1
|
Rimawi I, Yanai S, Turgeman G, Yanai J. Whole transcriptome analysis in offspring whose fathers were exposed to a developmental insult: a novel avian model. Sci Rep 2023; 13:16499. [PMID: 37779136 PMCID: PMC10543553 DOI: 10.1038/s41598-023-43593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Although the effects of paternal exposure to insults on the offspring received limited attention in the past, it is currently gaining interest especially after understanding the mechanisms which may mediate such exposure effects. In the current study, the well-controlled avian model (Fayoumi) was utilized to investigate the effects of paternal exposure to the developmental insult, chlorpyrifos on the offspring's gene expression via mRNA and small RNA sequencing. Numerous mRNA gene expression changes were detected in the offspring after paternal exposure to the developmental insult, especially in genes related to neurogenesis, learning and memory. qPCR analysis of several genes, that were significantly changed in mRNA sequencing, confirmed the results obtained in mRNA sequencing. On the other hand, small RNA sequencing did not identify significant microRNA genes expression changes in the offspring after paternal exposure to the developmental insult. The effects of the paternal exposure were more pronounced in the female offspring compared to the male offspring. The results identified expression alterations in major genes (some of which were pertinent to the functional changes observed in other forms of early developmental exposure) after paternal insult exposure and provided a direction for future studies involving the most affected genes.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Sunny Yanai
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Rimawi I, Turgeman G, Avital-Cohen N, Rozenboim I, Yanai J. Parental Preconception and Pre-Hatch Exposure to a Developmental Insult Alters Offspring's Gene Expression and Epigenetic Regulations: An Avian Model. Int J Mol Sci 2023; 24:5047. [PMID: 36902484 PMCID: PMC10003510 DOI: 10.3390/ijms24055047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Parental exposure to insults was initially considered safe if stopped before conception. In the present investigation, paternal or maternal preconception exposure to the neuroteratogen chlorpyrifos was investigated in a well-controlled avian model (Fayoumi) and compared to pre-hatch exposure focusing on molecular alterations. The investigation included the analysis of several neurogenesis, neurotransmission, epigenetic and microRNA genes. A significant decrease in the vesicular acetylcholine transporter (SLC18A3) expression was detected in the female offspring in the three investigated models: paternal (57.7%, p < 0.05), maternal (36%, p < 0.05) and pre-hatch (35.6%, p < 0.05). Paternal exposure to chlorpyrifos also led to a significant increase in brain-derived neurotrophic factor (BDNF) gene expression mainly in the female offspring (27.6%, p < 0.005), while its targeting microRNA, miR-10a, was similarly decreased in both female (50.5%, p < 0.05) and male (56%, p < 0.05) offspring. Doublecortin's (DCX) targeting microRNA, miR-29a, was decreased in the offspring after maternal preconception exposure to chlorpyrifos (39.8%, p < 0.05). Finally, pre-hatch exposure to chlorpyrifos led to a significant increase in protein kinase C beta (PKCß; 44.1%, p < 0.05), methyl-CpG-binding domain protein 2 (MBD2; 44%, p < 0.01) and 3 (MBD3; 33%, p < 0.05) genes expression in the offspring. Although extensive studies are required to establish a mechanism-phenotype relationship, it should be noted that the current investigation does not include phenotype assessment in the offspring.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Nataly Avital-Cohen
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Israel Rozenboim
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
4
|
Mech AM, Merteroglu M, Sealy IM, Teh MT, White RJ, Havelange W, Brennan CH, Busch-Nentwich EM. Behavioral and Gene Regulatory Responses to Developmental Drug Exposures in Zebrafish. Front Psychiatry 2022; 12:795175. [PMID: 35082702 PMCID: PMC8785235 DOI: 10.3389/fpsyt.2021.795175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Developmental consequences of prenatal drug exposure have been reported in many human cohorts and animal studies. The long-lasting impact on the offspring-including motor and cognitive impairments, cranial and cardiac anomalies and increased prevalence of ADHD-is a socioeconomic burden worldwide. Identifying the molecular changes leading to developmental consequences could help ameliorate the deficits and limit the impact. In this study, we have used zebrafish, a well-established behavioral and genetic model with conserved drug response and reward pathways, to identify changes in behavior and cellular pathways in response to developmental exposure to amphetamine, nicotine or oxycodone. In the presence of the drug, exposed animals showed altered behavior, consistent with effects seen in mammalian systems, including impaired locomotion and altered habituation to acoustic startle. Differences in responses seen following acute and chronic exposure suggest adaptation to the presence of the drug. Transcriptomic analysis of exposed larvae revealed differential expression of numerous genes and alterations in many pathways, including those related to cell death, immunity and circadian rhythm regulation. Differential expression of circadian rhythm genes did not correlate with behavioral changes in the larvae, however, two of the circadian genes, arntl2 and per2, were also differentially expressed at later stages of development, suggesting a long-lasting impact of developmental exposures on circadian gene expression. The immediate-early genes, egr1, egr4, fosab, and junbb, which are associated with synaptic plasticity, were downregulated by all three drugs and in situ hybridization showed that the expression for all four genes was reduced across all neuroanatomical regions, including brain regions implicated in reward processing, addiction and other psychiatric conditions. We anticipate that these early changes in gene expression in response to drug exposure are likely to contribute to the consequences of prenatal exposure and their discovery might pave the way to therapeutic intervention to ameliorate the long-lasting deficits.
Collapse
Affiliation(s)
- Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Munise Merteroglu
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ian M. Sealy
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, England, United Kingdom
| | - Richard J. White
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - William Havelange
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Vassoler FM, Wimmer ME. Consequences of Parental Opioid Exposure on Neurophysiology, Behavior, and Health in the Next Generations. Cold Spring Harb Perspect Med 2021; 11:a040436. [PMID: 32601130 PMCID: PMC8485740 DOI: 10.1101/cshperspect.a040436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substance abuse and the ongoing opioid epidemic represents a large societal burden. This review will consider the long-term impact of opioid exposure on future generations. Prenatal, perinatal, and preconception exposure are reviewed with discussion of both maternal and paternal influences. Opioid exposure can have long-lasting effects on reproductive function, gametogenesis, and germline epigenetic programming, which can influence embryogenesis and alter the developmental trajectory of progeny. The potential mechanisms by which preconception maternal and paternal opioid exposure produce deleterious consequences on the health, behavior, and physiology of offspring that have been identified by clinical and animal studies will be discussed. The timing, nature, dosing, and duration of prenatal opioid exposure combined with other important environmental considerations influence the extent to which these manipulations affect parents and their progeny. Epigenetic inheritance refers to the transmission of environmental insults across generations via mechanisms independent of the DNA sequence. This topic will be further explored in the context of prenatal, perinatal, and preconception opioid exposure for both the maternal and paternal lineage.
Collapse
Affiliation(s)
- Fair M Vassoler
- Tufts University, Cummings School of Veterinary Medicine, Grafton, Massachusetts 01536, USA
| | - Mathieu E Wimmer
- Department of Psychology and Program in Neuroscience, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
6
|
Wen X, Lawal OD, Belviso N, Matson KL, Wang S, Quilliam BJ, Meador KJ. Association Between Prenatal Opioid Exposure and Neurodevelopmental Outcomes in Early Childhood: A Retrospective Cohort Study. Drug Saf 2021; 44:863-875. [PMID: 34100263 DOI: 10.1007/s40264-021-01080-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Several studies have reported increasing prevalence of prescription opioid use among pregnant women. However, little is known regarding the effects of maternal opioid use on neurodevelopmental disorders in early childhood in pregnant women with no evidence of opioid use disorders or drug dependence. OBJECTIVE The aim of this study was to quantify the association between prenatal opioid exposure from maternal prescription use and neurodevelopmental outcomes in early childhood. METHODS This retrospective study included pregnant women aged 12-55 years and their live-birth infants born from 2010 to 2012 present in Optum's deidentified Clinformatics® Data Mart database. Eligible infants born to mothers without opioid use disorders or drug dependence were followed till occurrence of neurodevelopmental disorders, loss to follow-up, or study end (December 31, 2017), whichever came first. Propensity score by fine stratification was applied to adjust for confounding by demographic characteristics, obstetric characteristics, maternal comorbid mental and pain conditions, and measures of burden of illnesses and to obtain adjusted hazard ratios (HR) and 95% confidence intervals (CI). Exposed and unexposed infants were compared on the incidence of neurodevelopmental disorders. RESULTS Of 24,910 newborns, 7.6% (1899) were prenatally exposed to prescription opioids. Overall, 1562 children were diagnosed with neurodevelopmental disorders, with crude incidence rates of 2.9 per 100 person-years in exposed children versus 2.5 per 100 person-years in unexposed children. After adjustment, we observed no association between fetal opioid exposure and the risk of neurodevelopmental disorders (HR 1.10; 95% CI 0.92-1.32). However, increased risk of neurodevelopmental disorders were observed in children with longer cumulative exposure duration (HR 1.70; 95% CI 1.05-2.96) or high cumulative opioid doses (HR 1.22; 95% CI 1.01-1.54). CONCLUSION AND RELEVANCE In pregnant women without opioid use disorders or drug dependence, maternal opioid use was not associated with increased risk of neurodevelopmental disorders in early childhood. However, increased risks of early neurodevelopmental disorders were observed in children born to women receiving prescription opioids for longer duration and at higher doses during pregnancy.
Collapse
Affiliation(s)
- Xuerong Wen
- Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Suite 265F, Kingston, RI, 02881, USA.
| | - Oluwadolapo D Lawal
- Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Suite 265F, Kingston, RI, 02881, USA
| | - Nicholas Belviso
- Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Suite 265F, Kingston, RI, 02881, USA
| | - Kelly L Matson
- Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Suite 265F, Kingston, RI, 02881, USA
| | - Shuang Wang
- Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Suite 265F, Kingston, RI, 02881, USA
| | - Brian J Quilliam
- College of Health Sciences, University of Rhode Island, Kingston, RI, USA
| | - Kimford J Meador
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, California, CA, USA
| |
Collapse
|
7
|
Reversal of neurobehavioral teratogenicity in animal models and human: Three decades of progress. Brain Res Bull 2019; 150:328-342. [DOI: 10.1016/j.brainresbull.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
|
8
|
Wang Y, Yao Y, Nie H, He X. Implication of protein kinase C of the left intermediate medial mesopallium in memory impairments induced by early prenatal morphine exposure in one-day old chicks. Eur J Pharmacol 2016; 795:94-100. [PMID: 27940175 DOI: 10.1016/j.ejphar.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
Previously we reported that prenatal morphine exposure during embryonic days 5-8 can cause cognitive deficits of one-trial passive avoidance learning (PAL) in one-day old chicks. Because protein kinase C (PKC) has been associated with memory capacity, we investigated the effects of prenatal morphine exposure on PKC isoforms expression in the left intermediate medial mesopallium (IMM) of chick brain at a time when memory tests were performed at 30, 120 and 360min respectively following training in PAL paradigm. We found that the level of PKCα in the membrane fractions in left IMM was decreased but that in the cytosol fractions showed a increased trend in prenatally morphine-exposed chicks with impaired long-term memory (120 and 360min). Moreover, the translocation of PKC δ from cytosol to membrane in left IMM was shown in prenatal morphine group which had significantly impaired long-term memory at 360min after training. Furthermore, there were no statistical differences between the two groups regarding the expressions of PKCα and PKC δ in the membrane fraction, although their levels in the cytosol fraction of prenatal morphine group which showed impaired intermediate-term memory at 30min after training, were quite different from that of prenatal saline group. Taken together, these results indicate that PKCα and PKC δ in the left IMM are differentially involved in the impairments of long-term memory induced by prenatal morphine exposure. Neither PKCα nor PKC δ in left IMM may be associated with the disruption of intermediate-term memory of chicks prenatally exposed to morphine.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical Humanities, Tianjin Medical University, Tianjin, PR China
| | - Yang Yao
- Department of Clinical Biochemistry, School of Medical Laboratory, Tianjin Medical University, Tianjin, PR China
| | - Han Nie
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| | - Xingu He
- School of Medical Humanities, Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
9
|
Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 2015; 40:61-87. [PMID: 24938210 PMCID: PMC4262892 DOI: 10.1038/npp.2014.147] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023]
Abstract
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose-response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures.
Collapse
Affiliation(s)
- Emily J Ross
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Devon L Graham
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Turgeman G, Pinkas A, Slotkin TA, Tfilin M, Langford R, Yanai J. Reversal of chlorpyrifos neurobehavioral teratogenicity in mice by allographic transplantation of adult subventricular zone-derived neural stem cells. J Neurosci Res 2011; 89:1185-93. [PMID: 21520219 DOI: 10.1002/jnr.22631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/07/2010] [Accepted: 01/27/2011] [Indexed: 01/25/2023]
Abstract
Neurobehavioral teratogenicity can be reversed with transplantation of neural stem cells. However, the usefulness of this therapy would be greatly enhanced by employing adult stem cells. In pursuit of this this goal, we developed a model that uses subventricular zone (SVZ) cells. HS/Ibg mice were exposed prenatally to chlorpyrifos on gestational days 9-18 (3 mg/kg/day, SC) in order to induce deficits in their performance in the Morris water maze test. Both the control and the exposed offspring were transplanted with SVZ cells (or vehicle) on postnatal day 35; this actually represents an allogenic transplantation, because the HS/Ibg strain is a heterogeneous stock. The transplanted cells were later observed in the host brain by DiI tracing, and their initial differentiation to cholinergic neurons and astrocytes was ascertained. On postnatal day 80, animals that had been exposed prenatally to chlorpyrifos displayed impaired Morris water maze performance, requiring more time to reach the platform. Transplantation of adult SVZ-derived neural stem cells (NSC) reversed the deficits. Applying autologous transplantation provides an important demonstration that the methodological obstacles of immunological rejection and the ethical concerns related to using embryonic stem cells may be successfully bypassed in developing stem cell therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gadi Turgeman
- Department of Molecular Biology, Ariel University Center of Samaria, Ariel, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Kazma M, Izrael M, Revel M, Chebath J, Yanai J. Survival, differentiation, and reversal of heroin neurobehavioral teratogenicity in mice by transplanted neural stem cells derived from embryonic stem cells. J Neurosci Res 2010; 88:315-23. [PMID: 19746435 DOI: 10.1002/jnr.22193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell therapies in animal models of neurobehavioral defects are normally derived from neural stem cells (NSC) of the developing cortex. However, the clinical feasibility of NSC therapies would be greatly improved by deriving transplanted cells and from a tissue culture source that is self-renewing, containing cells that potentially differentiate into the desired neuronal phenotypes. These cultures can be engineered to contain the appropriate factors to support their therapeutic action and likely evoke lesser immune reactions. In the current study, we employed our model of mice neurobehaviorally impaired via prenatal exposure to heroin, to test the therapeutic efficacy of NSC derived from murine embryonic stem cells culture (ESC). The culture contained elongated bipolar cells, 90% of which are positive for nestin, the intermediate filament protein found in neural precursors. After removal of growth factors, the NSC differentiated into neurons (34.0% +/- 3.8% NF-160 positive), including cholinergic cells (ChAT positive), oligodendrocytes (29.9% +/- 4.2% O(4)), and astrocytes (36.1% +/- 4.7% GFAP positive). Reverse transcriptase polymerase chain reaction (RT-PCR) analysis confirmed the immunocytochemical findings. Mice made deficient in Morris maze behavior by prenatal heroin exposure (10 mg/kg heroin s.c. on gestational days 9-18) were transplanted into the hippocampus region on postnatal day 35 with the ES culture-derived NSC (ES-NSC) labeled with dialkylcarbocyanine (Dil) cell tracker. Dil+ and NF160+ cells were detected in the hippocampal region (50% +/- 8% survival). The transplantation completely restored maze performance to normal; e.g., on day 3, transplantation improved the behavior from the deficient level of 11.9-sec latency to the control of 5.6-sec latency (44.5% improvement).
Collapse
Affiliation(s)
- Meital Kazma
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
12
|
Davis CP, Franklin LM, Johnson GS, Schrott LM. Prenatal oxycodone exposure impairs spatial learning and/or memory in rats. Behav Brain Res 2010; 212:27-34. [PMID: 20307587 DOI: 10.1016/j.bbr.2010.03.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
Recent changes in demographic patterns of drug use have resulted in the increased non-medical use of prescription opiates. These users are younger and more likely to be female, which has the potential for increasing rates of in utero exposure. Therefore, we developed a rat model that simulates a prescription opiate-dependent woman who becomes pregnant. Adult female Sprague-Dawley rats were treated for 30 days via oral gavage with ascending doses of oxycodone HCl up to a final dose of 15mg/kg/day, which was maintained during breeding and gestation. Controls were treated with water. The adult male offspring of these treated dams were tested on the radial arm maze, the Morris water maze (with a short and a long intertrial interval), and a spatial T-maze. Prenatal oxycodone exposure led to a deficit in the radial arm maze characterized by a greater number of reference memory errors, especially in the beginning of testing. In contrast, in the T-maze, prenatal oxycodone-exposed rats learned the task as well as well as the prenatal water controls. However, they had a modest deficit in retention of the task when assessed 5 days after acquisition training ended. For the Morris water maze, the intertrial interval affected the pattern of learning. While there was no deficit when the training had a short intertrial interval, when there was a long intertrial interval, prenatal oxycodone-exposed rats had poorer acquisition. The spatial learning deficit was characterized by and increased latency to find and a greater distance traveled to the platform in the prenatal oxycodone-exposed rats. These data were corroborated by analysis of the behavioral search strategy, which showed a decreased use of spatial strategies and an increase in non-spatial strategies, especially wall-hugging, in prenatal oxycodone-exposed rats as compared to prenatal water control rats on day 2 of acquisition. These results indicate that prenatal oxycodone exposure consistently impairs learning and memory in a battery of spatial tasks.
Collapse
Affiliation(s)
- Chris P Davis
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
13
|
Pinkas A, Slotkin TA, Brick-Turin Y, Van der Zee EA, Yanai J. Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model. Neurotoxicol Teratol 2009; 32:182-6. [PMID: 19945530 DOI: 10.1016/j.ntt.2009.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/04/2009] [Accepted: 11/21/2009] [Indexed: 12/15/2022]
Abstract
Perfluorinated alkyls are widely-used agents that accumulate in ecosystems and organisms because of their slow rate of degradation. There is increasing concern that these agents may be developmental neurotoxicants and the present study was designed to develop an avian model for the neurobehavioral teratogenicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Fertilized chicken eggs were injected with 5 or 10mg/kg of either compound on incubation day 0. On the day of hatching, imprinting behavior was impaired by both compounds. We then explored underlying mechanisms involving the targeting of protein kinase C (PKC) isoforms (alpha, beta, gamma) in the intermedial part of the hyperstriatum ventrale, the region most closely associated with imprinting. With PFOA exposure, cytosolic PKC concentrations were significantly elevated for all three isoforms; despite the overall increase in PKC expression, membrane-associated PKC was unaffected, indicating a defect in PKC translocation. In contrast, PFOS exposure evoked a significant decrease in cytosolic PKC, primarily for the beta and gamma isoforms, but again without a corresponding change in membrane-associated enzyme; this likely partial, compensatory increases in translocation to offset the net PKC deficiency. Our studies indicate that perfluorinated alkyls are indeed developmental neurotoxicants that affect posthatch cognitive performance but that the underlying synaptic mechanisms may differ substantially among the various members of this class of compounds, setting the stage for disparate outcomes later in life.
Collapse
Affiliation(s)
- Adi Pinkas
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University, Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
14
|
Billauer-Haimovitch H, Slotkin TA, Dotan S, Langford R, Pinkas A, Yanai J. Reversal of chlorpyrifos neurobehavioral teratogenicity in mice by nicotine administration and neural stem cell transplantation. Behav Brain Res 2009; 205:499-504. [PMID: 19682500 DOI: 10.1016/j.bbr.2009.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 01/12/2023]
Abstract
Identifying the mechanisms underlying the adverse effects of developmental neurotoxicants enables the design of therapies that can potentially reverse neurobehavioral deficits in adulthood. We administered chlorpyrifos (CPF), a model organophosphate pesticide to pregnant mice and identified visuospatial deficits in adult offspring using performance in the Morris maze. We then evaluated two strategies to reverse the effects, nicotine administration and transplantation of neural stem cells. Daily administration of nicotine prior to behavioral testing did not alter maze performance by itself, but completely reversed the deficits evoked by prenatal CPF exposure. Similarly, control animals grafted with neural stem cells in adolescence did not show any alterations in behavioral performance as adults, but the grafts completely reversed the effects of prenatal CPF treatment. This study thus provides a model for the development and application of both pharmacologic and cell-based therapies to offset the effects of neurobehavioral teratogens.
Collapse
Affiliation(s)
- Hana Billauer-Haimovitch
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Neurobehavioral teratogenicity of sarin in an avian model. Neurotoxicol Teratol 2009; 31:406-12. [PMID: 19660543 DOI: 10.1016/j.ntt.2009.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/21/2022]
Abstract
Nerve gas organophosphates like sarin are likely to be used in urban terrorism, leading to widespread exposures of pregnant women and young children. Here, we established a model for sarin neurobehavioral teratogenicity in the developing chick so as to explore the consequences of apparently subtoxic sarin exposure and the mechanisms underlying synaptic and behavioral deficits. Chicken eggs were injected with sarin (2, 6 and 12 microg/kg) on incubation days 2 and 6, treatments that did not decrease hatching and did not evoke dysmorphology. After hatching the chicks were tested for filial imprinting and neurochemical markers known to be critical for imprinting. Imprinting was reduced at 2 and 6 microg/kg but not at the highest dose. Acetylcholinesterase and choline acetyltransferase were unaffected but sarin reduced the concentration of the high-affinity choline transporter, the rate-limiting factor in acetylcholine utilization. The concentration of PKC isoforms was assessed in the imprinting-related intermediate part of the medial hyperstriatum ventrale, the region most closely associated with cholinergic function in imprinting behavior. Sarin reduced the concentration of all isoforms (alpha, beta, gamma) with a similar, biphasic dose-response curve to that seen for behavioral performance, a relationship noted in previous work with organophosphate pesticides. Our results indicate that otherwise subtoxic exposures to sarin produce neurodevelopmental deficits; since we utilized a chick model, which is devoid of maternal confounds that are present in mammalian development, the adverse effects of sarin are mediated directly in the developing organism.
Collapse
|
16
|
Slotkin TA, Lassiter TL, Ryde IT, Wrench N, Levin ED, Seidler FJ. Consumption of a high-fat diet in adulthood ameliorates the effects of neonatal parathion exposure on acetylcholine systems in rat brain regions. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:916-22. [PMID: 19590683 PMCID: PMC2702406 DOI: 10.1289/ehp.0800459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/03/2009] [Indexed: 05/08/2023]
Abstract
BACKGROUND Developmental exposure to a wide variety of developmental neurotoxicants, including organophosphate pesticides, evokes late-emerging and persistent abnormalities in acetylcholine (ACh) systems. We are seeking interventions that can ameliorate or reverse the effects later in life. OBJECTIVES We administered parathion to neonatal rats and then evaluated whether a high-fat diet begun in adulthood could reverse the effects on ACh systems. METHODS Neonatal rats received parathion on postnatal days 1-4 at 0.1 or 0.2 mg/kg/day, straddling the cholinesterase inhibition threshold. In adulthood, half the animals were switched to a high-fat diet for 8 weeks. We assessed three indices of ACh synaptic function: nicotinic ACh receptor binding, choline acetyltransferase activity, and hemicholinium-3 binding. Determinations were performed in brain regions comprising all the major ACh projections and cell bodies. RESULTS Neonatal parathion exposure evoked widespread abnormalities in ACh synaptic markers, encompassing effects in brain regions possessing ACh projections and ACh cell bodies. In general, males were affected more than females. Of 17 regional ACh marker abnormalities (10 male, 7 female), 15 were reversed by the high-fat diet. CONCLUSIONS A high-fat diet reverses neurodevelopmental effects of neonatal parathion exposure on ACh systems. This points to the potential for nonpharmacologic interventions to offset the effects of developmental neurotoxicants. Further, cryptic neurodevelopmental deficits evoked by environmental exposures may thus engender a later preference for a high-fat diet to maintain normal ACh function, ultimately contributing to obesity.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Han TZ. Prenatal exposure to heroin in mice elicits memory deficits that can be attributed to neuronal apoptosis. Neuroscience 2009; 160:330-8. [DOI: 10.1016/j.neuroscience.2009.02.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/16/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
18
|
Yanai J, Brick-Turin Y, Dotan S, Langford R, Pinkas A, Slotkin TA. A mechanism-based complementary screening approach for the amelioration and reversal of neurobehavioral teratogenicity. Neurotoxicol Teratol 2009; 32:109-13. [PMID: 19217940 DOI: 10.1016/j.ntt.2009.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/10/2008] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
The identification of mechanisms and outcomes for neurobehavioral teratogenesis is critical to our ability to develop therapies to ameliorate or reverse the deleterious effects of exposure to developmental neurotoxicants. We established mechanistically-based complementary models for the study of cholinergic systems in the mouse and the chick, using both environmental neurotoxicants (chlorpyrifos, perfluoroalkyls) and drugs of abuse (heroin, nicotine, PCP). Behavioral evaluations were made using the Morris maze in the mouse, evaluating visuospatial memory related to hippocampal cholinergic systems, and imprinting in the chick, examining behavior dependent on cholinergic innervation of the IMHV. In both models we demonstrated the dependence of neurobehavioral deficits on impairment of cholinergic receptor-induced expression, and translocation of specific PKC isoforms. Understanding this mechanism, we were able to reverse both the synaptic and behavioral deficits with administration of neural progenitors. We discuss the prospects for clinical application of neural progenitor therapy, emphasizing protocols for reducing or eliminating immunologic rejection, as well as minimizing invasiveness of procedures through development of intravenous administration protocols.
Collapse
Affiliation(s)
- Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology The Hebrew University-Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
19
|
Protein kinase C is a target for diverse developmental neurotoxicants: transcriptional responses to chlorpyrifos, diazinon, dieldrin and divalent nickel in PC12 cells. Brain Res 2009; 1263:23-32. [PMID: 19368821 DOI: 10.1016/j.brainres.2009.01.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 01/01/2023]
Abstract
Unrelated developmental neurotoxicants can elicit similar functional outcomes, whereas agents in the same class may differ. We compared two organophosphate insecticides (chlorpyrifos, diazinon) with an organochlorine (dieldrin) and a metal (Ni(2+)) for similarities and differences in their effects on gene expression encoding subtypes of protein kinase C and their modulators, a cell signaling cascade that integrates the actions of neurotrophic factors involved in brain development. We conducted evaluations in PC12 cells, a model for neuronal development, with each agent introduced at 30 microM for 24 or 72 h, treatments devoid of cytotoxicity. Chlorpyrifos evoked by far the largest effect, with widespread upregulation of multiple genes; the effects were greater during neurodifferentiation than when cells were exposed prior to differentiation. Diazinon had smaller and less widespread effects, consistent with its lesser long-term impact on synaptic function and behavior noted for in vivo exposures in developing rats. Surprisingly, the effects of diazinon, dieldrin and Ni(2+) showed basic similarities despite the fact that all three come from different classes of toxicants. Our findings provide some of the first evidence for a specific mechanistic cascade contributing to the cholinesterase-independent developmental neurotoxicant actions of chlorpyrifos and its differences from diazinon, while at the same time identifying mechanistic convergence between otherwise unrelated toxicants that provides predictions about common neurodevelopmental outcomes. These results further show how combined use of cell cultures and microarray technology can guide future in vivo work on diverse developmental neurotoxicants.
Collapse
|
20
|
Ben-Shaanan TL, Ben-Hur T, Yanai J. Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain. Mol Psychiatry 2008; 13:222-31. [PMID: 17876325 DOI: 10.1038/sj.mp.4002084] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Grafting of neural progenitors has been shown to reverse a wide variety of neurobehavioral defects. While their role of replacing injured cells and restoring damaged circuitries has been shown, it is widely accepted that this cannot be the only mechanism, as therapy can occur even when an insufficient number of transplanted cells are found. We hypothesized that one major mechanism by which transplanted neural progenitors exert their therapeutic effect is by enhancing endogenous cells production. Consequently, in an allographic model of transplantation, prenatally heroin-exposed genetically heterogeneous (HS) mice were made defective in their hippocampal neurobehavioral function by exposing their mothers to heroin (10 mg kg(-1) heroin on gestation days 9-18). Hippocampal damage was confirmed by deficient performance in the Morris maze (P<0.009), and decreased production of endogenous cells in the dentate gyrus by 39% was observed. On postnatal day 35, they received an HS-derived neural progenitors transplant followed by repeated bromodeoxyuridine injections. The transplant returned endogenous cells production to normal levels (P<0.006) and reversed the behavioral defects (P<0.03), despite the fact that only 0.0334% of the transplanted neural progenitors survived and that they differentiated mainly to astrocytes. An immunological study demonstrated the presence of macrophages and T cells as a possible explanation for the paucity of the transplanted cells. This study suggests one mechanism for the therapeutic action of neural progenitors, the enhancement of the production of endogenous cells, pointing to future clinical applications in this direction by use of neural progenitors or by analogous cell-inducing techniques.
Collapse
Affiliation(s)
- T L Ben-Shaanan
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
21
|
Schrott LM, Franklin L'TM, Serrano PA. Prenatal opiate exposure impairs radial arm maze performance and reduces levels of BDNF precursor following training. Brain Res 2008; 1198:132-40. [PMID: 18262500 DOI: 10.1016/j.brainres.2008.01.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 02/07/2023]
Abstract
Prenatal exposure to opiates, which is invariably followed by postnatal withdrawal, can affect cognitive performance. To further characterize these effects, we examined radial 8-arm maze performance and expression of brain derived neurotrophic factor (BDNF) in male rats prenatally exposed to the opiate l-alpha-acetylmethadol (LAAM). Female rats received 1.0 mg/kg/day LAAM or water via daily oral gavage for 28 days prior to breeding, during breeding, and throughout pregnancy. Pups were fostered to non-treated lactating dams at birth and underwent neonatal opiate withdrawal. At 5-6 months, prenatal water- and LAAM-exposed males (n=6 each; non-littermates) received radial arm maze training consisting of ten trials a day for five days and three retention trials on day six. Rats prenatally exposed to LAAM had poorer maze performance, decreased percent correct responding and more reference and working memory errors than prenatal water-treated controls. However, they were able to acquire the task by the end of training. There were no differences between the groups on retention 24 h after testing. Following retention testing, hippocampi were removed and protein extracted from cytosol and synaptic fractions. Western blots were used to measure levels of mature and precursor BDNF protein, as well as the BDNF receptor TrkB. BDNF precursor protein was significantly decreased in the synaptic fraction of trained prenatal LAAM-treated rats compared to prenatal water-treated trained controls. No effects were found for the full-length or truncated TrkB receptor. In untrained rats, prenatal treatment did not affect any of the measures. These data suggest that prenatal opiate exposure and/or postnatal withdrawal compromise expression of proteins involved in the neural plasticity underlying learning.
Collapse
Affiliation(s)
- Lisa M Schrott
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | | | |
Collapse
|
22
|
Katz S, Ben-Hur T, Ben-Shaanan TL, Yanai J. Reversal of heroin neurobehavioral teratogenicity by grafting of neural progenitors. J Neurochem 2007; 104:38-49. [PMID: 18004998 DOI: 10.1111/j.1471-4159.2007.05004.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major objective in identifying the mechanisms underlying neurobehavioral teratogenicity in an animal model is the possibility of designing therapies that reverse or offset teratogen-induced neural damage. In our previous studies, we identified deficits in hippocampal muscarinic cholinergic receptor-induced translocation of protein kinase C (PKC) gamma as the likely central factor responsible for the adverse behavioral effects of pre-natal heroin exposure. Neural progenitors (NP) have the ability to recover behavioral deficits after focal hippocampal damage. Therefore, we explored whether behavioral and synaptic defects could be reversed in adulthood by neural progenitor grafting. Pregnant mice were injected daily with 10 mg/kg of heroin on gestational days 9-18. In adulthood, offspring showed deficits in the Morris maze, a behavior dependent on the integrity of septohippocampal cholinergic synaptic function, along with the loss of the PKCgamma and PKCbetaII responses to cholinergic stimulation. Mice that were exposed pre-natally to heroin and vehicle control mice were then grafted in adulthood with NP. Importantly, most grafted cells differentiated to astrocytes. NP reversed the behavioral deficits (p = 0.0043) and restored the normal response of hippocampal PKCgamma and PKCbetaII (p = 0.0337 and p = 0.0265 respectively) to cholinergic receptor stimulation. The effects were specific as the PKCalpha isoform, which is unrelated to the behavioral deficits, showed almost no changes. Neural progenitor grafting thus offers an animal model for reversing neurobehavioral deficits originating in septohippocampal cholinergic defects elicited by pre-natal exposure to insults.
Collapse
Affiliation(s)
- Sophia Katz
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
23
|
Yanai J, Ben-Shaanan TL, Haimovitch H, Katz S, Kazma M. Mechanism-Based Approaches for the Reversal of Drug Neurobehavioral Teratogenicity. Ann N Y Acad Sci 2006; 1074:659-71. [PMID: 17105961 DOI: 10.1196/annals.1369.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the mechanism of neurobehavioral teratogenicity is the primary prerequisite for reversal of the defect. Progress in such studies can be best achieved if the investigation focuses on behaviors related to a specific brain region and innervation. Our model focused on teratogen-induced deficits in hippocampus-related eight-arm and Morris maze behaviors. Different "cholinergic" teratogens, mainly heroin, induced both pre- and postsynaptic hyperactivity in the hippocampal cholinergic innervation that terminated in desensitization of Protein Kinase C (PKC) isoforms to cholinergic receptor stimulation. Understanding this mechanism enabled its reversal with a pharmacological therapy-nicotine infusion. Studies by others provided similar findings by targeting the deficits respective to the model investigated. Consistently, destruction of the A10-septal dopaminergic pathways that downregulate the septohippocampal cholinergic innervation ameliorated maze performance. Grafting of embryonic differentiated cholinergic cells or neural progenitors similarly reversed the biochemical/molecular alterations and the resulting deficits. Reversal therapies offer a model for the understanding of neurobehavioral teratogenicity and, clinically, offer a model for potential treatment of these deficits. Whereas neural progenitor grafting appears to be the most effective treatment, pharmacological reversal with nicotine infusion seems to possess the most feasible and immediate therapy for neurobehavioral birth defects produced by various teratogens, including drugs. This is true even though the effect of pharmacological therapies is diffuse, affecting multiple areas of the brain. "Everybody is talking about the weather but nobody does anything about it." (Mark Twain).
Collapse
Affiliation(s)
- Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Box 12272, 91010 Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
24
|
Huleihel R, Yanai J. Disruption of the development of cholinergic-induced translocation/activation of PKC isoforms after prenatal heroin exposure. Brain Res Bull 2005; 69:174-81. [PMID: 16533667 DOI: 10.1016/j.brainresbull.2005.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/13/2005] [Accepted: 11/30/2005] [Indexed: 11/29/2022]
Abstract
Prenatal exposure of mice to heroin resulted in behavioral deficits present at adulthood, and related to septohippocampal cholinergic innervation accompanied by both pre- and postsynaptic cholinergic hyperactivity; including an increase in membrane PKC activity, and a desensitization of PKC to cholinergic input, which correlated highly with the behavioral performance, and was reversed by cholinergic grafting. The effect was shown in the behaviorally relevant PKCgamma and beta whereas the less behaviorally relevant PKCalpha isoform was not affected. The present study was designed to establish the effect of heroin exposure on the expression of the PKC isoforms level and on the more functionally relevant cholinergic translocation/activation of the isoforms throughout postnatal development. The hippocampi of mice pups, exposed to heroin transplacentally, were assayed after incubation with carbachol for PKC isoforms on postnatal days (PN) 1, 7, 14, 21, 30 and 50. Prenatal heroin exposure increased basal PKCgamma, beta and alpha levels. PKCgamma and alpha levels returned to control levels on PN50. While in PKCbeta, this increase lasted until PN50. Translocation/activation of the PKC isoforms gamma and beta by cholinergic receptor stimulation was present from PN1, concurrent with the presence of the isoforms. Prenatal exposure to heroin completely abolished the translocation/activation throughout the entire postnatal development. This defect was shown from the very beginning, PN1, the day when the PKC isoforms appear. The results suggest that the PKCgamma and beta isoforms are functional concurrent with their developmental appearance. Unlike findings on some other teratogens, the prenatal heroin effect on the isoforms function is similar throughout postnatal development.
Collapse
Affiliation(s)
- Rabab Huleihel
- Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel
| | | |
Collapse
|
25
|
Wormser U, Izrael M, Van der Zee EA, Brodsky B, Yanai J. A chick model for the mechanisms of mustard gas neurobehavioral teratogenicity. Neurotoxicol Teratol 2005; 27:65-71. [PMID: 15681122 DOI: 10.1016/j.ntt.2004.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
The chemical warfare blistering agent, sulfur mustard (SM), is a powerful mutagen and carcinogen. Due to its similarity to the related chemotherapy agents nitrogen mustard (mechlorethamine), it is expected to act as a developmental neurotoxicant. The present study was designed to establish a chick model for the mechanisms of SM on neurobehavioral teratogenicity, free of confounds related to mammalian maternal effects. Chicken eggs were injected with SM at a dose range of 0.0017-17.0 microg/kg of egg, which is below the threshold for dysmorphology, on incubation days (ID) 2 and 7, and then tests were conducted posthatching. Exposure to SM elicited significant deficits in the intermedial part of the hyperstriatum ventrale (IMHV)-related imprinting behavior. Parallel decreases were found in the level of membrane PKCgamma in the IMHV, while eliciting no net change in cytosolic PKCgamma. The chick, thus, provides a suitable model for the rapid evaluation of SM behavioral teratogenicity and elucidation of the mechanisms underlying behavioral anomalies. The results obtained, using a model that controls for confounding maternal effects, may be replicated in the mammalian model and provide the groundwork for studies designed to offset or reverse the SM-induced neurobehavioral defects in both avian and mammals.
Collapse
Affiliation(s)
- Uri Wormser
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
26
|
Izrael M, Van der Zee EA, Slotkin TA, Yanai J. Cholinergic synaptic signaling mechanisms underlying behavioral teratogenicity: effects of nicotine, chlorpyrifos, and heroin converge on protein kinase C translocation in the intermedial part of the hyperstriatum ventrale and on imprinting behavior in an avian model. J Neurosci Res 2005; 78:499-507. [PMID: 15470723 DOI: 10.1002/jnr.20287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A wide variety of otherwise unrelated neuroteratogens elicit a common set of behavioral defects centering around cholinergic contributions to cognitive function. We utilized the developing chick to overcome confounds related to maternal effects and compared the actions of nicotine, chlorpyrifos, and heroin on cholinergic signaling in the intermedial part of the hyperstriatum ventrale (IMHV), which controls imprinting behavior. Chicken eggs were injected with nicotine (10 mg/kg of egg), chlorpyrifos (10 mg/kg of egg), or heroin (20 mg/kg of egg; all doses below the threshold for dysmorphology) on incubation days (ID) 0 and 5, and then tests were conducted posthatching. All three compounds elicited significant deficits in imprinting behavior. We also found defects in cholinergic synaptic signaling specifically involving the muscarinic receptor-mediated membrane translocation of protein kinase C (PKC)-gamma and in the basal levels of both PKCgamma and PKCbetaII, the two isoforms known to be relevant to behavioral performance. In contrast, there were no alterations in the response of PKCalpha, an isoform that does not contribute to the behavior, nor were cytosolic levels of any of the isoforms affected. Taken together with similar results obtained in rodents, our findings suggest that disparate neuroteratogens all involve signaling defects centering on the ability of cholinergic receptors to elicit PKCgamma translocation/activation and that this effect is direct, i.e., not mediated by maternal confounds. The chick thus provides a suitable model for the rapid screening of neuroteratogens and elucidation of the mechanisms underlying behavioral anomalies.
Collapse
Affiliation(s)
- Michal Izrael
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
27
|
Beer A, Slotkin TA, Seidler FJ, Aldridge JE, Yanai J. Nicotine therapy in adulthood reverses the synaptic and behavioral deficits elicited by prenatal exposure to phenobarbital. Neuropsychopharmacology 2005; 30:156-65. [PMID: 15496940 DOI: 10.1038/sj.npp.1300582] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A major objective in identifying the mechanisms underlying neurobehavioral teratogenicity is the possibility of designing therapies that reverse or offset drug- or toxicant-induced neural damage. In our previous studies, we identified deficits in hippocampal muscarinic cholinergic receptor-induced membrane translocation of protein kinase C (PKC)gamma as the likely mechanism responsible for adverse behavioral effects of prenatal phenobarbital exposure. We therefore explored whether behavioral and synaptic defects could be reversed in adulthood by nicotine administration. Pregnant mice were given milled food containing phenobarbital to achieve a daily dose of 0.5-0.6 g/kg from gestational days 9-18. In adulthood, offspring showed deficits in the Morris maze, a behavior dependent on the integrity of septohippocampal cholinergic synaptic function, along with the loss of the PKCgamma response. Phenobarbital-exposed and control mice then received nicotine (10 mg/kg/day) for 14 days via osmotic minipumps. Nicotine reversed the behavioral deficits and restored the normal response of hippocampal PKCgamma to cholinergic receptor stimulation. The effects were regionally specific, as PKCgamma in the cerebellum was unaffected by either phenobarbital or nicotine; furthermore, in the hippocampus, PKC isoforms unrelated to the behavioral deficits showed no changes. Nicotine administration thus offers a potential therapy for reversing neurobehavioral deficits originating in septohippocampal cholinergic defects elicited by prenatal drug or toxicant exposures.
Collapse
Affiliation(s)
- Avital Beer
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
28
|
Yanai J, Beer A, Huleihel R, Izrael M, Katz S, Levi Y, Rozenboim I, Yaniv SP, Slotkin TA. Convergent Effects on Cell Signaling Mechanisms Mediate the Actions of Different Neurobehavioral Teratogens: Alterations in Cholinergic Regulation of Protein Kinase C in Chick and Avian Models. Ann N Y Acad Sci 2004; 1025:595-601. [PMID: 15542768 DOI: 10.1196/annals.1316.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the actions of heroin on central nervous system (CNS) development are mediated through opioid receptors, the net effects converge on dysfunction of cholinergic systems. We explored the mechanisms underlying neurobehavioral deficits in mouse and avian (chick, Cayuga duck) models. In mice, prenatal heroin exposure (10 mg/kg on gestation days 9-18) elicited deficits in behaviors related to hippocampal cholinergic innervation, characterized by concomitant pre- and postsynaptic hyperactivity, but ending in a reduction of basal levels of protein kinase C (PKC) isoforms betaII and gamma and their desensitization to cholinergic receptor-induced activation. PKCalpha, which is not involved in the behaviors studied, was unaffected. Because mammalian models possess inherent confounding factors from maternal effects, we conducted parallel studies using avian embryos, evaluating hyperstriatal nucleus (intermedial part of the hyperstriatum ventrale, IMHV)-related, filial imprinting behavior. Heroin injection to the eggs (20 mg/kg) on incubation days 0 and 5 diminished the post-hatch imprinting ability and reduced PKCg and bII content in the IMHV membrane fraction. Two otherwise unrelated agents that converge on cholinergic systems, chlorpyrifos and nicotine, elicited the same spectrum of effects on PKC isoforms and imprinting but had more robust actions. Pharmacological characterization also excluded direct effects of opioid receptors on the expression of imprinting; instead, it indicated participation of serotonergic innervation. The avian models can provide rapid screening of neuroteratogens, exploration of common mechanisms of behavioral disruption, and the potential design of therapies to reverse neurobehavioral deficits.
Collapse
Affiliation(s)
- Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy, and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vatury O, Barg J, Slotkin TA, Yanai J. Altered localization of choline transporter sites in the mouse hippocampus after prenatal heroin exposure. Brain Res Bull 2004; 63:25-32. [PMID: 15121236 DOI: 10.1016/j.brainresbull.2003.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2003] [Revised: 11/15/2003] [Accepted: 11/30/2003] [Indexed: 10/26/2022]
Abstract
Prenatal heroin exposure disrupts hippocampal cholinergic synaptic function and related behaviors. Biochemical studies indicate an increase in the number of presynaptic high-affinity choline transporter (HACT) sites, as assessed by [3H]hemicholinium-3 (HC-3) binding. The present study was designed to assess whether this effect involves global upregulation of the transporter, or whether disruption occurs with a specific tempero-spatial distribution. Pregnant mice were given 10mg/kg per day of heroin subcutaneously on gestational days (GD) 9-18. Autoradiographic distribution of HC-3 binding sites was evaluated in the hippocampus of the offspring at postnatal days 15, 25, and 53. These results, suggestive of hippocampal "miswiring," are likely to explain the net impairment of cholinergic synaptic function after prenatal heroin exposure, despite the simultaneous upregulation of both presynaptic cholinergic activity and postsynaptic receptors. Understanding the subregional selectivity of hippocampal defects can lead to the development of strategies that may potentially enable therapeutic interventions to offset or reverse the neurobehavioral defects.
Collapse
Affiliation(s)
- Ori Vatury
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel
| | | | | | | |
Collapse
|
30
|
Yaniv SP, Naor Z, Yanai J. Prenatal heroin exposure alters cholinergic receptor stimulated activation of the PKCβII and PKCγ isoforms. Brain Res Bull 2004; 63:339-49. [PMID: 15196660 DOI: 10.1016/j.brainresbull.2004.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/22/2004] [Accepted: 04/11/2004] [Indexed: 11/15/2022]
Abstract
Prenatal exposure of mice to heroin (SC injection of 10mg/kg to the dams on gestational days 9-18) resulted at adulthood in behavioral deficits related to septohippocampal cholinergic innervation accompanied with both presynaptic and postsynaptic cholinergic hyperactivity; including an increase membrane PKC activity, and a desensitization of PKC to cholinergic input which were highly correlated with the behavioral performance and were reversed by cholinergic grafting. Therefore, we studied the receptor induced activation of the behaviorally relevant PKCgamma and PKCbetaII isoforms and the less behaviorally relevant PKCalpha isoform. Time course studies revealed peak translocation after 40 min incubation with carbachol for PKCgamma (110% increase from basal, i.e. no carbachol level, P < 0.01), 30 min for phosphorylated PKCbetaII (130%, P < 0.05) and 5 min for non-phosphorylated PKCbetaII (64%, P < 0.05) with no peak for alpha. Prenatal heroin abolished the translocation of PKCgamma and PKCbetaII while PKCalpha remained unaffected. A decrease occurred in basal phosphorylated membrane (-45%, P < 0.01) and cytosol-associated (-29%, P < 0.01) PKCbetaII, in membrane-associated non-phosphorylated PKCbetaII (-32%, P < 0.01) and PKCgamma (-25%, P < 0.01) and in cytosolic PKCalpha (-27%, P < 0.01), while membrane-associated PKCalpha was slightly increased (11%, P < 0.05). The results suggest that prenatal heroin disrupts cholinergic receptor induced PKC translocation and activation with the underlying mechanism of neuroteratogenicity potentially lying in the PKCgamma and PKCbetaII, while PKCalpha remains unaffected.
Collapse
Affiliation(s)
- Shiri P Yaniv
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
31
|
Avraham Y, Ben-Shushan D, Breuer A, Zolotarev O, Okon A, Fink N, Katz V, Berry EM. Very low doses of Δ8-THC increase food consumption and alter neurotransmitter levels following weight loss. Pharmacol Biochem Behav 2004; 77:675-84. [PMID: 15099912 DOI: 10.1016/j.pbb.2004.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Revised: 08/24/2003] [Accepted: 01/19/2004] [Indexed: 11/22/2022]
Abstract
We have investigated the effect of 0.001 mg/kg delta(8)-tetrahydrocannabinol (THC) on food consumption, cognitive function, and neurotransmitters in mice. Sabra mice were treated with vehicle, THC, or THC+CB1 antagonist (SR141716A). The mice were fed for 2.5 h a day for 9 or 50 days. In the 9-day schedule, THC-treated mice showed a 16% increase in food intake compared with controls (P<.001). This effect was reversed by the antagonist (P<.01). In the long-term schedule a 22% increase in intake (P<.05) was recorded. During the course of the 9- and 50-day experimental protocol, all mice lost about 20% and 10% of their original weight, respectively, to reach approximately the same weights, which were not significantly different between the different treatment groups. In addition, THC caused an increase in activity (P<.05). Cognitive function showed a tendency to improve (P<.06) in the THC-treated mice, which was reversed by the antagonist for Days 4 and 5 of the maze (P<.01, and P<.05, respectively). Significant decreases in dopamine and serotonin (5-HT) levels were found both in the hypothalamus (P<.01) and the hippocampus (P<.01, P<.05), respectively, while norepinephrine (NE) levels showed tendency to increase in both the hypothalamus and hippocampus. Delta(8)-THC increased food intake significantly more (P<.05) than did delta(9)-THC, while performance and activity were similar. Thus, delta(8)-THC (0.001 mg/kg) caused increased food consumption and tendency to improve cognitive function, without cannabimimetic side effects. Hence, a low dose of THC might be a potential therapeutic agent in the treatment of weight disorders.
Collapse
Affiliation(s)
- Yosefa Avraham
- Department of Human Nutrition and Metabolism, Hebrew University-Hadassah Medical School, POB 12272, Jerusalem 91120, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Slotkin TA, Seidler FJ, Yanai J. Heroin neuroteratogenicity: delayed-onset deficits in catecholaminergic synaptic activity. Brain Res 2003; 984:189-97. [PMID: 12932853 DOI: 10.1016/s0006-8993(03)03152-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prenatal heroin exposure evokes neurochemical and behavioral deficits that, in part, reflect disruption of septohippocampal cholinergic function. In earlier studies, we found that cholinergic synaptic defects involve primary changes in cell signaling proteins that are shared by other transmitter systems. In the current study, we determined whether heroin also targets noradrenergic and dopaminergic inputs that operate through the same signaling cascades. Mice exposed to prenatal heroin showed significant deficits in norepinephrine and dopamine levels and much more pronounced effects on neurotransmitter turnover, an index of synaptic activity. Adverse effects were not present in the immediate postnatal period but rather emerged just before weaning and worsened subsequently. By young adulthood, the most highly-affected regions (hippocampus, cerebral cortex) displayed almost complete inactivation of noradrenergic and dopaminergic tonic activity. These effects arise after prior deficits in cell signaling are discernible, suggesting that the presynaptic effects are secondary to actions on signal transduction cascades shared by numerous neurotransmitter inputs and targeted by other neuroteratogens. These results may explain why apparently unrelated developmental neurotoxicants may ultimately produce a common set of neurochemical and behavioral anomalies.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Box 3813 DUMC, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
33
|
Shahak H, Slotkin TA, Yanai J. Alterations in PKCgamma in the mouse hippocampus after prenatal exposure to heroin: a link from cell signaling to behavioral outcome. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:117-25. [PMID: 12524182 DOI: 10.1016/s0165-3806(02)00607-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Administration of heroin to pregnant mice evokes neurochemical and behavioral deficits consequent to disruption of septohippocampal cholinergic innervation, notably involving desensitization of the ability of cholinergic receptors to activate PKC activity. The present study further evaluates whether desensitization occurs specifically for the PKCgamma isoform, the behaviorally relevant subtype, as compared to PKCalpha. Mice were exposed transplacentally to heroin on gestational days (GD) 9-18 via s.c. maternal injections (10 mg/kg per day). In young adulthood (50 days old), control offspring showed an increase in hippocampal cell membrane PKCgamma after incubation with the muscarinic cholinergic receptor agonist, carbachol, indicative of translocation from the cytosol. Prenatal exposure to heroin eliminated this response, whereas basal PKCgamma levels were unchanged. In contrast, PKCalpha, which is not related to heroin-induced behavioral deficits, did not show a loss of response. The present findings strongly point to abnormalities in the responsiveness of PKCgamma as a mechanism underlying the neurobehavioral teratogenicity of heroin.
Collapse
Affiliation(s)
- Halit Shahak
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120 Jerusalem, Israel
| | | | | |
Collapse
|
34
|
Yanai J, Vatury O, Slotkin TA. Cell signaling as a target and underlying mechanism for neurobehavioral teratogenesis. Ann N Y Acad Sci 2002; 965:473-8. [PMID: 12105122 DOI: 10.1111/j.1749-6632.2002.tb04188.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A wide variety of drugs and chemicals elicit neurobehavioral teratogenesis. Surprisingly, however, despite the obvious differences among unrelated compounds, the behavioral outcomes often display striking similarities, such as cognitive and attentional deficits. Recent studies of drugs of abuse (heroin, nicotine, barbiturates) and environmental toxins (environmental tobacco smoke, pesticides, metals) suggest that, regardless of the originating mechanism for perturbation of brain development, disparate neuroteratogens converge downstream on common families of alterations, characterized by changes in the expression and/or activity of the cell-signaling molecules that are essential to neuronal differentiation and synaptic communication. Identification of these common targets may help in the design of pharmacologic interventions that, administered in adulthood, can reverse the impact of exposure to neurobehavioral teratogens.
Collapse
Affiliation(s)
- Joseph Yanai
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
35
|
Slotkin TA, Seidler FJ, Yanai J. Heroin neuroteratogenicity: targeting adenylyl cyclase as an underlying biochemical mechanism. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 132:69-79. [PMID: 11744108 DOI: 10.1016/s0165-3806(01)00296-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prenatal heroin exposure evokes neurochemical and behavioral deficits that in part, reflect disruption of septohippocampal cholinergic function. In earlier studies, we found that cholinergic synaptic defects involve changes in proteins, like protein kinase C, that are essential to receptor-mediated signaling. In the current study, we determined whether heroin targets another signaling protein, adenylyl cyclase (AC), which regulates the production of cAMP. Mice exposed to prenatal heroin showed subsequent postnatal elevations of AC activity that lasted into adulthood. The effect was most robust with stimulants that activate AC directly (forskolin, Mn(2+)), indicating increased expression of AC itself; we also identified shifts in catalytic properties suggestive of a change in the AC isoform. Superimposed on the overall induction of AC, there were transient deficits in the responses to stimulants working through G-proteins (NaF) or G-protein coupled receptors (isoproterenol, a beta-adrenoceptor agonist), indicating alterations at other steps in the signaling pathway. Effects on the regulation of AC activity were seen in brain regions with widely disparate maturational timetables and also occurred in regions, like the cerebellum, that are sparse in cholinergic input. These results suggest that the expression and/or function of signaling proteins distal to neurotransmitter receptors represent a major target for neurobehavioral teratogenesis by heroin; the fact that these targets are shared by otherwise unrelated neuroteratogens may account for a common set of neurochemical and behavioral anomalies in response to prenatal exposure to drugs or environmental chemicals.
Collapse
Affiliation(s)
- T A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|