allergic and other inflammatory diseases. We conclude with a survey of all other common equine inflammatory conditions. Together, this review serves as a reference and rationale for the horse as a non-rodent model for immunological research.
Collapse
Affiliation(s)
- Elisabeth M Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
5
|
Novotny EN, White SJ, Wilson AD, Stefánsdóttir SB, Tijhaar E, Jonsdóttir S, Frey R, Reiche D, Rose H, Rhyner C, Schüpbach‐Regula G, Torsteinsdóttir S, Alcocer M, Marti E. Component-resolved microarray analysis of IgE sensitization profiles to Culicoides recombinant allergens in horses with insect bite hypersensitivity. Allergy 2021; 76:1147-1157. [PMID: 32780483 PMCID: PMC8246938 DOI: 10.1111/all.14556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023]
Abstract
Background Allergy to bites of blood‐sucking insects, including biting midges, can affect both human and veterinary patients. Horses are often suffering from an IgE‐mediated allergic dermatitis caused by bites of midges (Culicoides spp). With the aim to improve allergen immunotherapy (AIT), numerous Culicoides allergens have been produced as recombinant (r‐) proteins. This study aimed to test a comprehensive panel of differently expressed Culicoides r‐allergens on a cohort of IBH‐affected and control horses using an allergen microarray. Methods IgE levels to 27 Culicoides r‐allergens, including 8 previously unpublished allergens, of which 11 were expressed in more than one expression system, were determined in sera from 347 horses. ROC analyses were carried out, cut‐offs selected using a specificity of 95% and seropositivity rates compared between horses affected with insect bite hypersensitivity (IBH) and control horses. The combination of r‐allergens giving the best performing test was determined using logistic regression analysis. Results Seropositivity was significantly higher in IBH horses compared with controls for 25 r‐allergens. Nine Culicoides r‐allergens were major allergens for IBH with seven of them binding IgE in sera from > 70% of the IBH‐affected horses. Combination of these top seven r‐allergens could diagnose > 90% of IBH‐affected horses with a specificity of > 95%. Correlation between differently expressed r‐allergens was usually high (mean = 0.69, range: 0.28‐0.91). Conclusion This microarray will be a powerful tool for the development of component‐resolved, patient‐tailored AIT for IBH and could be useful for the study of allergy to biting midges in humans and other species.
Collapse
Affiliation(s)
- Ella N. Novotny
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| | - Samuel J. White
- School of Animal, Rural and Environmental Sciences Nottingham Trent University, Brackenhurst Campus Southwell UK
- School of Biosciences University of Nottingham Loughborough UK
| | - A. Douglas Wilson
- Division of Veterinary Pathology, Infection and Immunity University of Bristol Langford UK
| | - Sara B. Stefánsdóttir
- Institute for Experimental Pathology Biomedical Center University of Iceland Reykjavik Iceland
| | - Edwin Tijhaar
- Cell Biology and Immunology Group Wageningen University Wageningen The Netherlands
| | - Sigridur Jonsdóttir
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| | | | - Dania Reiche
- Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
| | - Horst Rose
- Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
| | | | | | - Marcos Alcocer
- School of Biosciences University of Nottingham Loughborough UK
| | - Eliane Marti
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| |
Collapse
|
6
|
Comparison of Four Different Allergy Tests in Equine Asthma Affected Horses and Allergen Inhalation Provocation Test. J Equine Vet Sci 2021; 102:103433. [PMID: 34119204 DOI: 10.1016/j.jevs.2021.103433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/23/2022]
Abstract
Potential triggers for equine asthma are allergens from hay and straw dusts, mold spores and storage mites. The contribution of these environmental trigger factors to equine asthma is still largely uncertain. The aim of this study was to compare results of four allergy tests from healthy and asthma-affected horses, and to evaluate the clinical relevance of allergens tested positive via specific inhalation provocation test. Fifteen horses were classified using a clinical scoring system as asthmatic (n = 9) or control (n = 6). Four different allergy tests (functional in vitro test, intradermal test, Fc-epsilon receptor test, and ELISA for allergen-specific IgE) were compared. A histamine inhalation provocation test as positive control was performed in all horses and the interpleural pressure was measured. In addition, two individual allergens were chosen for the allergen inhalation provocation test based on the results of the allergy tests and inhaled in increasing concentrations, until signs of dyspnea occurred. None of the four allergy tests could differentiate reliably between controls and asthma-affected horses. There was no agreement among the results of the four allergy tests. The interpleural pressure results showed a large individual variability. A clear positive reaction on the allergen inhalation provocation test was only detected in two asthma-affected horses 6 hours after allergen inhalation with Aspergillus fumigatus and Cladosporium herbarum. In most cases a purely type I immediate reaction is unlikely to be involved in causing the clinical signs of equine asthma. Because of a delayed reaction after allergen provocation in two horses, the involvement of cell-mediated type III or IV hypersensitivity may be possible. As all allergy tests used in this study can only detect IgE-mediated hypersensitivity, these tests are probably not suitable for an etiological diagnosis of equine asthma.
Collapse
|
7
|
Cul o 2 specific IgG3/5 antibodies predicted Culicoides hypersensitivity in a group imported Icelandic horses. BMC Vet Res 2020; 16:283. [PMID: 32778104 PMCID: PMC7418374 DOI: 10.1186/s12917-020-02499-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Culicoides hypersensitivity (CH) is induced in horses by salivary allergens of Culicoides midges. In Iceland, the causal Culicoides species for CH are not present. Previous epidemiological data indicated that Icelandic horses are more susceptible to CH when they are exported from Iceland and first exposed to Culicoides at adult age. Horses born in countries where Culicoides is endemic, develop the disease less frequently. Here, we established a longitudinal allergy model to identify predictive and diagnostic serological biomarkers of CH. RESULTS Sixteen adult Icelandic horses from Iceland were imported to the Northeastern United States (US) during the winter and were kept in the same environment with natural Culicoides exposure for the next two years. None of the horses showed clinical allergy during the first summer of Culicoides exposure. In the second summer, 9/16 horses (56%) developed CH. Allergen specific IgE and IgG isotype responses in serum samples were analysed using nine potential Culicoides allergens in a fluorescent bead-based multiplex assay. During the first summer of Culicoides exposure, while all horses were still clinically healthy, Cul o 2 specific IgG3/5 antibodies were higher in horses that developed the allergic disease in the second summer compared to those that did not become allergic (p = 0.043). The difference in Cul o 2 specific IgG3/5 antibodies between the two groups continued to be detectable through fall (p = 0.035) and winter of the first year. During the second summer, clinical signs first appeared and Cul o 3 specific IgG3/5 isotypes were elevated in allergic horses (p = 0.041). Cul o 2 specific IgG5 (p = 0.035), and Cul o 3 specific IgG3/5 (p = 0.043) were increased in late fall of year two when clinical signs started to improve again. CONCLUSIONS Our results identified IgG5 and IgG3/5 antibodies against Cul o 2 and Cul o 3, respectively, as markers for CH during and shortly after the allergy season in the Northeastern US. In addition, Cul o 2 specific IgG3/5 antibodies may be valuable as a predictive biomarker of CH in horses that have been exposed to Culicoides but did not yet develop clinical signs.
Collapse
|
8
|
Torsteinsdottir S, Scheidegger S, Baselgia S, Jonsdottir S, Svansson V, Björnsdottir S, Marti E. A prospective study on insect bite hypersensitivity in horses exported from Iceland into Switzerland. Acta Vet Scand 2018; 60:69. [PMID: 30390694 PMCID: PMC6215642 DOI: 10.1186/s13028-018-0425-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/28/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of Culicoides spp., which occurs frequently in horses imported from Iceland to continental Europe. IBH does not occur in Iceland because Culicoides species that bite horses are not present. However, Simulium vittatum (S. vittatum) are found in Iceland. In Europe, blood basophils from IBH-affected horses release significantly more sulfidoleukotrienes (sLT) than those from healthy controls after in vitro stimulation with Culicoides nubeculosus (C. nubeculosus) and S. vittatum. Aims of the study were: (I) using the sLT release assay, to test if horses living in Iceland were sensitized to S. vittatum and (II) to determine in a longitudinal study in horses imported from Iceland to Switzerland whether the sLT release assay would allow to predict which horses would develop IBH. RESULTS Horses in Iceland, even when living in high S. vittatum areas, were usually not sensitized to S. vittatum or C. nubeculosus. Incidence of IBH in the 145 horses from the longitudinal study was 51% and mean time until IBH developed was 2.5 ± 1 year. Before import and after the first summer following import, there were no significant differences in sLT release between the endpoint healthy (H) and IBH groups. After the 2nd summer, when the number of clinically affected horses increased in the endpoint IBH group, a significantly higher sLT release after stimulation with C. nubeculosus but not with S. vittatum was observed. After the 3rd and 4th summer, the endpoint IBH group had a significantly higher sLT release with C. nubeculosus and S. vittatum than the endpoint H group. Some of the horses that remained healthy became transiently positive in the sLT release assay upon stimulation of their peripheral blood leucocytes with C. nubeculosus. CONCLUSIONS Horses in Iceland are not sensitized to S. vittatum. In horses that develop IBH, sensitization to S. vittatum is secondary to sensitization to C. nubeculosus and probably a result of an immunological cross-reactivity. A sLT release assay cannot be used to predict which horses will develop IBH. A transient positive reaction in the sLT release assay observed in horses that remained healthy suggests that immunoregulatory mechanisms may control an initial sensitization of the healthy horses.
Collapse
Affiliation(s)
- Sigurbjörg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Stephan Scheidegger
- Department of Clinical Research & VPH, Vetsuisse Faculty, University of Berne, Länggass-str 124, 3012 Bern, Switzerland
- Mobile Pferdepraxis, FA Osteopathie GST, Oberdettigenstrasse 50, 3043 Uettligen, Switzerland
| | - Silvia Baselgia
- Department of Clinical Research & VPH, Vetsuisse Faculty, University of Berne, Länggass-str 124, 3012 Bern, Switzerland
| | - Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
- Department of Clinical Research & VPH, Vetsuisse Faculty, University of Berne, Länggass-str 124, 3012 Bern, Switzerland
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | | | - Eliane Marti
- Department of Clinical Research & VPH, Vetsuisse Faculty, University of Berne, Länggass-str 124, 3012 Bern, Switzerland
| |
Collapse
|
9
|
Novel in vitro diagnosis of equine allergies using a protein array and mathematical modelling approach: a proof of concept using insect bite hypersensitivity. Vet Immunol Immunopathol 2015; 167:171-7. [PMID: 26163936 DOI: 10.1016/j.vetimm.2015.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Insect bite hypersensitivity (IBH) is a seasonal recurrent skin allergy of horses caused by IgE-mediated reactions to allergens present in the saliva of biting insects of the genus Culicoides, and possibly also Simulium and Stomoxys species. In this work we show that protein microarrays containing complex extracts and pure proteins, including recombinant Culicoides allergens, can be used as a powerful technique for the diagnosis of IBH. Besides the obvious advantages such as general profiling and use of few microliters of samples, this microarray technique permits automation and allows the generation of mathematical models with the calculation of individual risk profiles that can support the clinical diagnosis of allergic diseases. After selection of variables on influence on the projection (VIP), the observed values of sensitivity and specificity were 1.0 and 0.967, respectively. This confirms the highly discriminatory power of this approach for IBH and made it possible to attain a robust predictive mathematical model for this disease. It also further demonstrates the specificity of the protein array method on identifying a particular IgE-mediated disease when the sensitising allergen group is known.
Collapse
|
10
|
Jonsdottir S, Hamza E, Janda J, Rhyner C, Meinke A, Marti E, Svansson V, Torsteinsdottir S. Developing a preventive immunization approach against insect bite hypersensitivity using recombinant allergens: A pilot study. Vet Immunol Immunopathol 2015; 166:8-21. [PMID: 26004943 DOI: 10.1016/j.vetimm.2015.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/28/2015] [Accepted: 05/08/2015] [Indexed: 12/22/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of midges (Culicoides spp.). IgE-mediated reactions are often involved in the pathogenesis of this disease. IBH does not occur in Iceland due to the absence of Culicoides, but it occurs with a high frequency in Icelandic horses exported to mainland Europe, where Culicoides are present. We hypothesize that immunization with the Culicoides allergens before export could reduce the incidence of IBH in exported Icelandic horses. The aim of the present study was therefore to compare intradermal and intralymphatic vaccination using four purified recombinant allergens, in combination with a Th1 focusing adjuvant. Twelve horses were vaccinated three times with 10μg of each of the four recombinant Culicoides nubeculosus allergens. Six horses were injected intralymphatically, three with and three without IC31(®), and six were injected intradermally, in the presence or absence of IC31(®). Antibody responses were measured by immunoblots and ELISA, potential sensitization in a sulfidoleukotriene release test and an intradermal test, cytokine and FoxP3 expression with real time PCR following in vitro stimulation of PBMC. Immunization with the r-allergens induced a significant increase in levels of r-allergen-specific IgG1, IgG1/3, IgG4/7, IgG5 and IgG(T). Application of the r-allergens in IC31(®) adjuvant resulted in a significantly higher IgG1, IgG1/3, IgG4/7 allergen-specific response. Intralymphatic injection was slightly more efficient than intradermal injection, but the difference did not reach significance. Testing of the blocking activity of the sera from the horses immunized intralymphatically with IC31(®) showed that the generated IgG antibodies were able to partly block binding of serum IgE from an IBH-affected horse to these r-allergens. Furthermore, IgG antibodies bound to protein bands on blots of C. nubeculosus salivary gland extract. No allergen-specific IgE was induced and there was no indication of induction of IgE-mediated reactions, as horses neither responded to Culicoides extract stimulation in a sulfidoleukotriene release test, nor developed a relevant immediate hypersensitivity reaction to the recombinant allergens in skin test. IL-4 expression was significantly higher in horses vaccinated intralymphatically without IC31(®), as compared to horses intradermally vaccinated with IC31(®). Both routes gave higher IL-10 expression with IC31(®). Both intralymphatic and intradermal vaccination of horses with recombinant allergens in IC31(®) adjuvant induced an immune response without adverse effects and without IgE production. The horses were not sensitized and produced IgG that could inhibit allergen-specific IgE binding. We therefore conclude that both the injection routes and the IC31(®) adjuvant are strong candidates for further development of immunoprophylaxis and therapy in horses.
Collapse
Affiliation(s)
- Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.
| | - Eman Hamza
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggassstrasse 124, 3012 Berne, Switzerland
| | - Jozef Janda
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggassstrasse 124, 3012 Berne, Switzerland
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Andreas Meinke
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggassstrasse 124, 3012 Berne, Switzerland
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Sigurbjorg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
11
|
Janda J, Lehmann M, Luttmann W, Marti E. Cloning and expression of recombinant equine interleukin-3 and its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes. Vet Immunol Immunopathol 2014; 163:202-9. [PMID: 25530476 DOI: 10.1016/j.vetimm.2014.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Interleukin-3 is a growth and differentiation factor for various hematopoietic cells. IL-3 also enhances stimulus-dependent release of mediators and cytokine production by mature basophils. Function of IL-3 has not been studied in horses because of lack of horse-specific reagents. Our aim was to produce recombinant equine IL-3 and test its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes (PBL). Equine IL-3 was cloned, expressed in E. coli and purified. PBL of 19 healthy and 20 insect bite hypersensitivity (IBH)-affected horses were stimulated with Culicoides nubeculosus extract with or without IL-3. Sulfidoleukotriene (sLT) production was measured in supernatants by ELISA and mRNA expression of IL-4, IL-13 and thymic stromal lymphopoietin (TSLP) assessed in cell lysate by quantitative real-time PCR. Recombinant equine IL-3 (req-IL-3) had a dose dependent effect on sLT production by stimulated equine PBL and significantly increased IL-4, IL-13 and TSLP expression compared to non-primed cells. IL-3 priming significantly increased Culicoides-induced sLT production in IBH-affected but not in non-affected horses and was particularly effective in young IBH-affected horses (≤ 3 years). A functionally active recombinant equine IL-3 has been produced which will be useful for future immunological studies in horses. It will also allow improving the sensitivity of cellular in vitro tests for allergy diagnosis in horses.
Collapse
Affiliation(s)
- Jozef Janda
- Department of Clinical Research-VPH, Vetsuisse Faculty, University of Bern, Switzerland; Center Pigmod, Institute of Animal Physiology and Genetics, Academy of Sciences of Czech Republic, Libechov, Czech Republic
| | | | | | - Eliane Marti
- Department of Clinical Research-VPH, Vetsuisse Faculty, University of Bern, Switzerland.
| |
Collapse
|
12
|
Lanz S, Gerber V, Marti E, Rettmer H, Klukowska-Rötzler J, Gottstein B, Matthews JB, Pirie S, Hamza E. Effect of hay dust extract and cyathostomin antigen stimulation on cytokine expression by PBMC in horses with recurrent airway obstruction. Vet Immunol Immunopathol 2013; 155:229-37. [PMID: 23972861 DOI: 10.1016/j.vetimm.2013.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 07/14/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022]
Abstract
Equine recurrent airway obstruction (RAO) is an inflammatory, obstructive airway disease induced by exposure of susceptible horses to inhaled organic dust particles. The immunological process underlying RAO is still unclear. Previous studies have shown that RAO is linked to the Interleukin-4 receptor (IL-4R) gene in one Warmblood family (F1), but not in another (F2). It has also been shown that in F1, but not in F2, RAO is associated with resistance against parasites, suggesting that this association may have an immuno-genetic basis. Therefore, we hypothesized that the T helper (h)1/Th2/regulatory (Treg) cytokine profiles of RAO-associated antigen- and parasite-antigen-stimulated peripheral blood mononuclear cells (PBMC) differ between RAO-affected and healthy horses depending on their genetic background. In our study, PBMC from 17 RAO-affected and 14 healthy control horses of F1 and F2 were stimulated for 24h with antigens relevant to RAO [hay dust extract (HDE), Aspergillus fumigatus extract (AFE) and lipopolysaccharids (LPS)]; cyathostomin extract (CE) and recombinant cyathostomin antigen (RCA) or with concanavalin A (ConA). Total mRNA levels of IL-4, IL-4R, IL-13, interferon (INF)-γ and IL-10 were examined by qRT-PCR. Stimulation with either HDE or RCA resulted in significant differences in IL-4R mRNA levels between RAO-affected and control horses in F1, but not in F2. For IL-10 mRNA expression, a significant difference between RAO-affected and control horses in F1 but not in F2 was observed only following stimulation with HDE. In contrast to HDE, stimulation with CE resulted in a significant difference of IL-10 mRNA expression level between RAO-affected horses of F2 and healthy horses of F1. No significant differences were detected upon stimulation with any of the other challenge agents. These findings indicate that the immunological response, specifically IL-4R expression, in response to hay dust and cyathostomin antigens, differs between RAO-affected and healthy horses depending on their genetic background. This study shows that analysis of PBMC reveals systemic changes associated with RAO and helps to elucidate immunological pathways involved in this disease.
Collapse
Affiliation(s)
- Simone Lanz
- Swiss Institute of Equine Medicine, University of Bern and ALP-Haras, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Peeters LM, Janssens S, Goddeeris BM, De Keyser K, Wilson AD, Kaufmann C, Schaffartzik A, Marti E, Buys N. Evaluation of an IgE ELISA with Culicoides spp. extracts and recombinant salivary antigens for diagnosis of insect bite hypersensitivity in Warmblood horses. Vet J 2013; 198:141-7. [PMID: 23891138 DOI: 10.1016/j.tvjl.2013.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022]
Abstract
Insect bite hypersensitivity (IBH) in horses represents an immunoglobulin E (IgE)-mediated hypersensitivity to salivary antigens from biting midges (Culicoides spp.). The aim of this study was to evaluate and compare the performances of IgE ELISAs using recombinant Culicoides spp. Obsoletus group salivary gland antigens or crude whole body extracts ('ObsWBE'), C. nubeculosus recombinant proteins (Culn1, 3, 4, 5, 7, 8 and 10) and Obsoletus group recombinant proteins (Culo1 and 2). IgE levels were measured in plasma of 343 Warmblood horses classified as IBH-affected (n=167) and IBH-unaffected (n=176) according to the owners' descriptions. IBH-affected horses were subdivided based on the severity of their clinical signs at sampling and whether or not their IBH history was considered to be classical. The accuracies of the tests increased when clinical signs at sampling were more pronounced or when the IBH history could be considered as classical. A combination of IgE levels against the three best performing Culicoides spp. recombinant proteins (Culn4, Culo1 and Culo2) and ObsWBE resulted in the best performing test. When IBH-affected horses showing a classical history of the disease and severe clinical signs were compared with IBH-unaffected horses, the Youden's index at the optimal cut-off for the three tests in combination was 0.67. This optimal cut-off had a sensitivity of 70%, a specificity of 97% and a total accuracy of 92%. The performance of the IgE ELISA was affected by the severity of IBH clinical signs at sampling and was improved when IgE levels against several recombinant proteins were combined.
Collapse
Affiliation(s)
- L M Peeters
- Department of Biosystems, Katholieke Universiteit Leuven, BE-3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
van der Meide NMA, Meulenbroeks C, van Altena C, Schurink A, Ducro BJ, Wagner B, Leibold W, Rohwer J, Jacobs F, van Oldruitenborgh-Oosterbaan MMS, Savelkoul HFJ, Tijhaar E. Culicoides obsoletus extract relevant for diagnostics of insect bite hypersensitivity in horses. Vet Immunol Immunopathol 2012; 149:245-54. [PMID: 22906994 DOI: 10.1016/j.vetimm.2012.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 11/15/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis in horses caused by the bites of Culicoides species. The aim of the present study was to evaluate the applicability of whole body extracts of C. obsoletus (the main species found feeding on horses in the Netherlands), C. nubeculosus (rarely found in The Netherlands) and C. sonorensis (typical for North America) for diagnosis of IBH in horses in The Netherlands. Blood and serum samples of 10 clinically confirmed IBH affected and 10 healthy control horses were used to evaluate the IgE titers (ELISA) against the Culicoides whole body extracts of the three Culicoides species. Basophil degranulation was assessed by histamine release test (HRT) after stimulation with these extracts at 5, 0.5 and 0.05 μg/ml. IBH affected horses had significantly higher IgE titers against C. obsoletus than against C. nubeculosus and C. sonorensis. Furthermore, C. obsoletus induced significantly higher histamine release in whole blood of IBH affected horses compared to the other extracts at 0.5 μg/ml. Western blot data revealed IgE binding to many proteins in C. obsoletus extract. This interaction was absent or weak in C. nubeculosus and C. sonorensis extracts for IBH affected horses. Results on individual level indicate that the HRT is more sensitive than ELISA in diagnosing IBH. However, ELISA is more practical as a routine test, therefore the ELISA was further evaluated using C. obsoletus extract on 103 IBH affected and 100 healthy horses, which resulted in a test sensitivity and specificity of 93.2% and 90.0%, respectively. The IgE ELISA readings enabled the analysis of the predicted probability of being IBH affected. From an optical density 450nm value of 0.33 onwards, the probability of IBH affected was more than 0.9. The results presented in this paper show that the use of native Culicoides spp. that feed on horse, is important for improved diagnosis and that the described ELISA based on C. obsoletus can be used routinely to diagnose IBH in countries where this species is the main Culicoides feeding on horses.
Collapse
|
15
|
Schaffartzik A, Hamza E, Janda J, Crameri R, Marti E, Rhyner C. Equine insect bite hypersensitivity: what do we know? Vet Immunol Immunopathol 2012; 147:113-26. [PMID: 22575371 DOI: 10.1016/j.vetimm.2012.03.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/26/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis of the horse caused by bites of insects of the genus Culicoides and is currently the best characterized allergic disease of horses. This article reviews knowledge of the immunopathogenesis of IBH, with a particular focus on the causative allergens. Whereas so far hardly any research has been done on the role of antigen presenting cells in the pathogenesis of IBH, recent studies suggest that IBH is characterized by an imbalance between a T helper 2 (Th2) and regulatory T cell (T(reg)) immune response, as shown both locally in the skin and with stimulated peripheral blood mononuclear cells. Various studies have shown IBH to be associated with IgE-mediated reactions against salivary antigens from Culicoides spp. However, until recently, the causative allergens had not been characterized at the molecular level. A major advance has now been made, as 11 Culicoides salivary gland proteins have been identified as relevant allergens for IBH. Currently, there is no satisfactory treatment of IBH. Characterization of the main allergens for IBH and understanding what mechanisms induce a healthy or allergic immune response towards these allergens may help to develop new treatment strategies, such as immunotherapy.
Collapse
Affiliation(s)
- A Schaffartzik
- Swiss Institute of Allergy and Asthma Research-SIAF, University of Zürich, Obere Strasse 22, CH-7270 Davos, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Hamza E, Steinbach F, Marti E. CD4+CD25+ T cells expressing FoxP3 in Icelandic horses affected with insect bite hypersensitivity. Vet Immunol Immunopathol 2011; 148:139-44. [PMID: 21700344 DOI: 10.1016/j.vetimm.2011.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/15/2011] [Accepted: 05/30/2011] [Indexed: 02/01/2023]
Abstract
Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of midges from the genus Culicoides. We have shown previously that peripheral blood mononuclear cells (PBMC) from IBH-affected horses produce higher levels of IL-4 and lower levels of IL-10 and TGF-β1 than those from healthy horses, suggesting that IBH is associated with a reduced regulatory immune response. FoxP3 is a crucial marker of regulatory T cells (Tregs). Here we have determined the proportion of CD4(+)CD25(+)FoxP3(+) T cells by flow cytometry in PBMC directly after isolation or after stimulation with Culicoides extract or a control antigen (Tetanus Toxoid). There were no differences between healthy and IBH horses either in the proportion of FoxP3(+)CD4(+)CD25(+) cells in freshly isolated PBMC or in the following stimulation with Tetanus Toxoid. However, upon stimulation of PBMC with the allergen, expression of FoxP3 by CD4(+)CD25(+high) and CD4(+)CD25(+dim) cells was significantly higher in healthy than in IBH horses. Addition of recombinant IL-4 to PBMC from healthy horses stimulated with the allergen significantly decreased the proportion of FoxP3 expressing cells within CD4(+)CD25(+high). These results suggest that IBH is associated with a decreased number of allergen-induced Tregs. This could be a consequence of the increased IL-4 production by PBMC of IBH-affected horses.
Collapse
Affiliation(s)
- Eman Hamza
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
17
|
Skin-infiltrating T cells and cytokine expression in Icelandic horses affected with insect bite hypersensitivity: A possible role for regulatory T cells. Vet Immunol Immunopathol 2011; 140:63-74. [DOI: 10.1016/j.vetimm.2010.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/12/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
18
|
Olsén L, Bondesson U, Broström H, Olsson U, Mazogi B, Sundqvist M, Tjälve H, Ingvast-Larsson C. Pharmacokinetics and effects of cetirizine in horses with insect bite hypersensitivity. Vet J 2011; 187:347-51. [DOI: 10.1016/j.tvjl.2009.12.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 12/17/2009] [Accepted: 12/23/2009] [Indexed: 12/16/2022]
|
19
|
Baselgia S, Doherr MG, Mellor P, Torsteinsdottir S, Jermann T, Zurbriggen A, Jungi T, Marti E. Evaluation of an in vitro sulphidoleukotriene release test for diagnosis of insect bite hypersensitivity in horses. Equine Vet J 2010; 38:40-6. [PMID: 16411585 DOI: 10.2746/042516406775374333] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis caused by bites of Culicoides and Simulium species, and improved means of diagnosis are required. OBJECTIVES The cellular antigen simulation test (CAST) with C. nubeculosus and S. vittatum extracts was assessed in a population of IBH-affected and healthy horses. Variations in test results over a one year period and possible cross-reactivity between different insect extracts was studied. METHODS A total of 314 mature horses were studied using the CAST. Influence of severity of clinical signs, gender and age were evaluated, and 32 horses were tested repeatedly over one year. The kappa reliability test was used to assess agreement of the test results with different insect extracts. RESULTS Horses with IBH had significantly higher sLT release than controls with C. nubeculosus and S. vittatum. The highest diagnostic sensitivity and specificity levels were attained when using adult C. nubeculosus extracts with the CAST (78% and 97%, respectively), suggesting that most horses with IBH are sensitised against Culicoides allergens. A proportion of IBH-affected horses was found to be sensitised to allergens of Simulium spp. in addition to those of C. nubeculosus. The CAST with C. nubeculosus had positive and negative predictive values > or = 80% for a true prevalence of IBH of 12-52%. In the follow-up study, the proportion of IBH-affected horses with a positive test result ranged from 90% in November to 68% in March. Severity of clinical signs or age did not influence test results significantly. However, IBH-affected males achieved significantly more positive test results than IBH-affected females. CONCLUSIONS The CAST with adult C. nubeculosus has high specificity and good sensitivity for diagnosis of IBH. Horses with IBH are mainly sensitised to Culicoides allergens, and some horses are additionally also sensitised to allergens in Simulium spp. POTENTIAL RELEVANCE The CAST is likely to be a useful test for diagnosis of IBH, even allowing the identification of IBH-affected but asymptomatic horses. This test may also help in further characterisation of allergens involved in this condition.
Collapse
Affiliation(s)
- S Baselgia
- Division of Clinical Immunology, Länggass-Strasse 124, Department of Clinical Veterinary Medicine, PO Box, 3001-Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hamza E, Torsteinsdottir S, Eydal M, Frey CF, Mirkovitch J, Brcic M, Wagner B, Wilson AD, Jungi TW, Marti E. Increased IL-4 and decreased regulatory cytokine production following relocation of Icelandic horses from a high to low endoparasite environment. Vet Immunol Immunopathol 2010; 133:40-50. [DOI: 10.1016/j.vetimm.2009.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/24/2009] [Accepted: 07/03/2009] [Indexed: 11/30/2022]
|
21
|
Insect bite hypersensitivity in the horse: Comparison of IgE-binding proteins in salivary gland extracts from Simulium vittatum and Culicoides nubeculosus. Vet Immunol Immunopathol 2009; 132:62-7. [DOI: 10.1016/j.vetimm.2009.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Schaffartzik A, Weichel M, Crameri R, Björnsdóttir TS, Prisi C, Rhyner C, Torsteinsdóttir S, Marti E. Cloning of IgE-binding proteins from Simulium vittatum and their potential significance as allergens for equine insect bite hypersensitivity. Vet Immunol Immunopathol 2009; 132:68-77. [PMID: 19836085 DOI: 10.1016/j.vetimm.2009.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides and sometimes Simulium spp. The aim of this investigation was to identify Simulium allergens associated with IBH. A phage surface display cDNA library expressing recombinant Simulium vittatum salivary gland proteins was screened using sera of IBH-affected horses sensitized to S. vittatum salivary gland proteins as shown in immunoblot, resulting in the identification of seven cDNAs encoding IgE-binding proteins. The deduced amino acid sequences of these proteins showed sequence similarities to antigen 5 like protein (Sim v 1), to a serine protease inhibitor (Sim v 2), to two alpha-amylases (Sim v 3 and Sim v 4), and to three S. vittatum erythema proteins (SVEPs). The cDNA inserts were subcloned and expressed as [His](6)-tagged protein in Escherichia coli and purified using Ni(2+)-chelate affinity chromatography. Mice were immunised with the seven recombinant proteins and the antibodies tested against the recombinant proteins and salivary gland extract (SGE) of S. vittatum and Culicoides nubeculosus in immunoblot analyses. r-Sim v 1 specific mouse Abs recognized a band of about 32 kDa in immunoblots of both S. vittatum and C. nubeculosus SGE, detectable also by serum IgE of IBH-affected horses. Preincubation of horse serum with r-Sim v 1 completely inhibited IgE binding to the 32 kDa band demonstrating the presence of cross-reactive antigen 5 like proteins in both SGE. Determination of IgE levels against the r-Sim v proteins and crude S. vittatum extract by ELISA in sera from 25 IBH-affected and 20 control horses showed that IBH-affected horses had significantly higher IgE levels than controls against r-Sim v 1, 2, 3, 4 and S. vittatum extract, whereas the r-SVEP showed only marginal IgE binding. Further analyses showed that 60% of IBH-affected horses reacted to r-Sim v 1, suggesting that this could be a major allergen for IBH. Forty to twenty percent of the IBH-affected horses reacted with r-Sim v 2, 3 or 4. Combination of the results obtained with the 4 r-Sim v proteins showed that 92% of the IBH-affected but only 15% of the healthy horses had IgE levels against one or more of the 4 r-Sim v proteins. Seventy percent of the healthy horses had detectable IgE against S. vittatum extract, indicating a low specificity of the detection system used. Optimization of the ELISA system will be required to determine reliable cut-off values for the IBH-related allergens. Their in vivo relevance needs to be carefully assessed.
Collapse
Affiliation(s)
- A Schaffartzik
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH-7270 Davos, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Olsén L, Bondesson U, Broström H, Tjälve H, Ingvast-Larsson C. Cetirizine in horses: Pharmacokinetics and pharmacodynamics following repeated oral administration. Vet J 2008; 177:242-9. [PMID: 17581764 DOI: 10.1016/j.tvjl.2007.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 11/25/2022]
Abstract
The pharmacokinetics of the histamine H(1)-antagonist cetirizine and its effect on histamine-induced cutaneous wheal formation were studied in six healthy horses following repeated oral administration. After three consecutive administrations of cetirizine (0.2 mg/kg body weight, bw) every 12h, the trough plasma concentration of cetirizine was 16+/-4 ng/mL (mean+/-SD) and the wheal formation was inhibited by 45+/-23%. After four additional administrations of cetirizine (0.4 mg/kg bw) every 12 h, the trough plasma concentration was 48+/-15 ng/mL and the wheal formation was inhibited by 68+/-11%. The terminal half-life was about 5.8 h. A pharmacokinetic/pharmacodynamic link model showed that the maximal inhibition of wheal formation was about 95% and the EC(50) about 18 ng/mL. It is concluded that cetirizine in doses of 0.2-0.4 mg/kg bw administered at 12 h intervals exhibits favourable pharmacokinetic and pharmacodynamic properties without causing visible side effects, and the drug may therefore be a useful antihistamine in equine medicine.
Collapse
Affiliation(s)
- Lena Olsén
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Langner KFA, Jarvis DL, Nimtz M, Heselhaus JE, McHolland LE, Leibold W, Drolet BS. Identification, expression and characterisation of a major salivary allergen (Cul s 1) of the biting midge Culicoides sonorensis relevant for summer eczema in horses. Int J Parasitol 2008; 39:243-50. [PMID: 18708061 DOI: 10.1016/j.ijpara.2008.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Salivary proteins of Culicoides biting midges are thought to play a key role in summer eczema (SE), a seasonal recurrent allergic dermatitis in horses. The present study describes the identification, expression and clinical relevance of a candidate allergen of the North American midge Culicoides sonorensis. Immunoblot analysis of midge saliva revealed a 66 kDa protein (Cul s 1) that was bound by IgE from several SE-affected (SE+) horses. Further characterisation by fragmentation, mass spectrometry and bioinformatics identified Cul s 1 as maltase, an enzyme involved in sugar meal digestion. A cDNA encoding Cul s 1 was isolated and expressed as a polyhistidine-tagged fusion protein in a baculovirus/insect cell expression system. The clinical relevance of the affinity-purified recombinant Cul s 1 (rCul s 1) was investigated by immunoblotting, histamine release testing (HRT) and intradermal testing (IDT) in eight SE+ and eight control horses. Seven SE+ horses had rCul s 1-specific IgE, whereas only one control animal had IgE directed against this allergen. Furthermore, the HRT showed rCul s 1 induced basophil degranulation in samples from seven of eight SE+ horses but in none of the control animals. rCul s 1 also induced immediate (7/8), late-phase (8/8) and delayed (1/8) skin reactivity in IDT on all SE+ horses that had a positive test with the whole body extract (WBE) of C. sonorensis. None of the control horses showed immediate or delayed skin reactivity with rCul s 1, and only one control horse had a positive late-phase response, while several non-specific late-phase reactions were observed with the insect WBE. Thus, we believe rCul s 1 is the first specific salivary allergen of C. sonorensis to be described that promises to advance both in vitro and in vivo diagnosis and may contribute to the development of immunotherapy for SE in horses.
Collapse
Affiliation(s)
- Kathrin F A Langner
- Immunology Unit, University of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Lower Saxony, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Comparison of cellular and humoral immunoassays for the assessment of summer eczema in horses. Vet Immunol Immunopathol 2008; 122:126-37. [DOI: 10.1016/j.vetimm.2007.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 11/15/2022]
|
26
|
Hamza E, Wagner B, Jungi TW, Mirkovitch J, Marti E. Reduced incidence of insect-bite hypersensitivity in Icelandic horses is associated with a down-regulation of interleukin-4 by interleukin-10 and transforming growth factor-beta1. Vet Immunol Immunopathol 2007; 122:65-75. [PMID: 18082270 DOI: 10.1016/j.vetimm.2007.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/18/2007] [Accepted: 10/23/2007] [Indexed: 01/01/2023]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by IgE-mediated reactions to bites of insects of the genus Culicoides. IBH does not occur in Iceland due to the absence of Culicoides. However, Icelandic horses exported to mainland Europe as adults (1st generation) have a > or =50% incidence of developing IBH. In contrast, their progeny (2nd generation) has a <10% incidence of IBH. Here we show that peripheral blood mononuclear cells (PBMC) from Icelandic horses born in mainland Europe and belonging either to the IBH or healthy subgroup produce less interleukin (IL)-4 after polyclonal or allergen-specific stimulation when compared with counterparts from horses born in Iceland. We examined a role of IL-10 and transforming growth factor (TGF)-beta1 in down-regulation of IL-4 in healthy 2nd generation Icelandic horses. Supernatants of PBMC from 2nd generation healthy horses down-regulated the proportion of IL-4-producing cells and IL-4 production in stimulated cultures of PBMC from 1st generation IBH. This inhibition was mimicked by a combination of IL-10 and TGF-beta1 but not by the single cytokines. Cultures of stimulated PBMC of healthy 2nd generation horses produced a low level of IL-4, but IL-4 production was increased by anti-equine IL-10 and anti-human TGF-beta1. This shows for the first time that in horses, IL-10 and TGF-beta1 combined regulate IL-4 production in vitro. It is suggested that in this naturally occurring IgE-mediated allergy, IL-10 and TGF-beta1 have a role in the down-regulation of IL-4-induced allergen-specific Th2 cells, thereby reducing the incidence of IBH.
Collapse
Affiliation(s)
- Eman Hamza
- Institute of Veterinary Virology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3001 Bern, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Langner KFA, Darpel KE, Denison E, Drolet BS, Leibold W, Mellor PS, Mertens PPC, Nimtz M, Greiser-Wilke I. Collection and analysis of salivary proteins from the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae). JOURNAL OF MEDICAL ENTOMOLOGY 2007; 44:238-48. [PMID: 17427692 DOI: 10.1603/0022-2585(2007)44[238:caaosp]2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Salivary proteins of hematophagous Culicoides spp. are thought to play an important role in pathogen transmission and skin hypersensitivity. Analysis of these proteins, however, has been problematic due to the difficulty in obtaining adequate amounts of secreted Culicoides saliva. In the current study, a collection method for midge saliva was developed. Over a 3-d period, 3- to 5-d-old male and female Culicoides nubeculosus Meigen (Diptera: Ceratopogonidae) were repeatedly placed onto the collection system and allowed to deposit saliva into a filter. Salivary products were eluted from the filters and evaluated by gel electrophoresis and mass spectrometry as well as by intradermal testing and determination of clotting time. Gel electrophoresis revealed approximately 55 protein spots displaying relative molecular masses from 5 to 67 kDa and isoelectric points ranging from 4.5 to 9.8. The majority of molecular species analyzed by mass spectrometry showed high convergence with salivary proteins recently obtained from a cDNA library of Culicoides sonorensis Wirth & Jones, including proteins involved in sugarmeal digestion, defense, and coagulation inhibition as well as members of the D7 family and unclassified salivary proteins. In addition, the proteome analysis revealed a number of peptides that were related to proteins from insect species other than Culicoides. Intradermal injection of the saliva in human skin produced edema, vasodilatation, and pruritus. The anticoagulant activity of the saliva was demonstrated by significantly prolonged clotting times for human platelets. The potential role of the identified salivary proteins in the transmission of pathogens and the induction of allergies is discussed.
Collapse
Affiliation(s)
- Kathrin F A Langner
- USDA-ARS, Arthropod-Borne Animal Diseases Research Laboratory, 1000 E. University Ave., Laramie, WY 82071, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wilson AD, Harwood L, Torsteinsdottir S, Marti E. Production of monoclonal antibodies specific for native equine IgE and their application to monitor total serum IgE responses in Icelandic and non-Icelandic horses with insect bite dermal hypersensitivity. Vet Immunol Immunopathol 2006; 112:156-70. [PMID: 16574245 DOI: 10.1016/j.vetimm.2006.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/16/2006] [Accepted: 02/15/2006] [Indexed: 11/28/2022]
Abstract
Immunoglobulin E forms a minor component of serum antibody in mammals. In tissues IgE is bound by FcvarepsilonRI receptors on the surface of mast cells and mediates their release of inflammatory substances in response to antigen. IgE and mast cells have a central role in immunity to parasites and the pathogenesis of allergic diseases in horses and other mammals. This paper describes the production of several novel monoclonal antibodies that detect native equine IgE in immunohistology, ELISA and Western blotting. An antigen capture ELISA to quantify equine IgE in serum has been developed using two of these antibodies. The mean serum IgE concentration of a group of 122 adult horses was 23,523ng/ml with a range of 425-82,610ng/ml. Total serum IgE of healthy horses was compared with that of horses with insect bite dermal hypersensitivity (IBDH) an allergic reaction to the bites of blood feeding insects of Culicoides or Simulium spp. IBDH does not occur in Iceland where Culicoides spp. are absent, but following importation into mainland Europe native Icelandic horses have an exceptionally high incidence of this condition. In the present study Icelandic horses with IBDH had significantly higher total IgE than healthy Icelandic horse controls (P<0.05). By contrast in horses of other breeds the difference in total serum IgE between those affected with IBDH and healthy controls was not statistically significant. Total serum IgE was also monitored in a cohort of Icelandic horses prior to import into Switzerland and for a period of 3 years thereafter. High levels of serum IgE were present in all horses at the start of the study but dropped in the first year after import. Thereafter the total serum IgE remained low in Icelandic horses that remained healthy but rose significantly (P<0.05) in those that developed IBDH. These results support the conclusion that IBDH is a type I hypersensitivity response to insect allergens but indicate that IBDH in Icelandic horses may have a different pathogenesis from the same condition in other breeds.
Collapse
Affiliation(s)
- A Douglas Wilson
- Division of Pathology Infection and Immunity, University of Bristol, School of Clinical Veterinary Science, Langford House, Langford BS40 5DU, UK.
| | | | | | | |
Collapse
|
29
|
van der Haegen A, Künzle F, Gerber V, Welle M, Robinson NE, Marti E. Mast cells and IgE-bearing cells in lungs of RAO-affected horses. Vet Immunol Immunopathol 2005; 108:325-34. [PMID: 16040130 DOI: 10.1016/j.vetimm.2005.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 05/03/2005] [Accepted: 06/13/2005] [Indexed: 12/29/2022]
Abstract
Recurrent airway obstruction (RAO) is a common condition in stabled horses characterised by small airway inflammation and obstruction following exposure of susceptible horses to mouldy hay and straw. The aim of the present study was to investigate whether lung tissue from horses with RAO contains higher numbers of IgE-protein positive (+) cells and mast cells compared to controls after mouldy hay challenge. Furthermore, mast cell subtypes in lung tissue were investigated. IgE+ cells were detected in most lung tissue samples but no significant differences between RAO-affected and control horses were found. In the wall of the bronchi and bronchioli of both RAO-affected and control horses, mainly chymase+ mast cells (MC(C)) were present (85% in the bronchial wall and 77% in the wall of the bronchioli), while 73% of the mast cells (MC) around blood vessels were tryptase+ mast cells (MC(T)). No double stained MCs were detected. RAO-affected horses had significantly more MC(C) than controls in the wall of the bronchi (median=7.6 and 1.7 cell/mm(2), respectively, P< or =0.05). They also showed a tendency for more MC(C) in the wall of the bronchioli than controls (median=21 and 2.9 cells/mm(2), respectively, P=0.07) but there were no differences in MC(T) numbers. The data suggest an involvement of MC(C) in the pathogenesis of RAO. Independently of the clinical diagnosis, there was a significant relationship between high MC(C) numbers in the bronchial wall and lung fibrosis, suggesting that these MC(C) may be involved in tissue remodelling. Furthermore, high MC(C) numbers were also associated with increased infiltration with lymphocytes and neutrophils.
Collapse
Affiliation(s)
- A van der Haegen
- Institute for Animal Genetics, Nutrition and Housing, University of Berne, Bremgartenstrasse 109A, 3001 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Althaus H, Müller N, Busato A, Mellor PS, Torsteinsdottir S, Marti E. Cloning and sequencing of a cDNA expressing a ribosomal P0 peptide from Culicoides nubeculosus (Diptera). Vet Immunol Immunopathol 2004; 99:99-111. [PMID: 15113658 DOI: 10.1016/j.vetimm.2004.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Revised: 12/12/2003] [Accepted: 01/19/2004] [Indexed: 11/18/2022]
Abstract
Insect bite dermal hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides spp. and sometimes Simulium spp. The aim of the investigation presented here was to identify allergens causing IBH. A cDNA library expressing recombinant Culicoides nubeculosus proteins was screened using affinity-purified serum from an IBH-affected horse. Screening of the library resulted in identification of one immunoreactive clone. The sequence of the cDNA insert was determined and revealed a 600 bp insert with an open reading frame coding for a 78 amino acid long protein, called rCul n 1. Analysis of the deduced amino acid sequence revealed an identity of 67-78% to the C-terminal part of the 318 amino acid long ribosomal P0 protein from other Diptera. Furthermore, the 38 C-terminal amino acids displayed an identity of 57% with the C-terminal part of the acidic ribosomal protein P2 from Aspergillus fumigatus. The cDNA insert was subcloned and expressed as a [His]6-tagged protein in Escherichia coli and purified using Ni2(+)-chelate affinity chromatography. The 10kDa recombinant Cul n 1 protein bound the affinity-purified antibody fraction used for screening the expression library. Determination of IgE and IgG levels against rCul n 1 by ELISA in sera from 19 IBH-affected and 18 Swiss control horses and in sera from eight control horses living in Iceland showed no significant differences between the three groups of horses (median IgE levels = 60, 49 and 44 relative ELISA units, respectively). rCul n 1 did not induce sulfidoleukotriene (sLT) release from peripheral blood leukocytes of IBH-affected horses (N = 5), although sLT release was induced with the Culicoides whole body extract.
Collapse
Affiliation(s)
- H Althaus
- Division of Immunogenetics, Institute of Animal Genetics, Nutrition and Housing, Bremgartenstrasse 109 A, 3012-Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Marti E, Horohov DW, Antzak DF, Lazary S, Paul Lunn D. Advances in equine immunology: Havemeyer workshop reports from Santa Fe, New Mexico, and Hortobagy, Hungary. Vet Immunol Immunopathol 2003; 91:233-43. [PMID: 12586486 DOI: 10.1016/s0165-2427(02)00314-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The horse has been human kind's most important partner throughout history. Similarly, in the field of immunology, many critical scientific advances have depended on the horse. Equine immunology today is an active and important field of study, with a focus on control of many common infectious diseases and immunopathologic conditions of broad comparative interest. In 2001 two major equine immunology workshops were held, in Santa Fe, USA, and in Hortobagy, Hungary, with major sponsorship from the Havemeyer Foundation. This report summarizes the scientific themes and foci of those meetings.
Collapse
Affiliation(s)
- Eliane Marti
- Division of Clinical Immunology, Department of Clinical Veterinary Medicine, Länggass-Strasse 124, 3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Eder C, Curik I, Brem G, Crameri R, Bodo I, Habe F, Lazary S, Sölkner J, Marti E. Influence of environmental and genetic factors on allergen-specific immunoglobulin-E levels in sera from Lipizzan horses. Equine Vet J 2001; 33:714-20. [PMID: 11770995 DOI: 10.2746/042516401776249264] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate whether allergen-specific IgE production is influenced by environmental and genetic factors, IgE levels against 2 mould extracts (Alternaria alternata [Alt a] and Aspergillus fumigatus [Asp f]) and against recombinant (r) rAlt a 1, rAsp f 7 and rAsp f 8 were determined by ELISA in sera from 448 Lipizzan horses living in 6 studfarms. Statistical evaluation showed a significant effect of studfarm-specific environment on IgE levels against the different allergens, but genetic factors also influenced allergen-specific IgE production: an heritability of 0.33 was found for IgE levels against the 2 mould extracts and of 0.21 for rAsp f 8-specific IgE. Heritability estimates for rAlt a 1- and rAsp f 7-specific IgE were negligible. Investigations for a possible association between Major Histocompatibility Complex (MHC) class I antigens and specific IgE levels were carried out. The most consistent significant association was found between the equine leucocyte antigen (ELA) A8 and undetectable IgE titres against rAsp f 7 and rAsp f 8. Significant ELA associations were also demonstrated between ELA A1 and higher specific IgE levels, between ELA A14 and lower IgE levels against the mould extracts and in one studfarm between ELA Be27 and lower Aspergillus-specific IgE levels.
Collapse
Affiliation(s)
- C Eder
- Division of Immunogenetics, Institute of Animal Breeding, Berne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wilson AD, Harwood LJ, Björnsdottir S, Marti E, Day MJ. Detection of IgG and IgE serum antibodies to Culicoides salivary gland antigens in horses with insect dermal hypersensitivity (sweet itch). Equine Vet J 2001; 33:707-13. [PMID: 11770994 DOI: 10.2746/042516401776249363] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We postulated that all horses exposed to the bites of Culcoides (midges) would have an antibody response to the antigen secreted in Culcoides saliva, but that IgE antibody would be restricted to allergic individuals. Using immunohistology on sections of fixed Culicoides, we have demonstrated the presence of antibodies in horse serum which recognise Culicoides salivary glands. Antibodies were detected in the serum of horses with insect dermal hypersensitivity and in the serum of normal horses exposed to Culicoides bites. In contrast, no antibodies were detected in serum from native Icelandic ponies which had not been exposed to Culicoides. Anti-salivary gland IgG antibodies were detected in serum from both allergic and healthy horses exposed to Culicoides. IgE antibodies were only detected in horses with signs of insect dermal hypersensitivity, they were not found in serum of healthy controls nor in the serum of horses with a history of hypersensitivity but in remission at the time of sampling. Using western blotting we confirmed the presence of antibodies to Culicoides antigens and demonstrated that individual horses react to different numbers of antigens. This paper demonstrates the ability of serum from allergic horses to detect Culcoides antigens and will enable further studies to isolate and characterise the allergens.
Collapse
Affiliation(s)
- A D Wilson
- Department of Pathology and Microbiology, University of Bristol, School of Medical Sciences, UK
| | | | | | | | | |
Collapse
|
34
|
van der Haegen A, Griot-Wenk M, Welle M, Busato A, von Tscharner C, Zurbriggen A, Marti E. Immunoglobulin-E-bearing cells in skin biopsies of horses with insect bite hypersensitivity. Equine Vet J 2001; 33:699-706. [PMID: 11770993 DOI: 10.2746/042516401776249444] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate, with immunohistochemistry and in situ hybridisation, if immunoglobulin-E (IgE) and mast cells are involved in the pathogenesis of insect bite hypersensitivity (IBH), an allergic dermatitis of horses. In tissue sections fixed in paraformaldehyde (PFA) for <24 h, significantly more IgE protein-bearing cells were found in the dermis and epidermis of acute and chronic IBH lesions than in skin biopsies from healthy horses (medians = 466, 236 and 110 cells/mm2, respectively; P < or = 0.01). More IgE-mRNA positive (+) cells were observed in the dermis of acute IBH lesions than in the dermis of healthy skin (median = 2.8 vs. 0.0 cells/mm2; P < or = 0.01). Significantly, more mast cells were detected with metachromatic (median = 160 vs. 62 cells/mm2; P < or = 0.001) and tryptase-specific stainings (median = 120 vs. 69 cells/mm2; P < or = 0.001) in the dermis of acute IBH biopsies compared to healthy skin. No chymase+ mast cells were found in any skin biopsy. IBH lesions fixed in PFA for >24 h were compared to dermatomycosis (DM) lesions; IBH biopsies contained a similar number of IgE-protein+ cells to DM biopsies (median = 249 vs. 192 cells/mm2; P = 0.08) but had significantly more IgE-mRNA+, metachromatic and tryptase+ mast cells than DM biopsies. This study suggests an involvement of IgE-mediated immune reactions in the pathogenesis of IBH as well as, sometimes, in dermatomycosis. Using double labelling, cells which expressed IgE protein and contained mast cell enzymes were detected.
Collapse
|
35
|
Griot-Wenk ME, Obexer-Ruff G, Fluri A, Marti E. Partial sequences of feline and caprine immunoglobulin epsilon heavy chain cDNA and comparative binding studies of recombinant IgE fragment-specific antibodies across different species. Vet Immunol Immunopathol 2000; 75:59-69. [PMID: 10889299 DOI: 10.1016/s0165-2427(00)00183-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Parts of the feline and caprine IgE epsilon heavy chain cDNA (third and fourth constant domains, IgEf3/4) were cloned, sequenced, and expressed to raise antibodies (Abs). The DNA and derived protein sequences of the feline recombinant IgEf (rIgEf) shared high homology with the analogous canine parts (81% at the nucleotide and 71% at the protein levels) and the caprine with the ovine ones (95%/84%), respectively. The polyclonal Abs raised in chickens against the feline and caprine rIgEf3/4 were subjected to a comparative binding study utilizing an ELISA including rIgEf and specific Abs to these rIgEf from dog and horse (rIgEf2 and rIgEf3/4) and sheep (rIgEf3/4). All but the ovine-specific rIgEf3/4 Ab were polyclonal, which had been raised in chickens, and bound to most applied rIgEf; the ovine-specific monoclonal mouse Ab recognized only in addition to ovine rIgEf3/4 the closely related caprine rIgEf3/4. Significant, positive correlations were detected between binding reactions of the polyclonal Abs in ELISA and percentage protein sequence homology (p<0.01). Thus, the newly described feline and caprine IgE nucleotide sequences and corresponding Abs represent useful tools for further species-specific and comparative allergy and disease-associated research.
Collapse
Affiliation(s)
- M E Griot-Wenk
- Institute of Animal Breeding, Bremgartenstrasse 109a, University of Bern, 3012, Bern, Switzerland.
| | | | | | | |
Collapse
|