1
|
Jansons J, Sominskaya I, Petrakova N, Starodubova ES, Smirnova OA, Alekseeva E, Bruvere R, Eliseeva O, Skrastina D, Kashuba E, Mihailova M, Kochetkov SN, Ivanov AV, Isaguliants MG. The Immunogenicity in Mice of HCV Core Delivered as DNA Is Modulated by Its Capacity to Induce Oxidative Stress and Oxidative Stress Response. Cells 2019; 8:cells8030208. [PMID: 30823485 PMCID: PMC6468923 DOI: 10.3390/cells8030208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
HCV core is an attractive HCV vaccine target, however, clinical or preclinical trials of core-based vaccines showed little success. We aimed to delineate what restricts its immunogenicity and improve immunogenic performance in mice. We designed plasmids encoding full-length HCV 1b core and its variants truncated after amino acids (aa) 60, 98, 152, 173, or up to aa 36 using virus-derived or synthetic polynucleotides (core191/60/98/152/173/36_191v or core152s DNA, respectively). We assessed their level of expression, route of degradation, ability to trigger the production of reactive oxygen species/ROS, and to activate the components of the Nrf2/ARE antioxidant defense pathway heme oxygenase 1/HO-1 and NAD(P)H: quinone oxidoreductase/Nqo-1. All core variants with the intact N-terminus induced production of ROS, and up-regulated expression of HO-1 and Nqo-1. The capacity of core variants to induce ROS and up-regulate HO-1 and Nqo-1 expression predetermined their immunogenicity in DNA-immunized BALB/c and C57BL/6 mice. The most immunogenic was core 152s, expressed at a modest level and inducing moderate oxidative stress and oxidative stress response. Thus, immunogenicity of HCV core is shaped by its ability to induce ROS and oxidative stress response. These considerations are important in understanding the mechanisms of viral suppression of cellular immune response and in HCV vaccine design.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Irina Sominskaya
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Natalia Petrakova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Elizaveta S Starodubova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Ekaterina Alekseeva
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Ruta Bruvere
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Olesja Eliseeva
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Dace Skrastina
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- RE Kavetsky Institite of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine.
| | - Marija Mihailova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Maria G Isaguliants
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- MP Chumakov Center for Research and Development of Immune and Biological Preparations of RAS, 108819 Moscow, Russia.
| |
Collapse
|
2
|
Yang X, Chen C, Tian H, Chi H, Mu Z, Zhang T, Yang K, Zhao Q, Liu X, Wang Z, Ji X, Yang H. Mechanism of ATP hydrolysis by the Zika virus helicase. FASEB J 2018; 32:5250-5257. [PMID: 29913559 DOI: 10.1096/fj.201701140r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During its life cycle, Zika virus (ZIKV), an arthropod-borne flavivirus that is associated with Guillain-Barré syndrome and causes microencephaly in fetuses and newborn children, encodes a critical and indispensable helicase domain that has 5'-triphosphatase activity and performs ATP hydrolysis to generate energy and thus, sustains unwinding of double-stranded RNA during ZIKV genome replication. Of these processes, ATP hydrolysis represents the most basic event; however, its dynamic mechanisms remain largely unknown, impeding the further understanding of the function of ZIKV helicase and the ongoing anti-ZIKV drug design. In this work, we determined the crystal structure of ZIKV helicase in complex with ADP-AlF3-Mn2+ and ADP-Mn2+ separately. The structural analysis indicates that these structures represent the intermediate state and posthydrolysis state, respectively, of the ATP hydrolysis process of ZIKV helicase. These findings, together with our earlier work, which identified the prehydrolysis state of ZIKV helicase, lead to a proposal of the ATP hydrolysis cycle for ZIKV helicase. On this basis, we used site-directed mutagenesis combined with an enzymatic study to identify successfully residues that are critical for the ATPase activity of ZIKV helicase; this will provide new ideas to understand the function for the key enzyme of ZIKV.-Yang, X., Chen, C., Tian, H., Chi, H., Mu, Z., Zhang, T., Yang, K., Zhao, Q., Liu, X., Wang, Z., Ji, X., Yang, H. Mechanism of ATP hydrolysis by the Zika virus helicase.
Collapse
Affiliation(s)
- Xiaoyun Yang
- School of Life Sciences, Tianjin University, Tianjin, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Hongliang Tian
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Heng Chi
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zhongyu Mu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tianqing Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Kailin Yang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Xiaohua Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
3
|
Starodubova E, Krotova O, Hallengärd D, Kuzmenko Y, Engström G, Legzdina D, Latyshev O, Eliseeva O, Maltais AK, Tunitskaya V, Karpov V, Bråve A, Isaguliants M. Cellular Immunogenicity of Novel Gene Immunogens in Mice Monitored by in Vivo Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elizaveta Starodubova
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Olga Krotova
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - David Hallengärd
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Yulia Kuzmenko
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Gunnel Engström
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Diana Legzdina
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Oleg Latyshev
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Olesja Eliseeva
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Anna Karin Maltais
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Vera Tunitskaya
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Vadim Karpov
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Andreas Bråve
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Maria Isaguliants
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| |
Collapse
|
4
|
Masalova OV, Lesnova EI, Shingarova LN, Tunitskaya VL, Ulanova TI, Burkov AN, Kushch AA. The combined application of nucleotide and amino acid sequences of NS3 hepatitis C virus protein, DNA encoding granulocyte macrophage colony-stimulating factor, and inhibitor of regulatory T cells induces effective immune responce against Hepatitis C virus. Mol Biol 2012. [DOI: 10.1134/s0026893312030077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Jin B, Wang RY, Qiu Q, Sugauchi F, Grandinetti T, Alter HJ, Shih JWK. Induction of potent cellular immune response in mice by hepatitis C virus NS3 protein with double-stranded RNA. Immunology 2007; 122:15-27. [PMID: 17451465 PMCID: PMC2265985 DOI: 10.1111/j.1365-2567.2007.02607.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Double-stranded RNA is produced during virus replication and, together with the viral antigen, is responsible for inducing host antivirus immunity. The hepatitis C virus (HCV) non-structural protein-3 (NS3) has been implicated in the immune evasion of HCV, and is one of the prime targets for inducing immunity against HCV infection. Mice were immunized with recombinant NS3 protein (rNS3) and poly (I:C) emulsified in Montanide ISA 720 (M720). Cytokine production was assayed by enzyme-linked immunospot assay, and CD4(+) IFN-gamma(+) T helper (Th) cells or CD8(+) IFN-gamma(+) cytotoxic T lymphocytes were detected by flow cytometry. Anti-NS3 titre and immunoglobulin G2a (IgG2a) and IgG1 levels were monitored by enzyme-linked immunosorbent assay. Administration of rNS3 formulated in poly (I:C) and M720 induced anti-NS3 titres with a predominantly IgG2a isotype comparable to those induced by rNS3 in CpG-ODN and M720. The cytokine profiles showed that this formulation induced a Th1-biased immune response with several-fold more interferon-gamma (IFN-gamma)-producing cells than interleukin-4-producing cells. In contrast, rNS3 in M720 induced a Th2-biased immune response. The frequency of IFN-gamma-producing CD4(+) and CD8(+) cells induced by rNS3 in poly (I:C) and M720 was significantly higher than that induced by rNS3, rNS3 in M720, or rNS3 in poly (I:C), and was comparable to that induced by rNS3 in CpG-ODN with M720. The antigen-specific CD8(+) T-cell immune response persisted for up to 7 months after immunization. In conclusion, poly (I:C) with rNS3 in M720 can elicit a strong and persistent Th1-biased immune response and a cytotoxic T-lymphocyte response through cross-priming in mice. This study highlighted a promising formulation for inducing an efficient cellular immune response against HCV that has potential for HCV vaccine development.
Collapse
Affiliation(s)
- Bo Jin
- Infectious Disease Section, Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Isaguliants MG, Petrakova NV, Kashuba EV, Suzdaltzeva YG, Belikov SV, Mokhonov VV, Prilipov AG, Matskova L, Smirnova IS, Jolivet-Reynaud C, Nordenfelt E. Immunization with hepatitis C virus core gene triggers potent T-cell response, but affects CD4+ T-cells. Vaccine 2004; 22:1656-65. [PMID: 15068848 DOI: 10.1016/j.vaccine.2003.09.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Numerous attempts to induce immunity against HCV core (HCV-C) by DNA immunization met serious difficulties in optimizing T-helper cell and antibody responses. Immunomodulatory properties of HCV-C could be blamed that seem to be dependent on the genotype of HCV source. Here, we characterized HCV-C gene from HCV 1b isolate 274933RU. Eukaryotic expression of HCV-C was effectively driven by CMVIE, while human elongation factor 1 alpha promoter directed low levels of HCV-C expression. C57BL/6 mice were immunized with CMVIE-driven HCV-C gene, and assessed for specific antibody production, T-cell proliferation and cytokine secretion. The number and proportion of CD19+, CD3+, CD3+/CD4+, and CD3+/CD8+ splenocytes in HCV-C gene recipients was evaluated by flow cytometry. A significant mounting drop in CD3+/CD4+ T-cell counts occurred in HCV-C gene-recipients as compared to the controls. Despite that, 75% of mice exhibited core-specific cellular reactivity revealed as high proliferative responses to HCV-C and HCV-C peptides. Stimulated T-cells secreted predominantly IFN-gamma and IL-2. A shift of epitope specificity was observed with the early response being broad, and the late limited to the HCV-C C-terminus. Thus, we demonstrate both T-cell immunogenicity and T-cell modulation by core of HCV 1b. Immune modulation by HCV core may affect host ability to mount long-lasting cellular and antibody response and should be dealt with in designing core-based HCV vaccines.
Collapse
|
7
|
Gao LF, Sun WS, Ma CH, Liu SX, Wang XY, Zhang LN, Cao YL, Zhu FL, Liu YG. Establishment of mice model with human viral hepatitis B. World J Gastroenterol 2004; 10:841-6. [PMID: 15040029 PMCID: PMC4727006 DOI: 10.3748/wjg.v10.i6.841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To establish a mice model of hepatitis B by using HBV-transgenic mice, and to transfer HBV-specific cytotoxic T lymphocytes (CTL) induced from syngeneic BALB/c mice immunized by a eukaryotic expression vector containing HBV complete genome DNA.
METHODS: HBV DNA was obtained from digested pBR322-2HBV and ligated with the vector pcDNA3. Recombinant pcDNA3-HBV was identified by restriction endonuclease assay and transfected into human hepatoma cell line HepG2 with lipofectin. ELISA was used to detect the expression of HBsAg in culture supernatant, and RT-PCR to determine the existence of HBV PreS1 mRNA. BALB/c mice were immunized with pcDNA3-HBV or pcDNA3 by intramuscular injection. ELISA was used to detect the expression of HBsAb in serum. MTT assay was used to measure non-specific or specific proliferation ability and specific killing activity of spleen lymphocytes. Lymphocytes from immunized mice were transferred into HBV-transgenic mice (2.5 × 107 per mouse). Forty-eight hours later, the level of serum protein and transaminase was detected with biochemical method, liver and kidney were sectioned and stained by HE to observe the pathological changes.
RESULTS: By enzyme digestion with Eco RI, Xho I and Hind III, the recombinant pcDNA3-HBV was verified to contain a single copy of HBV genome, which was inserted in the positive direction. HepG2 cells transfected with the recombinant could stably express PreS1 mRNA and HBsAg. After immunized by pcDNA3-HBV for 4 weeks, HBsAb was detected in the serum of BALB/c mice. The potential of spleen lymphocytes for both non-specific and specific proliferation and the specific killing activity against target cells were enhanced. The transgenic mice in model group had no significant changes in the level of serum protein but had an obvious increase of ALT and AST. The liver had obvious pathological changes, while the kidney had no evident damage.
CONCLUSION: A eukaryotic expression vector pcDNA3-HBV containing HBV complete genome is constructed successfully. HepG2 cells transfected with the recombinant can express PreS1 mRNA and HBsAg stably. Specific cellular immune response can be induced in mice immunized by pcDNA3-HBV. A mice model of acute hepatitis with HBV has been established.
Collapse
Affiliation(s)
- Li-Fen Gao
- Institute of Immunology, Medical College, Shandong University, Jinan 250012, Shandong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|