1
|
Enhanced Nerve Regeneration by Exosomes Secreted by Adipose-Derived Stem Cells with or without FK506 Stimulation. Int J Mol Sci 2021; 22:ijms22168545. [PMID: 34445251 PMCID: PMC8395161 DOI: 10.3390/ijms22168545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes secreted by adipose-derived stem cells (ADSC-exo) reportedly improve nerve regeneration after peripheral nerve injury. Herein, we investigated whether pretreatment of ADSCs with FK506, an immunosuppressive drug that enhances nerve regeneration, could secret exosomes (ADSC-F-exo) that further augment nerve regeneration. Designed exosomes were topically applied to injured nerve in a mouse model of sciatic nerve crush injury to assess the nerve regeneration efficacy. Outcomes were determined by histomorphometric analysis of semi-thin nerve sections stained with toluidine blue, mouse neurogenesis PCR array, and neurotrophin expression in distal nerve segments. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile potential exosomal proteins facilitating nerve regeneration. We observed that locally applied ADSC-exo and ADSC-F-exo significantly enhanced nerve regeneration after nerve crush injury. Pretreatment of ADSCs with FK506 failed to produce exosomes possessing more potent molecules for enhanced nerve regeneration. Proteomic analysis revealed that of 192 exosomal proteins detected in both ADSC-exo and ADSC-F-exo, histone deacetylases (HDACs), amyloid-beta A4 protein (APP), and integrin beta-1 (ITGB1) might be involved in enhancing nerve regeneration.
Collapse
|
2
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
3
|
Harper MM, Ye EA, Blong CC, Jacobson ML, Sakaguchi DS. Integrins contribute to initial morphological development and process outgrowth in rat adult hippocampal progenitor cells. J Mol Neurosci 2009; 40:269-83. [PMID: 19499350 DOI: 10.1007/s12031-009-9211-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
Adult rat hippocampal progenitor cells (AHPCs) are self-renewing, multipotent neural progenitor cells (NPCs) that can differentiate into neurons, oligodendrocytes, and astrocytes. AHPCs contact a variety of molecular cues within their surrounding microenvironment via integrins. We hypothesize that integrin receptors are important for NPCs. In this study, we have examined the distribution of integrins in neuronal-like, oligodendrocyte-like, and astrocyte-like AHPCs when grown on substrates that support integrin-mediated adhesion (laminin, fibronectin), and those that do not (poly-L: -ornithine, PLO) using immunocytochemistry as well as characterized the phenotypic differentiation of AHPCs plated on laminin and fibronectin. Focal adhesions were prominent in AHPCs plated on purified substrates, but were also found in AHPCs plated on PLO. The focal adhesions observed in AHPCs plated on PLO substrates may be formed by self-adhesion to the endogenously produced laminin or fibronectin. We have demonstrated that integrins contribute to the initial morphological differentiation of AHPCs, as inhibition of fibronectin binding with the competitive inhibitor echistatin significantly decreased the number of processes and microspikes present in treated cells, and also decreased overall cell area. Finally, we have characterized the genetic profile of a subset of integrins and integrin-related genes in the AHPCs using reverse transcriptase polymerase chain reaction. These results demonstrate an important role of integrins, in vitro, for the initial morphological differentiation of AHPCs.
Collapse
|
4
|
Andressen C, Adrian S, Fässler R, Arnhold S, Addicks K. The contribution of beta1 integrins to neuronal migration and differentiation depends on extracellular matrix molecules. Eur J Cell Biol 2005; 84:973-82. [PMID: 16325506 DOI: 10.1016/j.ejcb.2005.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 11/22/2022] Open
Abstract
The interaction of beta1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the beta1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major beta1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and beta1 integrin -/- neurones - as determined by MAP-2- and HNK-1-immunoreactive processes - was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in beta1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as beta1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine.
Collapse
|
5
|
Li M, Sakaguchi DS. Inhibition of integrin-mediated adhesion and signaling disrupts retinal development. Dev Biol 2004; 275:202-14. [PMID: 15464583 DOI: 10.1016/j.ydbio.2004.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/30/2004] [Accepted: 08/05/2004] [Indexed: 10/26/2022]
Abstract
Integrins are the major family of cell adhesion receptors that mediate cell adhesion to the extracellular matrix (ECM). Integrin-mediated adhesion and signaling play essential roles in neural development. In this study, we have used echistatin, an RGD-containing short monomeric disintegrin, to investigate the role of integrin-mediated adhesion and signaling during retinal development in Xenopus. Application of echistatin to Xenopus retinal-derived XR1 glial cells inhibited the three stages of integrin-mediated adhesion: cell attachment, cell spreading, and formation of focal adhesions and stress fibers. XR1 cell attachment and spreading increased tyrosine phosphorylation of paxillin, a focal adhesion associated protein, while echistatin significantly decreased phosphorylation levels of paxillin. Application of echistatin or beta(1) integrin function blocking antibody to the embryonic Xenopus retina disrupted retinal lamination and produced rosette structures with ectopic photoreceptors in the outer retina. These results indicate that integrin-mediated cell-ECM interactions play a critical role in cell adhesion, migration, and morphogenesis during vertebrate retinal development.
Collapse
Affiliation(s)
- Ming Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
6
|
Li M, Babenko NA, Sakaguchi DS. Inhibition of protein tyrosine kinase activity disrupts early retinal development. Dev Biol 2004; 266:209-21. [PMID: 14729490 DOI: 10.1016/j.ydbio.2003.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, we have investigated the role of tyrosine kinase activity during early retinal development in Xenopus laevis. The protein tyrosine kinase (PTK) inhibitors lavendustin A and genistein were used to determine the possible role of tyrosine kinase activity during retinal development in vivo and in vitro. Application of the inhibitors to early embryonic retina disrupted the pattern of lamination in the developing retina. The plexiform layers were severely disorganized or were no longer apparent, and photoreceptor morphogenesis was disrupted. Immunocytochemical analysis verified the presence of focal adhesions in dissociated retinal neuroepithelial cells isolated from St 25 embryos. Application of the PTK inhibitors blocked focal adhesion assembly in these primary cultured cells. To further investigate the regulation of focal adhesions by PTK activity, we examined the effect of lavendustin A on cultured XR1 glial cells. Lavendustin A produced a dose-dependent decrease in the proportion of XR1 cells displaying focal adhesions. Taken together, these results suggest that tyrosine kinase activity is essential for regulating neuroepithelial cell adhesion, migration and morphogenesis during retinal development. Furthermore, the disruption of retinal development may, in part, be due to the inhibition of integrin-mediated signaling.
Collapse
Affiliation(s)
- Ming Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
7
|
Low HL, Nogradi A, Vrbová G, Greensmith L. Axotomized motoneurons can be rescued from cell death by peripheral nerve grafts: the effect of donor age. J Neuropathol Exp Neurol 2003; 62:75-87. [PMID: 12528820 DOI: 10.1093/jnen/62.1.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Injury to neonatal nerves, unlike adult nerves, results in poor regeneration and extensive motoneuron death. We examined whether exposure to a more mature nerve environment could rescue axotomized motoneurons following neonatal injury. The sciatic nerve in 1 hindlimb of 3-day-old (P3) rats was transected and the cut end sutured to a nerve graft taken from donor rats, which ranged between P3 and P21. The extent of motoneuron survival and axon regeneration was established 7 days later. Since integrins play an important role in regeneration, we also examined the effect of manipulating integrin binding in nerve grafts. Following axotomy at P3 and implantation of nerve grafts from 3-day-old rats, approximately 38% of motoneurons survived. In contrast, grafts from rats aged 5 days and older resulted in an improvement in regeneration, and over 70% of motoneurons survived. This survival-promoting effect of P5 grafts was prevented by blocking beta1-integrins. In contrast, increasing beta1-integrin levels in grafts from P3 rats dramatically increased motoneuron survival. Thus, following neonatal nerve injury, exposure to a more mature nerve environment significantly increases motoneuron survival, an effect that is dependent upon beta1-integrin signaling. Therefore, pharmacological upregulation of beta1-integrins may significantly improve the outcome of neonatal nerve injuries.
Collapse
Affiliation(s)
- Hu Liang Low
- Sobell Department of Motor Neuroscience and Movements Disorders, Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | |
Collapse
|
8
|
Li M, Sakaguchi DS. Expression patterns of focal adhesion associated proteins in the developing retina. Dev Dyn 2002; 225:544-53. [PMID: 12454930 DOI: 10.1002/dvdy.10195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Adhesive interactions between integrin receptors and the extracellular matrix (ECM) are intimately involved in regulating development of a variety of tissues within the organism. In the present study, we have investigated the relationships between beta(1) integrin receptors and focal adhesion associated proteins during eye development. We used specific antibodies to examine the distribution of beta(1) integrin ECM receptors and the cytoplasmic focal adhesion associated proteins, talin, vinculin, and paxillin in the developing Xenopus retina. Immunoblot analysis confirmed antibody specificity and indicated that beta(1) integrins, talin, vinculin, and paxillin were expressed in developing retina and in the retinal-derived Xenopus XR1 glial cell line. Triple-labeling immunocytochemistry revealed that talin, vinculin, paxillin, and phosphotyrosine proteins colocalized with beta(1) integrins at focal adhesions located at the termini of F-actin filaments in XR1 cells. In the retina, these focal adhesion proteins exhibited developmentally regulated expression patterns during eye morphogenesis. In the embryonic retina, immunoreactivities for focal adhesion proteins were expressed in neuroepithelial cells, and immunoreactivity was especially strong at the interface between the optic vesicle and overlying ectoderm. At later stages, these proteins were expressed throughout all retinal layers with higher levels of expression observed in the plexiform layers, optic fiber layer, and in the region of the inner and outer limiting membrane. Strong immunoreactivities for beta(1) integrin, paxillin, and phosphotyrosine were expressed in the radially oriented Müller glial cells at later stages of development. These results suggest that focal adhesion-associated proteins are involved in integrin-mediated adhesion and signaling and are likely to be essential in regulating retinal morphogenesis.
Collapse
Affiliation(s)
- Ming Li
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
9
|
Thanos S, Mey J. Development of the visual system of the chick. II. Mechanisms of axonal guidance. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:205-45. [PMID: 11423155 DOI: 10.1016/s0165-0173(01)00049-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The quest to understand axonal guidance mechanisms requires exact and multidisciplinary analyses of axon navigation. This review is the second part of an attempt to synthesise experimental data with theoretical models of the development of the topographic connection of the chick retina with the tectum. The first part included classic ideas from developmental biology and recent achievements on the molecular level in understanding cytodifferentiation and histogenesis [J. Mey, S. Thanos, Development of the visual system of the chick. (I) Cell differentiation and histogenesis, Brain Res. Rev. 32 (2000) 343-379]. The present part deals with the question of how millions of fibres exit from the eye, traverse over several millimetres and spread over the optic tectum to assemble a topographic map, whose precision accounts for the sensory performance of the visual system. The following topics gained special attention in this review. (i) A remarkable conceptual continuity between classic embryology and recent molecular biology has revealed that positional cellular specification precedes and determines the formation of the retinotectal map. (ii) Graded expression of asymmetric genes, transcriptional factors and receptors for signal transduction during early development seem to play a crucial role in determining the spatial identity of neurons within surface areas of retina and optic tectum. (iii) The chemoaffinity hypothesis constitutes the conceptual framework for development of the retinotopic organisation of the primary visual pathway. Studies of repulsive factors in vitro developed the original hypothesis from a theoretical postulate of chemoattraction to an empirically supported concept based on chemorepulsion. (iv) The independent but synchronous development of retina and optic tectum in topo-chronologically corresponding patterns ensures that ingrowing retinal axons encounter receptive target tissue at appropriate locations, and at the time when connections are due to be formed. (v) The growth cones of the retino-fugal axons seem to be guided both by local cues on glial endfeet and within the extracellular matrix. On the molecular level, the ephrins and their receptors have emerged as the most likely candidates for the material substrate of a topographic projection along the anterior-posterior axis of the optic tectum. Yet, since a number of alternative molecules have been proposed for the same function, it remains the challenge for the near future to define the proportional contribution of each one of the individual mechanisms proposed by matching theoretical predictions with the experimental evidence.
Collapse
Affiliation(s)
- S Thanos
- Department of Experimental Ophthalmology, School of Medicine, University of Münster, Domagkstr. 15, 48149, Münster, Germany.
| | | |
Collapse
|
10
|
Gomez TM, Robles E, Poo M, Spitzer NC. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 2001; 291:1983-7. [PMID: 11239161 DOI: 10.1126/science.1056490] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Filopodia that extend from neuronal growth cones sample the environment for extracellular guidance cues, but the signals they transmit to growth cones are unknown. Filopodia were observed generating localized transient elevations of intracellular calcium ([Ca2+]i) that propagate back to the growth cone and stimulate global Ca2+ elevations. The frequency of filopodial Ca2+ transients was substrate-dependent and may be due in part to influx of Ca2+ through channels activated by integrin receptors. These transients slowed neurite outgrowth by reducing filopodial motility and promoted turning when stimulated differentially within filopodia on one side of the growth cone. These rapid signals appear to serve both as autonomous regulators of filopodial movement and as frequency-coded signals integrated within the growth cone and could be a common signaling process for many motile cells.
Collapse
Affiliation(s)
- T M Gomez
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
11
|
Hering H, Koulen P, Kröger S. Distribution of the integrin beta 1 subunit on radial cells in the embryonic and adult avian retina. J Comp Neurol 2000; 424:153-64. [PMID: 10888745 DOI: 10.1002/1096-9861(20000814)424:1<153::aid-cne11>3.0.co;2-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of the beta1 integrin subunit was investigated in the developing and adult chick retina at the light and electron microscopic levels, using two different monoclonal antibodies. Western blotting revealed a single band with a molecular weight of approximately 130 kDa in the retina and in a number of other tissues, indicating the specificity of the antibodies. In the retina, immunoreactivity was detected on radial cells spanning the entire width between the pigment epithelium and the vitreal border. These cells were undifferentiated neuroepithelial cells at early stages and radial Müller glial cells at later stages of development. At all stages, the beta1 subunit was concentrated at the vitreal border of the retina around the inner limiting membrane. Mechanical isolation of the inner limiting membrane, as well as immunoelectron microscopy, demonstrated that this immunoreactivity was due to a concentration of the beta1 subunit in the endfeet of neuroepithelial and Müller glial cells. Injection of collagenase into the vitreous of live embryos, a procedure that selectively removes the inner limiting membrane, but does not proteolytically degrade the integrin protein, resulted in a redistribution of the integrin immunoreactivity, demonstrating that the integrity of the basal lamina is required for the maintenance of the concentration of the beta1 subunit in the endfeet. These results suggest a role for the beta1 subunit-containing integrin heterodimers in the adhesion of neuroepithelial and Müller glial cells to extracellular matrix components of the inner limiting membrane, possibly stabilizing the radial morphology of these cells.
Collapse
Affiliation(s)
- H Hering
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, D-60528 Frankfurt, Germany
| | | | | |
Collapse
|
12
|
Hermann PM, Wildering WC, Bulloch AG. Functional recovery of respiratory behavior during axonal regeneration in snails (Lymnaea stagnalis) is experience dependent. Behav Neurosci 2000; 114:410-23. [PMID: 10832801 DOI: 10.1037/0735-7044.114.2.410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study investigated the role of experience in recovery of pulmonary respiration during axonal regeneration in Lymnaea stagnalis. Pulmonary respiration occurs when snails break the water surface and open the lung orifice, the pneumostome. It was shown that axotomy of all the axons innervating the pneumostome and surrounding area prevents the occurrence of lung respiration in 69% of snails. In the remaining 31%, lung respiration persisted, indicating that peripheral components alone are capable of initiating pneumostome openings and closures. Five weeks postsurgery, all snails with previous nerve crushes showed opening of the pneumostome with normal latency after breaking the water surface. However, prevention of pulmonary respiration during the recovery period dramatically changed the recovered behavior. Thus, experience in pulmonary respiration during axonal regeneration plays a role in the recovery of this behavior.
Collapse
Affiliation(s)
- P M Hermann
- Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
13
|
Abstract
It is a well known fact that the injured PNS can successfully regenerate, on the other hand, the CNS such as retinal ganglion cell (RGC) axons of adult mammals is incapable of regeneration. After injury, RGC axons rapidly degenerate and most cell bodies go through the process of cell death, while glial cells at the site of injury undergo a series of responses which underlie the so-called glial scar formation. However, it has become apparent that RGCs do have an intrinsic capacity to regenerate which can be elicited by experimental replacement of the inhibitory glial environment with a permissive peripheral nerve milieu. Schwann cells are a major component of the PNS and play a role in regeneration, by producing various kinds of functional substances such as diffusible neurotrophic factors, extracellular matrix and cell adhesion molecules. RGC regeneration can be induced by cooperation of these substances. The contact of RGC axons to Schwann cells based upon the structural and molecular linkages seems to be indispensable for the stable and successful regeneration. In addition to cell adhesion molecules such as NCAM and L1, data from our laboratory show that Schwann cells utilize short focal tight junctions to provide morphological stabilization of the contact with the elongating axon, as well as a small scale of gap junctions to facilitate traffic of substances between them. Moreover, our results show that modifications of functional properties in neighboring glial cells of optic nerve are induced by transplantation of Schwann cells. Astrocytes usually considered to form a glial scar guide the regenerating axons in cooperation with Schwann cells. A decrease of the oligodendrocyte marker O4 and migration of ED-1 positive macrophages is observed within the optic nerve stump. Accordingly, RGC regeneration is not a simple phenomenon of axonal elongation on the Schwann cell membrane, but is based on direct and dynamic communication between the axon and the Schwann cell, and is also accompanied by changes and responses among the glial cell populations, which may be partly associated with the mechanisms of optic nerve regeneration.
Collapse
Affiliation(s)
- M Dezawa
- Department of Ophthalmology, Chiba University School of Medicine, Chiba City, Japan.
| | | |
Collapse
|
14
|
Ledig MM, Haj F, Bixby JL, Stoker AW, Mueller BK. The receptor tyrosine phosphatase CRYPalpha promotes intraretinal axon growth. J Cell Biol 1999; 147:375-88. [PMID: 10525542 PMCID: PMC2174224 DOI: 10.1083/jcb.147.2.375] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1999] [Accepted: 09/01/1999] [Indexed: 01/06/2023] Open
Abstract
Retinal ganglion cell axons grow towards the optic fissure in close contact with the basal membrane, an excellent growth substratum. One of the ligands of receptor tyrosine phosphatase CRYPalpha is located on the retinal and tectal basal membranes. To analyze the role of this RPTP and its ligand in intraretinal growth and guidance of ganglion cell axons, we disrupted ligand- receptor interactions on the retinal basal membrane in culture. Antibodies against CRYPalpha strongly reduced retinal axon growth on the basal membrane, and induced a dramatic change in morphology of retinal growth cones, reducing the size of growth cone lamellipodia. A similar effect was observed by blocking the ligand with a CRYPalpha ectodomain fusion protein. These effects did not occur, or were much reduced, when axons were grown either on laminin-1, on matrigel or on basal membranes with glial endfeet removed. This indicates that a ligand for CRYPalpha is located on glial endfeet. These results show for the first time in vertebrates that the interaction of a receptor tyrosine phosphatase with its ligand is crucial not only for promotion of retinal axon growth but also for maintenance of retinal growth cone lamellipodia on basal membranes.
Collapse
Affiliation(s)
- Matthias M. Ledig
- Max-Planck-Institut für Entwicklungsbiologie, Physikalische Biologie, D-72076 Tübingen, Germany
| | - Fawaz Haj
- Institute of Child Health, Neural Development Unit, University College London, London WC1N 1EH, United Kingdom
| | - John L. Bixby
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101
| | - Andrew W. Stoker
- Institute of Child Health, Neural Development Unit, University College London, London WC1N 1EH, United Kingdom
| | - Bernhard K. Mueller
- Max-Planck-Institut für Entwicklungsbiologie, Physikalische Biologie, D-72076 Tübingen, Germany
| |
Collapse
|
15
|
Folsom T, Sakaguchi D. Disruption of actin-myosin interactions results in the inhibition of focal adhesion assembly inXenopus XR1 glial cells. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199905)26:3<245::aid-glia6>3.0.co;2-v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Andressen C, Arnhold S, Puschmann M, Bloch W, Hescheler J, Fässler R, Addicks K. Beta1 integrin deficiency impairs migration and differentiation of mouse embryonic stem cell derived neurons. Neurosci Lett 1998; 251:165-8. [PMID: 9726369 DOI: 10.1016/s0304-3940(98)00535-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell-matrix interaction plays an important role during neuronal development, which is demonstrated by comparing wild type (D3)- and beta1 integrin-deficient (G201) embryonic stem cell derived neurons. In D3 preparations complex networks of functionally coupled neurons with bi- and multipolar morphologies develop. In contrast, neuronal differentiation is retarded in G201 derived neurons, recognised by limited migration and restricted morphological differentiation. Furthermore, beta1 integrin deficiency causes a delay in expression of major neurotransmitters like GABA and glutamate as well as of synaptophysin. These findings indicate a prominent role of beta1 integrin for both morphological and chemical differentiation.
Collapse
Affiliation(s)
- C Andressen
- Institut I für Anatomie der Universität zu Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Sakaguchi DS, Janick LM, Reh TA. Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia. Dev Dyn 1997; 209:387-98. [PMID: 9264262 DOI: 10.1002/(sici)1097-0177(199708)209:4<387::aid-aja6>3.0.co;2-e] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study we report that basic fibroblast growth factor (bFGF, FGF-2) promotes the transdifferentiation of Xenopus laevis larval retinal pigment epithelium (RPE) into neural retina. Using specific antibodies we have examined the cellular composition of the regenerated retinal tissue. Our results show that, in addition to retinal neurons and photoreceptors, glial cells were also regenerated from the transdifferentiated RPE. These results were specific to FGF-2, since other factors that were tested, including acidic FGF (aFGF, FGF-1), epidermal growth factor (EGF), laminin, ECL, and Matrigel, exhibited no activity in inducing retinal regeneration. These results are the first in amphibians demonstrating the functional role of FGF-2 in inducing RPE transdifferentiation. Transplantation studies were carried out to investigate retinal regeneration from the RPE in an in vivo environment. Sheets of RPE implanted into the lens-less eyes of larval hosts transformed into neurons and glial cells only when under the influence of host retinal factors. In contrast, no retinal transdifferentiation occurred if the RPE was implanted into the enucleated orbit. Taken together, these results show that the amphibian RPE is capable of transdifferentiation into neuronal and glial cell-phenotypes and implicate FGF-2 as an important factor in inducing retinal regeneration in vitro.
Collapse
Affiliation(s)
- D S Sakaguchi
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA.
| | | | | |
Collapse
|