1
|
Ling S, Zhou J, Rudd JA, Hu Z, Fang M. The expression of neuronal nitric oxide synthase in the brain of the mouse during embryogenesis. Anat Rec (Hoboken) 2012; 295:504-14. [PMID: 22262671 DOI: 10.1002/ar.22408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/28/2011] [Indexed: 11/11/2022]
Abstract
The distribution of neuronal nitric oxide synthase (nNOS) in the process of normal mouse brain growth from embryonic (E) Day 11 to postnatal (P) Day 1 was investigated by means of immunohistochemical and immunofluorescent methods. Our results demonstrated that nNOS positive neurons appeared early in superficial cortex at E11. At E13, nNOS positive neurons were located in lateral hypothalamus and amygdala, and temporarily in medullar and ventral hypothalamic neuroepithelia. From E15 to P0, nNOS positive neurons were distributed in superior and inferior colliculi, positive staining could also be seen in superior and inferior tectal neuroepithelium at E15. From E17 to birth, the medial geniculate nucleus had a high density of nNOS labeling. The distribution of nNOS gradually increased and extended laterally in embryo brain, which in turn implies that NO might be involved in the development of mouse brain.
Collapse
Affiliation(s)
- Shucai Ling
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
2
|
Altered expression of neuronal nitric oxide synthase in weaver mutant mice. Brain Res 2010; 1326:40-50. [PMID: 20219442 DOI: 10.1016/j.brainres.2010.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 02/08/2010] [Accepted: 02/19/2010] [Indexed: 01/06/2023]
Abstract
The weaver mouse represents the only genetic animal model of gradual nigrostriatal dopaminergic neurodegeneration which is proposed as a pathophysiological phenotype of Parkinson's disease. The aim of the present study was to analyze the nitric oxide and dopaminergic systems in selected brain regions of homozygous weaver mice at different postnatal ages corresponding to specific stages of the dopamine loss. Structural deficits were evaluated by quantification of tyrosine hydroxylase and neuronal nitric oxide synthase-immunostaining in the cortex, striatum, accumbens nuclei, subthalamic nuclei, ventral tegmental area, and substantia nigra compacta of 10-day, 1- and 2-month-old wild-type and weaver mutant mice. The results confirmed the progressive loss of dopamine during the postnatal development in the adult weaver mainly affecting the substantia nigra pars compacta, striatum, and subthalamic nucleus and slightly affecting the accumbens nuclei and ventral tegmental area. A general decrease in neuronal nitric oxide synthase-immunostaining with age was revealed in both the weaver and wild-type mice, with the decrease being most pronounced in the weaver. In contrast, there was an increase in the substantia nigra pars compacta nitric oxide synthase-immunostaining and a decrease mainly in the subthalamic and accumbens nuclei of the 2-month-old weaver mutant. The decrease in the expression of nNOS may bear functional significance related to the process of aging. DA neurons from the substantia nigra directly modulate the activity of subthalamic nucleus neurons, and their loss may contribute to the abnormal activity of subthalamic nucleus neurons. Although the functional significance of these changes is not clear, it may represent plastic compensating adjustments resulting from the loss of dopamine innervation, highlighting a possible role of nitric oxide in this process.
Collapse
|
3
|
Comin D, Gazarini L, Zanoni JN, Milani H, de Oliveira RMW. Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav Brain Res 2010; 210:38-45. [PMID: 20138920 DOI: 10.1016/j.bbr.2010.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/22/2022]
Abstract
We investigated the effects of chronic administration of vitamin E on nitric oxide (NO)-producing neurons in the brains of streptozotocin (STZ)-induced diabetic rats using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. We further evaluated the effects of diabetes and vitamin E treatment on experimental anxiety and memory processes using the elevated plus maze (EPM) Trial 1/2 protocol. Wistar rats were divided into four groups: normoglycemics (N), normoglycemics treated with vitamin E (NVE), diabetics (D), and diabetics treated with vitamin E (DVE). Diabetes mellitus was induced by a single intraperitoneal injection of STZ (35mg/kg). Vitamin E (100mg/kg) or vehicle was administered orally by gavage (1ml/kg) once each day for 7 weeks. After behavioral testing, the dentate gyrus of the hippocampus (DG), striatum, paraventricular nucleus of the hypothalamus (PVN), supraoptic nucleus (SON), and dorsolateral periaqueductal grey (DLPAG) were analyzed for NADPH-d histochemistry. STZ-induced diabetic rats exhibited decreased locomotor activity and cognitive impairment compared with normoglycemic controls. The number of NADPH-d-positive neurons was increased in the DG, striatum, and DLPAG of diabetic rats. An increase in soma area was detected in all structures analyzed (DG, striatum, PVN, SON, and DLPAG) of STZ-induced diabetic animals. The present study showed that chronic administration of vitamin E ameliorates memory in STZ-induced diabetic rats and revealed that NOS-producing neurons have an increased soma area which can be restored, at least partially, by vitamin E treatment. These results suggest the potential use of vitamin E as an adjuvant therapy for the prevention and treatment of diabetic conditions.
Collapse
|
4
|
Hayakawa N, Abe M, Eto R, Kato H, Araki T. Age-related changes of NGF, BDNF, parvalbumin and neuronal nitric oxide synthase immunoreactivity in the mouse hippocampal CA1 sector. Metab Brain Dis 2008; 23:199-211. [PMID: 18421425 DOI: 10.1007/s11011-008-9084-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/06/2008] [Indexed: 01/19/2023]
Abstract
We investigated the age-related alterations in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), parvalbumin and neuronal nitric oxide synthase (nNOS) immunoreactivity of the mouse hippocampal CA1 sector. NGF and BDNF immunoreactivity was unchanged in the hippocampal CA1 pyramidal neurons from 2 to 50-59 weeks of birth. In contrast, a significant increase in the NGF and BDNF immunoreactivity was observed in glial cells of the hippocampal CA1 sector from 40-42 to 50-59 weeks of birth. On the other hand, the number of parvalbumin- and nNOS-positive interneurons was unchanged in the hippocampal CA1 sector during aging processes, except for a significant decrease of nNOS-positive interneurons 2 weeks of birth. Our results indicate that NGF and BDNF immunoreactivity was unaltered in the hippocampal CA1 pyramidal neurons during aging processes. In contrast, a significant increase in the NGF and BDNF immunoreactivity was observed in glial cells of the hippocampal CA1 sector during aging processes. The present study also shows that the number of parvalbumin- and nNOS-positive interneurons was unchanged in the hippocampal CA1 sector during aging processes, except for a significant decrease of nNOS-positive interneurons 2 weeks of birth. These results demonstrate that the expression of glial NGF and BDNF may play a key role for helping survival and maintenance of pyramidal neurons and neuronal functions in the hippocampal CA1 sector during aging processes. Furthermore, our findings suggest that parvalbumin- and nNOS-positive interneurons in the hippocampal CA1 sector are resistant to aging processes. Moreover, our findings suggest that nitric oxide synthesized by the nNOS may play some role for neuronal growth during postnatal development.
Collapse
Affiliation(s)
- Natsumi Hayakawa
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima, 770-8505, Japan
| | | | | | | | | |
Collapse
|
5
|
Romero-Grimaldi C, Moreno-López B, Estrada C. Age-dependent effect of nitric oxide on subventricular zone and olfactory bulb neural precursor proliferation. J Comp Neurol 2008; 506:339-46. [PMID: 18022945 DOI: 10.1002/cne.21556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) synthase (NOS) is developmentally regulated in the embryonic brain, where NO participates in cell proliferation, survival, and differentiation. In adults, NO inhibits neurogenesis under physiological conditions. This work investigates whether the NO action is preserved all along development up to adulthood or whether its effects in adults are a new feature acquired during brain maturation. The relationship between nitrergic neurons and precursors, as well as the functional consequences of pharmacological NOS inhibition, were comparatively analyzed in the subventricular zone (SVZ) and olfactory bulb (OB) of postnatal (P7) and adult (>P60) mouse brains. The SVZ was markedly reduced between P7 and adults, and, at both ages, neurons expressing neuronal NOS (nNOS) were found in its striatal limits. In postnatal mice, these nitrergic neurons contained PSA-NCAM, and their projections were scarce, whereas, in adults, mature nitrergic neurons, devoid of PSA-NCAM, presented abundant neuropil. In the OB, local proliferation almost disappeared in the transition to adulthood, and periglomerular nitrergic neurons, some of which were PSA-NCAM positive, were found in postnatal and adult mice. Administration of the NOS inhibitor L-NAME did not affect cell proliferation in the SVZ or in the OB of postnatal mice, whereas it significantly enhanced the number of mitotic cells in both regions in adults. Thus, the NO action on SVZ neurogenesis is a phenomenon that appears after the postnatal age, which is probably due to the germinal layer size reduction, allowing exposure of the NO-sensitive neural precursors to the NO produced in the SVZ-striatum limits.
Collapse
|
6
|
Balda MA, Anderson KL, Itzhak Y. Adolescent and adult responsiveness to the incentive value of cocaine reward in mice: role of neuronal nitric oxide synthase (nNOS) gene. Neuropharmacology 2006; 51:341-9. [PMID: 16698049 DOI: 10.1016/j.neuropharm.2006.03.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/14/2006] [Accepted: 03/23/2006] [Indexed: 11/24/2022]
Abstract
A major concern in adolescent psychostimulant abuse is the long-term consequence of this practice, because early drug exposure may cause long-term adaptations, which render the organism more susceptible to drug abuse later in life. The incentive value of drug and natural reward in rodents is commonly assessed by the conditioned place preference (CPP) paradigm, which involves Pavlovian learning. The aims of the present study were to investigate: a) the acquisition, expression, maintenance and reinstatement of cocaine CPP from periadolescence (PD24-45) through adulthood (PD70); b) potential sexual dimorphism in adolescence and adulthood in response to cocaine-induced CPP; and c) the role of the neuronal nitric oxide synthase (nNOS) gene in long-term neural plasticity underlying responsiveness to cocaine and cocaine-associated cues. Adolescent wild type (WT) mice acquired significant cocaine (20 mg/kg) CPP that was maintained from PD24 through PD43. Upon extinction, CPP was reinstated in adulthood (PD70) following a priming injection of cocaine (5 mg/kg). In contrast, cocaine CPP acquired between PD26 and PD31 in adolescent nNOS knockout (KO) mice, was neither maintained nor reinstated by cocaine. There was no sexual dimorphism in adolescent WT and KO mice. Genotype differences and sexual dimorphism were observed in adult mice. Cocaine CPP in adult WT males (PD89-94) was maintained for 4 weeks post training, and subsequently reinstated by cocaine priming; the magnitude of CPP in adult WT males was lower than in female counterparts. CPP in adult KO males (PD88-93) was neither maintained nor reinstated by cocaine priming; in contrast, CPP in adult KO females was not significantly different from adult WT females. Results suggest that the nNOS gene is essential during adolescence of both sexes for the development of long-term neural plasticity underlying responsiveness to the incentive value of cocaine reward. Sexual dimorphism in response to cocaine CPP emerges in adulthood; nNOS contribution to long-term plasticity is therefore sexually dimorphic and age-dependent in female but not in male subjects.
Collapse
Affiliation(s)
- Mara A Balda
- Neuroscience Program, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
7
|
Roze E, Vidailhet M, Blau N, Moller LB, Doummar D, de Villemeur TB, Roubergue A. Long-term follow-up and adult outcome of 6-pyruvoyl-tetrahydropterin synthase deficiency. Mov Disord 2006; 21:263-6. [PMID: 16161143 DOI: 10.1002/mds.20699] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Little information is available on the long-term course and adult outcome of patients with 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency. We describe the course of a 32-year-old woman with hypotonia, dystonia, choreoathetosis, mental retardation, behavioral disturbances, and incomplete puberty due to PTPS deficiency. From the age of 6 months she developed progressive hypotonia and choreoathtetoid movements despite good control of hyperphenylalaninemia. Tetrahydrobiopterin deficiency was diagnosed at age 3 years. She had a dramatic response to L-dopa, which persisted at a stable dose for 29 years. Reducing the L-dopa dose led to severe axial hypotonia and limb dystonia, and increasing it led to florid abnormal movements and behavioral disorders. This report illustrates the role of dopamine modulation in motor, psychiatric, and endocrine functions.
Collapse
Affiliation(s)
- Emmanuel Roze
- Department of Neurology, Saint-Antoine Hospital, Paris, France, and Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yuan Q, Scott DE, So KF, Wu W. Developmental changes of nitric oxide synthase expression in the rat hypothalamoneurohypophyseal system. ACTA ACUST UNITED AC 2005; 288:36-45. [PMID: 16342209 DOI: 10.1002/ar.a.20271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study investigated the immunohistochemical localization of neuronal nitric oxide synthase (nNOS) in the hypothalamoneurohypophyseal system (HNS) of the developing rats on postnatal day 1 (PN1), 7 (PN7), 14 (PN14), 21 (PN21), and the adult rats. The nNOS-positive neurons were not discernable in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), and the median eminence (ME) at PN1 and PN7. A few neurons positive for nNOS were first detected at PN14. At PN21, the nNOS-positive cells in SON and PVN rapidly increased in number. The pattern of nNOS expression at this stage approached that of the adult. Moreover, the increase of nNOS expression in the SON and PVN during the postnatal period was accompanied by the maturation of arginine vasopressin (AVP) and oxytocin (OT) neurons as indicated by the number and size of OT or AVP neurons in the SON and PVN. The patterns of AVP versus OT expression also reached that of the adult by the end of the third postnatal week. The time course of the change in nNOS expression coincided with the maturation of AVP and OT neurons in the HNS and suggested that NO synthesized by conversion of NOS is involved in the modulation of activity of neurons in the SON and PVN of the HNS.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
9
|
Huong NTT, Murakami Y, Tohda M, Watanabe H, Matsumoto K. Social Isolation Stress-Induced Oxidative Damage in Mouse Brain and Its Modulation by Majonoside-R2, a Vietnamese Ginseng Saponin. Biol Pharm Bull 2005; 28:1389-93. [PMID: 16079480 DOI: 10.1248/bpb.28.1389] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stressors with a physical factor such as immobilization, electric foot shock, cold swim, etc., have been shown to produce oxidative damage to membrane lipids in the brain. In this study, we investigated the effect of protracted social isolation stress on lipid peroxidation activity in the mouse brain and elucidated the protective effect of majonoside-R2, a major saponin component of Vietnamese ginseng, in mice exposed to social isolation stress. Thiobarbituric acid reactive substance levels, one of the end products of lipid peroxidation reaction, were increased in the brains of mice subjected to 6-8 weeks of social isolation stress. Measurements of nitric oxide (NO) metabolites (NO(x)(-)) also revealed a significant increase of NO production in the brains of socially isolated mice. Moreover, the depletion of brain glutathione content, an endogenous antioxidant, in socially isolated animals occurred in association with the rise in lipid peroxidation. The intraperitoneal administration of majonoside-R2 (10-50 mg/kg) had no effect on thiobarbituric acid reactive substances (TBARS), NO, or glutathione levels in the brains of group-housed control mice but it significantly suppressed the increase in TBARS and NO levels and the decrease in glutathione levels caused by social isolation stress. These results suggest that mice subjected to 6-8 weeks of social isolation stress produces oxidative damage in the brain partly via enhancement of NO production, and that majonoside-R2 exerts a protective effect by modulating NO and glutathione systems in the brain.
Collapse
Affiliation(s)
- Nguyen Thi Thu Huong
- Division of Medicinal Pharmacology, Institute of Natural Medicines, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
10
|
Freire MAM, Gomes-Leal W, Carvalho WA, Guimarães JS, Franca JG, Picanço-Diniz CW, Pereira A. A morphometric study of the progressive changes on NADPH diaphorase activity in the developing rat's barrel field. Neurosci Res 2004; 50:55-66. [PMID: 15288499 DOI: 10.1016/j.neures.2004.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/27/2004] [Indexed: 11/25/2022]
Abstract
The distribution of NADPH diaphorase (NADPH-d)/nitric oxide synthase (NOS) neurons was evaluated during the postnatal development of the primary somatosensory cortex (SI) of the rat. Both cell counts and area measurements of barrel fields were carried out throughout cortical maturation. In addition, NADPH-d and cytochrome oxidase (CO) activities were also compared in both coronal and tangential sections of rat SI between postnatal days (P) 10 and 90. Throughout this period, the neuropil distributions of both enzymes presented a remarkable similarity and have not changed noticeably. Their distribution pattern show the PMBSF as a two-compartmented structure, displaying a highly reactive region (barrel hollows) flanked by less reactive regions (barrel septa). The number of NADPH-d neurons increased significantly in the barrel fields between P10 and P23, with peak at P23. The dendritic arborization of NADPH-d neurons became more elaborated during barrel development. In all ages evaluated, the number of NADPH-d cells was always higher in septa than in the barrel hollows. Both high neuropil reactivity and differential distribution of NADPH-d neurons during SI development suggest a role for nitric oxide throughout barrel field maturation.
Collapse
Affiliation(s)
- Marco Aurélio M Freire
- Laboratory of Functional Neuroanatomy, Department of Morphology, Federal University of Pará, 66075-900 Belém, PA, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Xu Q, Wink DA, Colton CA. Nitric oxide production and regulation of neuronal NOS in tyrosine hydroxylase containing neurons. Exp Neurol 2004; 188:341-50. [PMID: 15246834 DOI: 10.1016/j.expneurol.2004.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 04/14/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
CAD cells are a murine CNS catecholaminergic (tyrosine hydroxylase-positive; TH+) neuronal cell line that undergoes morphological differentiation to resemble CNS catecholaminergic neurons upon serum deprivation. We show here that CAD cells also express neuronal nitric oxide synthase (nNOS) mRNA and protein and produce readily measurable levels of NO. Since both NO and catecholamines (L-DOPA; dopamine; norepinephrine) are redox active molecules, their production within the same cell may affect the cell's vulnerability to insult. Thus, we examined the regulation of NO production by CAD cells and the effect of NO on cell survival. NO is generated in a dose-dependent fashion by treatment with agents (ionomycin; A23817; KCl) known to increase calcium entry across the cell membrane. The NO level can be increased further by pretreatment with sepiapterin, a membrane permeable precursor for BH4 synthesis, suggesting that the BH4 levels or access required for nNOS activation is limited in CAD cells. Reducing mitochondrial Ca2+ uptake using ruthenium red (RuR) increased ionomycin-mediated NO production over ionomycin alone and indicates a critical role for mitochondria in nNOS regulation. Cell death was significantly increased by ionomycin treatment alone or in conjunction with reduced mitochondrial Ca2+ uptake. However, NO was not the primary mediator of cell death since NOS inhibitors rescued only less than 10% of the cells. These data suggest that endogenous NO production by nNOS is not a major factor in CAD cell death under these conditions.
Collapse
Affiliation(s)
- Qing Xu
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|