1
|
Abstract
The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component.
Collapse
|
2
|
Grimes MT, Powell M, Gutierrez SM, Darby-King A, Harley CW, McLean JH. Epac activation initiates associative odor preference memories in the rat pup. ACTA ACUST UNITED AC 2015; 22:74-82. [PMID: 25593293 PMCID: PMC4341366 DOI: 10.1101/lm.037101.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we examine the role of the exchange protein directly activated by cAMP (Epac) in β-adrenergic-dependent associative odor preference learning in rat pups. Bulbar Epac agonist (8-pCPT-2-O-Me-cAMP, or 8-pCPT) infusions, paired with odor, initiated preference learning, which was selective for the paired odor. Interestingly, pairing odor with Epac activation produced both short-term (STM) and long-term (LTM) odor preference memories. Training using β-adrenergic-activation paired with odor recruited rapid and transient ERK phosphorylation consistent with a role for Epac activation in normal learning. An ERK antagonist prevented intermediate-term memory (ITM) and LTM, but not STM. Epac agonist infusions induced ERK phosphorylation in the mitral cell layer, in the inner half of the dendritic external plexiform layer, in the glomeruli and, patchily, among granule cells. Increased CREB phosphorylation in the mitral and granule cell layers was also seen. Simultaneous blockade of both ERK and CREB pathways prevented any long-term β-adrenergic activated odor preference memory, while LTM deficits associated with blocking only one pathway were prevented by stronger β-adrenergic activation. These results suggest that Epac and PKA play parallel and independent, as well as likely synergistic, roles in creating cAMP-dependent associative memory in rat pups. They further implicate a novel ERK-independent pathway in the mediation of STM by Epac.
Collapse
Affiliation(s)
- Matthew T Grimes
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - Maria Powell
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - Sandra Mohammed Gutierrez
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - Andrea Darby-King
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - John H McLean
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| |
Collapse
|
3
|
Yuan Q, Shakhawat AMD, Harley CW. Mechanisms underlying early odor preference learning in rats. PROGRESS IN BRAIN RESEARCH 2014; 208:115-56. [PMID: 24767481 DOI: 10.1016/b978-0-444-63350-7.00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early odor preference training in rat pups produces behavioral preferences that last from hours to lifetimes. Here, we discuss the molecular and circuitry changes we have observed in the olfactory bulb (OB) and in the anterior piriform cortex (aPC) following odor training. For normal preference learning, both structures are necessary, but learned behavior can be initiated by initiating local circuit change in either structure. Our evidence relates dynamic molecular and circuit changes to memory duration and storage localization. Results using this developmental model are consistent with biological memory theories implicating N-methyl-D-aspartate (NMDA) receptors and β-adrenoceptors, and their associated cascades, in memory induction and consolidation. Finally, our examination of the odor preference model reveals a primary role for increases in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor synaptic strength, and in network strength, in the creation and maintenance of preference memory in both olfactory structures.
Collapse
Affiliation(s)
- Qi Yuan
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Amin M D Shakhawat
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
4
|
Grimes MT, Harley CW, Darby-King A, McLean JH. PKA increases in the olfactory bulb act as unconditioned stimuli and provide evidence for parallel memory systems: pairing odor with increased PKA creates intermediate- and long-term, but not short-term, memories. Learn Mem 2012; 19:107-15. [PMID: 22354948 DOI: 10.1101/lm.024489.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and translation-dependent). Here, we use neonatal odor-preference learning to explore the role of olfactory bulb PKA in these three phases of mammalian memory. PKA activity increased normally in learning animals 10 min after a single training trial. Inhibition of PKA by Rp-cAMPs blocked intermediate-term and long-term memory, with no effect on short-term memory. PKA inhibition also prevented learning-associated CREB phosphorylation, a transcription factor implicated in long-term memory. When long-term memory was rescued through increased β-adrenoceptor activation, CREB phosphorylation was restored. Intermediate-term and long-term, but not short-term odor-preference memories were generated by pairing odor with direct PKA activation using intrabulbar Sp-cAMPs, which bypasses β-adrenoceptor activation. Higher levels of Sp-cAMPs enhanced memory by extending normal 24-h retention to 48-72 h. These results suggest that increased bulbar PKA is necessary and sufficient for the induction of intermediate-term and long-term odor-preference memory, and suggest that PKA activation levels also modulate memory duration. However, short-term memory appears to use molecular mechanisms other than the PKA/CREB pathway. These mechanisms, which are also recruited by β-adrenoceptor activation, must operate in parallel with PKA activation.
Collapse
Affiliation(s)
- Matthew T Grimes
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3V6
| | | | | | | |
Collapse
|
5
|
Compensation of depleted neuronal subsets by new neurons in a local area of the adult olfactory bulb. J Neurosci 2011; 31:10540-57. [PMID: 21775599 DOI: 10.1523/jneurosci.1285-11.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the olfactory bulb (OB), loss of preexisting granule cells (GCs) and incorporation of adult-born new GCs continues throughout life. GCs consist of distinct subsets. Here, we examined whether the loss and incorporation of GC subsets are coordinated in the OB. We classified GCs into mGluR2-expressing and -negative subsets and selectively ablated mGluR2-expressing GCs in a local area of the OB with immunotoxin-mediated cell ablation method. The density of mGluR2-expressing GCs showed considerable recovery within several weeks after the ablation. During recovery, an mGluR2-expressing new GC subset was preferentially incorporated over an mGluR2-negative new GC subset in the area of ablation, whereas the preferential incorporation was not observed in the intact area. The area-specific preferential incorporation of mGluR2-expressing new GCs occurred for BrdU analog- and retrovirus-labeled adult-born cells as well as for neonate-derived transplanted cells. The mGluR2-expressing new GCs in the ablated area were synaptically incorporated into the local bulbar circuit. The spine size of mGluR2-expressing new GCs in the ablated area was larger than that of those in the intact area. In contrast, mGluR2-negative new GCs did not show ablated area-specific spine enlargement. These results indicate that local OB areas have a mechanism to coordinate the loss and incorporation of GC subsets by compensatory incorporation of new GC subsets, which involves subset-specific cellular incorporation and subset-specific regulation of spine size.
Collapse
|
6
|
Cui W, Darby-King A, Grimes MT, Howland JG, Wang YT, McLean JH, Harley CW. Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model. Learn Mem 2011; 18:283-91. [PMID: 21498562 DOI: 10.1101/lm.1987711] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in the neonate rat. Rat pups were given a single pairing of peppermint and 2 mg/kg isoproterenol, which produces a 24-h, but not a 48-h, peppermint preference in the 7-d-old rat pup. GluA1 PKA-dependent phosphorylation peaked 10 min after the 10-min training trial and returned to baseline within 90 min. At 24 h, GluA1 subunits did not change overall but were significantly increased in synaptoneurosomes, consistent with increased membrane insertion. Immunohistochemistry revealed a significant increase in GluA1 subunits in olfactory bulb glomeruli, the targets of olfactory nerve axons. Glomerular increases were seen at 3 and 24 h after odor exposure in trained pups, but not in control pups. GluA1 increases were not seen as early as 10 min after training and were no longer observed 48 h after training when odor preference is no longer expressed behaviorally. Thus, the pattern of increased GluA1 membrane expression closely follows the memory timeline. Further, blocking GluA1 insertion using an interference peptide derived from the carboxyl tail of the GluA1 subunit inhibited 24 h odor preference memory providing causative support for our hypothesis. PKA-mediated GluA1 phosphorylation and later GluA1 insertion could, conjointly, provide increased AMPA function to support both short-term and long-term appetitive memory.
Collapse
Affiliation(s)
- Wen Cui
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's NL, A1B 3V6 Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Grimes MT, Smith M, Li X, Darby-King A, Harley CW, McLean JH. Mammalian intermediate-term memory: new findings in neonate rat. Neurobiol Learn Mem 2011; 95:385-91. [PMID: 21296674 DOI: 10.1016/j.nlm.2011.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/13/2011] [Accepted: 01/25/2011] [Indexed: 01/26/2023]
Abstract
The ability of anisomycin, a translation inhibitor, and actinomycin, a transcription inhibitor to disrupt a cAMP/PKA-dependent odor preference memory in neonate rat was examined. Previous reports in invertebrates had described a novel translation-dependent intermediate-term memory dissected with these inhibitors, but similar effects have not been reported in mammalian memory systems. When anisomycin was infused into the olfactory bulb after the pairing of peppermint odor and the β-adrenoceptor agonist isoproterenol (2mg/kg), short-term memory (1 or 3h) was intact, but intermediate (5h) and long-term (24h) memory was disrupted. When actinomycin was infused, only long-term memory was disrupted. This pattern of results is consistent with that reported in invertebrates for intermediate-term memory and led us to try a lower level of the unconditioned stimulus (isoproterenol) to isolate intermediate-term memory from long-term memory. Pups given a dose of 1.5mg/kg isoproterenol paired with peppermint odor showed memory for peppermint 5h, but not 24h, after training. These observations in the rat pup olfactory system parallel short-, intermediate- and long-term memory characteristics previously described in invertebrates. Odor preference memory in neonate rodents offers a tool to increase our understanding of the properties and mechanisms of multi-phasic memory in mammals.
Collapse
Affiliation(s)
- Matthew T Grimes
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The first hours of a newborn rat's life entail locating and attaching to the mother's nipple not only for nutrition but also for protection and warmth. The present study sought to characterize olfactory learning in the rat neonate immediately after birth. Newborn rats were exposed to an odor at various time periods soon after birth and tested for behavioral activation and attachment to a surrogate nipple in the presence of this odor at 4-5 hr postpartum. Regardless of when pups were presented the odor (0, 1, or 2 hr after birth) motor activity was greater among pups previously exposed to the odor than pups with no odor experience. Similarly, latency to attach to the nipple in the presence of the odor was lower among odor-preexposed pups, especially when odor exposure began within an hour of cesarean delivery. Odor exposure immediately after birth for just 15 min was sufficient to increase motor activity and to decrease latency to attach to a similarly scented surrogate nipple. These results suggest that olfactory experience very soon after birth can shape subsequent olfactory responses. The relative importance of the dearth of postnatal experience or of elevated neurochemicals immediately after birth and possible associative mechanisms underlying this learning is discussed.
Collapse
Affiliation(s)
- Stacie S Miller
- Department of Psychology, Center for Developmental Psychobiology, Binghamton University-SUNY, Binghamton, NY 13902-6000, USA
| | | |
Collapse
|
9
|
Harley CW, Darby-King A, McCann J, McLean JH. Beta1-adrenoceptor or alpha1-adrenoceptor activation initiates early odor preference learning in rat pups: support for the mitral cell/cAMP model of odor preference learning. Learn Mem 2006; 13:8-13. [PMID: 16452650 DOI: 10.1101/lm.62006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We proposed that mitral cell beta1-adrenoceptor activation mediates rat pup odor preference learning. Here we evaluate beta1-, beta2-, alpha1-, and alpha2-adrenoceptor agonists in such learning. The beta1-adrenoceptor agonist, dobutamine, and the alpha1-adrenoceptor agonist, phenylephrine, induced learning, and both exhibited an inverted U-curve dose-response relationship to odor preference learning. Phenylephrine-induced learning occurred in the presence of propranolol to prevent indirect activation of beta-adrenoceptors. Alpha1-adrenoceptor mediation may represent a novel mechanism inducing learning or may increase cAMP in mitral cells via indirect activation of GABA(B) receptors. Neither the beta2-adrenoceptor agonist, salbutamol, nor the alpha2-adrenoceptor agonist, clonidine, induced learning.
Collapse
Affiliation(s)
- Carolyn W Harley
- Department of Psychology, Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | | | | | | |
Collapse
|
10
|
Bordner KA, Spear NE. Olfactory learning in the one-day old rat: reinforcing effects of isoproterenol. Neurobiol Learn Mem 2006; 86:19-27. [PMID: 16442317 DOI: 10.1016/j.nlm.2005.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/22/2022]
Abstract
Within 24 h of their birth-induced norepinephrine surge, rat pups were tested for effects of a beta-receptor agonist, isoproterenol, on olfactory learning. Experiment 1 found no effect of isoproterenol on conditioning by pairing an odor (CS) with intraoral saccharin infusions. There was, however, unexpectedly strong responding in the unpaired control condition, which had the same contingency between the CS and isoproterenol as the paired condition. Experiment 2 found that pairings of odor and isoproterenol alone were sufficient for enhancing responding to the odor. Experiment 3 determined that isoproterenol had acted independently as a US for associative conditioning rather than facilitating nonassociative learning by mere exposure to the odor. These effects of isoproterenol as a US are consistent with the results of previous studies with older rats.
Collapse
Affiliation(s)
- Kelly A Bordner
- Center for Developmental Psychobiology, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, USA
| | | |
Collapse
|
11
|
Battú CE, Godinho GFRS, Thomazi AP, de Almeida LMV, Gonçalves CA, Kommers T, Wofchuk ST. Ontogenetic Changes in Glial Fibrillary Acid Protein Phosphorylation, Glutamate Uptake and Glutamine Synthetase Activity in Olfactory Bulb of Rats. Neurochem Res 2005; 30:1101-8. [PMID: 16292502 DOI: 10.1007/s11064-005-7587-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Phosphorylation of the glial fibrillary acidic protein (GFAP) in hippocampal and cerebellar slices from immature rats is stimulated by glutamate. This effect occurs via a group II metabotropic glutamate receptor in the hippocampus and an NMDA ionotropic receptor in the cerebellum. We investigated the glutamate modulation of GFAP phosphorylation in the olfactory bulb slices of Wistar rats of different ages (post-natal day 15 = P15, post-natal day 21 = P21 and post-natal day 60 = P60). Our results showed that glutamate stimulates GFAP phosphorylation in young animals and this is mediated by NMDA receptors. We also observed a decrease in glutamate uptake at P60 compared to P15, a finding similar to that found in the hippocampus. The activity of glutamine synthetase was elevated after birth, but was found to decrease with development from P21 to P60. Together, these data confirm the importance of glutamatergic transmission in the olfactory bulb, its developmental regulation in this brain structure and extends the concept of glial involvement in glutamatergic neuron-glial communication.
Collapse
Affiliation(s)
- Cíntia Eickhoff Battú
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, 90035-003, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
12
|
Davison IG, Boyd JD, Delaney KR. Dopamine inhibits mitral/tufted--> granule cell synapses in the frog olfactory bulb. J Neurosci 2005; 24:8057-67. [PMID: 15371506 PMCID: PMC6729800 DOI: 10.1523/jneurosci.2138-04.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic interactions between the dendrites of mitral/tufted (MT) and granule cells (GCs) in the olfactory bulb are important for the determination of spatiotemporal firing patterns of MTs, which form an odor representation passed to higher brain centers. These synapses are subject to modulation from several sources originating both within and outside the bulb. We show that dopamine, presumably released by TH-positive local interneurons, reduces synaptic transmission from MTs to GCs. MT neurons express D2-like receptors (D2Rs), and both dopamine and the D2 agonist quinpirole decrease EPSC amplitude at the MT--> GC synapse. D2R activation also increases paired pulse facilitation and decreases the frequency of action potential-independent spontaneous miniature EPSCs in GCs, consistent with an effect on MT glutamate release downstream from Ca2+ influx. Analysis of spike-evoked Ca2+ transients in MT lateral dendrites additionally shows that quinpirole reduces Ca2+ influx preferentially at distal locations, possibly by reducing dendritic excitability via increased transient K+ channel availability. When the OB is activated physiologically by using odor stimuli, blocking D2Rs increases the power of GABA(A)-dependent oscillations in the local field potential. This demonstrates a functional role for the dopaminergic circuit during normal odor-evoked responses and for the modulation of dendritic release and excitability in neuronal circuit function. Regulation of spike invasion of lateral dendrites by transient K+ currents also may provide a mechanism for local outputs of MTs to be controlled dynamically via other neuromodulators or by postsynaptic potentials.
Collapse
Affiliation(s)
- Ian G Davison
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| | | | | |
Collapse
|
13
|
Sato T, Ishida T, Tanaka KI, Ohnishi Y, Irifune M, Mimura T, Nishikawa T. Ameliorative and Exacerbating Effects of [pGlu4,Cyt6]AVP(4–9) on Impairment of Step-Through Passive Avoidance Task Performance by Group II Metabotropic Glutamate Receptor-Related Drugs in Mice. J Pharmacol Sci 2005; 97:437-42. [PMID: 15764838 DOI: 10.1254/jphs.sc0040134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To examine the effect of the arginine-vasopressin fragment, [pGlu(4),Cyt(6)]AVP((4-9)) (AVP4-9), on group II metabotropic glutamate receptor (mGluR2/3) agonist and antagonist induced impairment of passive avoidance (PA) task performance, AVP4-9 or phorbol 12-myristate 13-acetate (PMA) was administered in the presence of mGluR2/3-related drugs that induced the impairment of the step-through-type PA task performance. The PA task performance was evaluated in terms of the latency (the time that elapsed prior to entry into the dark compartment) at 24 h after the electrical stimulation. The subcutaneous injection of AVP4-9 at 1 mug/kg had the greatest facilitative effect on the performance, and the facilitative effect of AVP4-9 was inhibited by NPC-15437, a specific protein kinase C (PKC) inhibitor. The injection of AVP4-9 ameliorated PA task performance impairment induced by DCG-IV, an mGluR2/3 agonist. Intracisternal injection of PMA, a PKC activator, also ameliorated the DCG-IV-induced impairment. High doses of AVP4-9 exacerbated the PA task performance impairment induced by LY341495 (an mGluR2/3 antagonist), and PMA injection (1 mug) also exacerbated the impairment induced by the antagonist. These results suggest that an increase in the activity of the PKC-signaling pathway may not always facilitate PA task performance; therefore, AVP4-9 can either enhance or inhibit memory performance in mice.
Collapse
Affiliation(s)
- Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences.
| | | | | | | | | | | | | |
Collapse
|
14
|
McLean JH, Harley CW. Olfactory learning in the rat pup: A model that may permit visualization of a mammalian memory trace. Neuroreport 2004; 15:1691-7. [PMID: 15257129 DOI: 10.1097/01.wnr.0000134988.51310.c3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the past 10 years considerable insight into intracellular interactions leading to long-term memory formation have been gleaned from various neural circuits within invertebrate and vertebrate species. This review suggests that, while certain intracellular signaling pathways are commonly involved across species, it is important to analyze specific neural systems because critical differences among systems appear to exist. The olfactory bulb has been used by our group to estimate the influence of neuromodulatory systems (serotonin and norepinephrine) on intracellular processes leading to learning. We describe here how activation of noradrenergic input to mitral cells increases cAMP leading to CREB phosphorylation when paired with a conditioning stimulus, odor. CREB phosphorylation is causal in odor preference learning leading to long-term memory for the odor. However, the relationship between cAMP activation and CREB phosphorylation is not straight forward; overstimulation of cAMP pathways impedes learning and prevents CREB phosphorylation. Excessive CREB phosphorylation also interferes with learning.
Collapse
Affiliation(s)
- John H McLean
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada.
| | | |
Collapse
|
15
|
Sato T, Tanaka KI, Ohnishi Y, Teramoto T, Irifune M, Nishikawa T. Inhibitory effects of group II mGluR-related drugs on memory performance in mice. Physiol Behav 2004; 80:747-58. [PMID: 14984810 DOI: 10.1016/j.physbeh.2003.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 12/19/2003] [Accepted: 12/22/2003] [Indexed: 11/24/2022]
Abstract
The cAMP/protein kinase A signaling pathway is negatively modulated by group II metabotropic glutamate receptors (mGluRs), and the cross-talk that occurs between these receptors may modulate learning and memory. To examine the relationship among cAMP/PKA-signaling pathway activity, group II mGluRs, and learning and memory, mice were trained to perform a step-through-type passive avoidance task, and 10 min before each avoidance trial the following drugs were injected intracisternally (i.cist.): vehicle (0.05% dimethylsulfoxide); a specific group II mGluR agonist, DCG-IV (1-50 ng/mouse); a specific group II mGluR antagonist, LY341495 (10-300 ng); a selective inhibitor of cAMP-specific phosphodiesterase, rolipram (100-1000 ng); an activator of adenylyl cyclase, forskolin (25-250 ng); a specific inhibitor of PKA, H-89 (150 or 300 ng) or; an activator of protein kinase C, phorbol 12-myristate 13-acetate (PMA 200 ng). DCG-IV (25 and 50 ng) or LY341495 (150 and 300 ng) reduced the latency in the avoidance task. The reduction of latency by DCG-IV was not observed in mice coinjected with DCG-IV (50 ng) together with rolipram (500 ng) or forskolin (25 ng). Conversely, coinjection of LY341495 with 100 or 1000 ng rolipram, or with 25 or 250 ng forskolin tended to potentiate the LY341495-induced shortening of latency. In addition, the reduction of latency by DCG-IV (50 ng) was not observed in mice coinjected with DCG-IV and PMA together. However, the reduction of latency by LY341495 (300 ng) was potentiated when the drug was coadministered with PMA. These results suggest that changes in the cAMP/PKA-signaling pathway, mediated by group II mGluRs, influence memory in the passive avoidance task, and that both the excessive activation and deactivation of this pathway may induce the impairment of learning and memory.
Collapse
Affiliation(s)
- Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Sato T, Tanaka KI, Ohnishi Y, Teramoto T, Irifune M, Nishikawa T. Effects of estradiol and progesterone on radial maze performance in middle-aged female rats fed a low-calcium diet. Behav Brain Res 2004; 150:33-42. [PMID: 15033277 DOI: 10.1016/s0166-4328(03)00249-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 06/24/2003] [Accepted: 06/24/2003] [Indexed: 11/18/2022]
Abstract
There is increasing evidence that ovarian steroids and calcium ions are involved in learning and memory. To examine the effect of ovarian steroids on learning and memory under a low-calcium condition, middle-aged female rats were fed either a low-calcium (0.02% Ca) or a normal-calcium (1.25% Ca) diet. All rats were ovariectomized (OVX), and these animals were divided into eight groups: 1) an OVX group with a normal-calcium diet (OVX-normal-Ca group), 2) an OVX group with 17beta-estradiol treatment and a normal-calcium diet (E2 group), 3) an OVX with progesterone treatment and a normal-calcium diet (P4 group), 4) an OVX with 17beta-estradiol and progesterone treatments and a normal-calcium diet (E2 + P4 group), 5) an OVX group with a low-calcium diet (OVX-low-Ca group), 6) an OVX group with 17beta-estradiol treatment and a low-calcium diet (LE2 group), 7) an OVX group with progesterone treatment and a low-calcium diet (LP4 group), and 8) an OVX group with 17beta-estradiol and progesterone treatments and a low-calcium diet (LE2 + LP4). Seventy-seven days after the OVX operation, the learning and memory abilities of the rats were examined by using an eight-arm radial maze task. E2 and E2 + P4 groups learned in fewer trials, and performed better in the radial maze and the working memory task than the other groups under the normal-calcium condition. Rats in the LE2 group learned in fewer trials, and performed better in the maze and working memory task than the other low-calcium groups, but in combination with progesterone under the low-calcium condition (LE2 + LP4 group), the facilitative effect of estradiol in all the tasks was inhibited. Treatment with progesterone alone did not inhibit the learning and memory task performance. These results suggest the possibility that treatment with estradiol under low-calcium conditions cannot improve impaired learning and memory when progesterone is applied simultaneously, and that the intake of adequate calcium may be necessary and effective for patients with learning and memory hypofunction receiving hormone replacement therapy.
Collapse
Affiliation(s)
- Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan.
| | | | | | | | | | | |
Collapse
|