1
|
Baudat M, Joosten EAJ, Simons SHP, van den Hove DLA, Riemens RJM. Repetitive neonatal pain increases spinal cord DNA methylation of the µ-opioid receptor. Pediatr Res 2025:10.1038/s41390-025-03892-7. [PMID: 39885240 DOI: 10.1038/s41390-025-03892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Repetitive neonatal painful procedures experienced in the neonatal intensive care unit (NICU) are known to alter the development of the nociceptive system and have long-lasting consequences. Recent evidence indicates that NICU stay affects the methylation of the opioid receptor mu 1 encoding gene (Mor-1). Additionally, a preclinical model of neonatal procedural pain established lower adult post-operative MOR-1 levels in the spinal cord. Thus, we hypothesized that neonatal procedural pain increases the DNA methylation status of Mor-1 in the spinal cord and dorsal root ganglia (DRGs). METHODS To this end, repetitive neonatal procedural pain was induced in animals, during the first postnatal week, a period equivalent to preterm human brain development. On postnatal day 10 methylation of Mor-1 promotor was assessed in the spinal cord and the DRG using bisulfite pyrosequencing. RESULTS Our findings demonstrated that neonatal procedural pain increased spinal cord Mor-1 promotor DNA methylation in the ipsilateral side as compared to the contralateral side, an effect that was not observed in the control animals, nor in the DRG. CONCLUSION This study is the first to highlight a localized and noxious-stimuli-dependent effect of repetitive neonatal procedural pain on Mor-1 promotor methylation and emphasizes the need to explore the effects of repetitive neonatal procedural pain on the epigenome. IMPACT This study reveals that repetitive neonatal procedural pain is associated with increased DNA methylation of the Mor-1 promoter in the spinal cord of neonatal rats. This is the first study to identify an effect of neonatal procedural pain on DNA methylation, emphasizing the critical need for further investigation into the epigenetic consequences of neonatal procedural pain. These insights could lead to better management and treatment strategies to mitigate the long-term impacts of early pain exposure on neurodevelopment and behavior.
Collapse
Affiliation(s)
- Mathilde Baudat
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.
- Department of Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands.
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Centre Rotterdam- Sophia Children Hospital, Rotterdam, the Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Renzo J M Riemens
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Taylor M, Cheng AB, Hodkinson DJ, Afacan O, Zurakowski D, Bajic D. Body size and brain volumetry in the rat following prolonged morphine administration in infancy and adulthood. FRONTIERS IN PAIN RESEARCH 2023; 4:962783. [PMID: 36923651 PMCID: PMC10008895 DOI: 10.3389/fpain.2023.962783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/20/2023] [Indexed: 02/28/2023] Open
Abstract
Background Prolonged morphine treatment in infancy is associated with a high incidence of opioid tolerance and dependence, but our knowledge of the long-term consequences of this treatment is sparse. Using a rodent model, we examined the (1) short- and (2) long-term effects of prolonged morphine administration in infancy on body weight and brain volume, and (3) we evaluated if subsequent dosing in adulthood poses an increased brain vulnerability. Methods Newborn rats received subcutaneous injections of either morphine or equal volume of saline twice daily for the first two weeks of life. In adulthood, animals received an additional two weeks of saline or morphine injections before undergoing structural brain MRI. After completion of treatment, structural T2-weigthed MRI images were acquired on a 7 T preclinical scanner (Bruker) using a RARE FSE sequence. Total and regional brain volumes were manually extracted from the MRI images using ITK-SNAP (v.3.6). Regions of interest included the brainstem, the cerebellum, as well as the forebrain and its components: the cerebral cortex, hippocampus, and deep gray matter (including basal ganglia, thalamus, hypothalamus, ventral tegmental area). Absolute (cm3) and normalized (as % total brain volume) values were compared using a one-way ANOVA with Tukey HSD post-hoc test. Results Prolonged morphine administration in infancy was associated with lower body weight and globally smaller brain volumes, which was not different between the sexes. In adulthood, females had lower body weights than males, but no difference was observed in brain volumes between treatment groups. Our results are suggestive of no long-term effect of prolonged morphine treatment in infancy with respect to body weight and brain size in either sex. Interestingly, prolonged morphine administration in adulthood was associated with smaller brain volumes that differed by sex only in case of previous exposure to morphine in infancy. Specifically, we report significantly smaller total brain volume of female rats on account of decreased volumes of forebrain and cortex. Conclusions Our study provides insight into the short- and long-term consequences of prolonged morphine administration in an infant rat model and suggests brain vulnerability to subsequent exposure in adulthood that might differ with sex.
Collapse
Affiliation(s)
- Milo Taylor
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard College, Massachusetts Hall, Cambridge, MA, United States
| | - Anya Brooke Cheng
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard College, Massachusetts Hall, Cambridge, MA, United States
| | - Duncan Jack Hodkinson
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, United Kingdom
- Versus Arthritis Pain Centre, University of Nottingham, Nottingham, United Kingdom
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Correspondence: Dusica Bajic
| |
Collapse
|
3
|
Rabiller L, Labit E, Guissard C, Gilardi S, Guiard BP, Moulédous L, Silva M, Mithieux G, Pénicaud L, Lorsignol A, Casteilla L, Dromard C. Pain sensing neurons promote tissue regeneration in adult mice. NPJ Regen Med 2021; 6:63. [PMID: 34650070 PMCID: PMC8516997 DOI: 10.1038/s41536-021-00175-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
Tissue repair after injury in adult mammals, usually results in scarring and loss of function in contrast to lower vertebrates such as the newt and zebrafish that regenerate. Understanding the regulatory processes that guide the outcome of tissue repair is therefore a concerning challenge for regenerative medicine. In multiple regenerative animal species, the nerve dependence of regeneration is well established, but the nature of the innervation required for tissue regeneration remains largely undefined. Using our model of induced adipose tissue regeneration in adult mice, we demonstrate here that nociceptive nerves promote regeneration and their removal impairs tissue regeneration. We also show that blocking the receptor for the nociceptive neuropeptide calcitonin gene-related peptide (CGRP) inhibits regeneration, whereas CGRP administration induces regeneration. These findings reveal that peptidergic nociceptive neurons are required for adult mice tissue regeneration.
Collapse
Affiliation(s)
- Lise Rabiller
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France.,Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada.,Alan Edwards Center for Research on Pain, McGill University, Montreal, QC, Canada
| | - Elodie Labit
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Christophe Guissard
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Silveric Gilardi
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | - Lionel Moulédous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | | | | | - Luc Pénicaud
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Anne Lorsignol
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Louis Casteilla
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Cécile Dromard
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France.
| |
Collapse
|
4
|
Berthézène CD, Rabiller L, Jourdan G, Cousin B, Pénicaud L, Casteilla L, Lorsignol A. Tissue Regeneration: The Dark Side of Opioids. Int J Mol Sci 2021; 22:7336. [PMID: 34298954 PMCID: PMC8307464 DOI: 10.3390/ijms22147336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Opioids are regarded as among the most effective analgesic drugs and their use for the management of pain is considered standard of care. Despite their systematic administration in the peri-operative period, their impact on tissue repair has been studied mainly in the context of scar healing and is only beginning to be documented in the context of true tissue regeneration. Indeed, in mammals, growing evidence shows that opioids direct tissue repair towards scar healing, with a loss of tissue function, instead of the regenerative process that allows for recovery of both the morphology and function of tissue. Here, we review recent studies that highlight how opioids may prevent a regenerative process by silencing nociceptive nerve activity and a powerful anti-inflammatory effect. These data open up new perspectives for inducing tissue regeneration and argue for opioid-restricted strategies for managing pain associated with tissue injury.
Collapse
Affiliation(s)
- Cécile Dromard Berthézène
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Lise Rabiller
- Alan Edwards Center for Research on Pain, Department of Physiology and Cell Information Systems, McGill University, Montreal, QC H3A 0G1, Canada;
| | - Géraldine Jourdan
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Béatrice Cousin
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Luc Pénicaud
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Louis Casteilla
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Anne Lorsignol
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| |
Collapse
|
5
|
Verscheijden LFM, Litjens CHC, Koenderink JB, Mathijssen RHJ, Verbeek MM, de Wildt SN, Russel FGM. Physiologically based pharmacokinetic/pharmacodynamic model for the prediction of morphine brain disposition and analgesia in adults and children. PLoS Comput Biol 2021; 17:e1008786. [PMID: 33661919 PMCID: PMC7963108 DOI: 10.1371/journal.pcbi.1008786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/16/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Morphine is a widely used opioid analgesic, which shows large differences in clinical response in children, even when aiming for equivalent plasma drug concentrations. Age-dependent brain disposition of morphine could contribute to this variability, as developmental increase in blood-brain barrier (BBB) P-glycoprotein (Pgp) expression has been reported. In addition, age-related pharmacodynamics might also explain the variability in effect. To assess the influence of these processes on morphine effectiveness, a multi-compartment brain physiologically based pharmacokinetic/pharmacodynamic (PB-PK/PD) model was developed in R (Version 3.6.2). Active Pgp-mediated morphine transport was measured in MDCKII-Pgp cells grown on transwell filters and translated by an in vitro-in vivo extrapolation approach, which included developmental Pgp expression. Passive BBB permeability of morphine and its active metabolite morphine-6-glucuronide (M6G) and their pharmacodynamic parameters were derived from experiments reported in literature. Model simulations after single dose morphine were compared with measured and published concentrations of morphine and M6G in plasma, brain extracellular fluid (ECF) and cerebrospinal fluid (CSF), as well as published drug responses in children (1 day– 16 years) and adults. Visual predictive checks indicated acceptable overlays between simulated and measured morphine and M6G concentration-time profiles and prediction errors were between 1 and -1. Incorporation of active Pgp-mediated BBB transport into the PB-PK/PD model resulted in a 1.3-fold reduced brain exposure in adults, indicating only a modest contribution on brain disposition. Analgesic effect-time profiles could be described reasonably well for older children and adults, but were largely underpredicted for neonates. In summary, an age-appropriate morphine PB-PK/PD model was developed for the prediction of brain pharmacokinetics and analgesic effects. In the neonatal population, pharmacodynamic characteristics, but not brain drug disposition, appear to be altered compared to adults and older children, which may explain the reported differences in analgesic effect. Developmental processes in children can affect pharmacokinetics: “what the body does to the drug” as well as pharmacodynamics: “what the drug does to the body”. A typical example is morphine, of which the analgesic response is variable and particularly neonates suffer more often from respiratory depression, even when receiving doses corrected for differences in elimination. One way to mathematically incorporate developmental processes is by employing physiologically based pharmacokinetic/pharmacodynamic (PB-PK/PD) models, where physiological differences between individuals are incorporated. In this study, we developed a morphine PB-PK/PD model to predict brain drug disposition as well as analgesic response in adults and children, as both processes could potentially contribute to developmental variability in the effect of morphine. We found that age-related variation in BBB expression of the main morphine efflux transporter P-glycoprotein was not responsible for differences in brain exposure. In contrast, pharmacodynamic modelling suggested an increased sensitivity to morphine in neonates.
Collapse
Affiliation(s)
- Laurens F. M. Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carlijn H. C. Litjens
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Jan B. Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marcel M. Verbeek
- Departments of Neurology and Laboratory Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Saskia N. de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Frans G. M. Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Melchior M, Kuhn P, Poisbeau P. The burden of early life stress on the nociceptive system development and pain responses. Eur J Neurosci 2021; 55:2216-2241. [PMID: 33615576 DOI: 10.1111/ejn.15153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
For a long time, the capacity of the newborn infant to feel pain was denied. Today it is clear that the nociceptive system, even if still immature, is functional enough in the newborn infant to elicit pain responses. Unfortunately, pain is often present in the neonatal period, in particular in the case of premature infants which are subjected to a high number of painful procedures during care. These are accompanied by a variety of environmental stressors, which could impact the maturation of the nociceptive system. Therefore, the question of the long-term consequences of early life stress is a critical question. Early stressful experience, both painful and non-painful, can imprint the nociceptive system and induce long-term alteration in brain function and nociceptive behavior, often leading to an increase sensitivity and higher susceptibility to chronic pain. Different animal models have been developed to understand the mechanisms underlying the long-term effects of different early life stressful procedures, including pain and maternal separation. This review will focus on the clinical and preclinical data about early life stress and its consequence on the nociceptive system.
Collapse
Affiliation(s)
- Meggane Melchior
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Kuhn
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Service de Médecine et Réanimation du Nouveau-né, Hôpital de Hautepierre, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
7
|
D'Amato FR. Evaluation of μ-Opioid System Functionality in Mouse Pups: Ultrasonic Vocalizations as an Index of Infant Attachment. Methods Mol Biol 2021; 2201:259-265. [PMID: 32975807 DOI: 10.1007/978-1-0716-0884-5_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The evaluation of ultrasonic vocalizations (USVs) during isolation in 6-8-day-old mouse pups can give an indication of the perception of pups' discomfort and need for caretaker presence to overcome the unpleasant condition. Time spent vocalizing changed according to opioid activation, stress exposure, and genetic profile of pups. Deficits in attachment suggest altered opioid functioning and predisposal for long-term defective social behaviors and reward processes.
Collapse
Affiliation(s)
- Francesca R D'Amato
- Institute of Biochemistry and Cellular Biology, National Research Council, Rome, Italy.
| |
Collapse
|
8
|
Eerdekens M, Beuter C, Lefeber C, van den Anker J. The challenge of developing pain medications for children: therapeutic needs and future perspectives. J Pain Res 2019; 12:1649-1664. [PMID: 31213880 PMCID: PMC6536714 DOI: 10.2147/jpr.s195788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
It is broadly accepted that children of all age groups including (preterm) neonates and young infants can perceive pain and that there is an absolute need to treat their pain safely and effectively. The approved treatment options for children, particularly (preterm) neonates and young infants, are very limited with only a few medications specifically labelled for this population. This article presents the challenges of developing pain medications for children. A short overview gives information on pain in children, including pain perception, prevalence of pain and the long-term consequences of leaving pain untreated in this vulnerable population. Current pain management practices are briefly discussed. The challenges of conducting pediatric clinical trials in general and trials involving analgesic medications in particular within the regulatory framework available to develop these medications for children are presented. Emphasis is given to the operational hurdles faced in conducting a pediatric clinical trial program. Some suggestions to overcome these hurdles are provided based on our experience during the pediatric trial program for the strong analgesic tapentadol used for the treatment of moderate to severe acute pain.
Collapse
Affiliation(s)
| | | | | | - John van den Anker
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children’s Hospital, Basel, Switzerland
- Division of Clinical Pharmacology, Children’s National Medical Center, Washington, DC, USA
| |
Collapse
|
9
|
Koga A, Fujita T, Piao LH, Nakatsuka T, Kumamoto E. Inhibition by O-desmethyltramadol of glutamatergic excitatory transmission in adult rat spinal substantia gelatinosa neurons. Mol Pain 2019; 15:1744806918824243. [PMID: 30799694 PMCID: PMC6348506 DOI: 10.1177/1744806918824243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To reveal cellular mechanisms for antinociception produced by clinically used tramadol, we investigated the effect of its metabolite O-desmethyltramadol (M1) on glutamatergic excitatory transmission in spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons. The whole-cell patch-clamp technique was applied at a holding potential of −70 mV to SG neurons of an adult rat spinal cord slice with an attached dorsal root. Under the condition where a postsynaptic action of M1 was inhibited, M1 superfused for 2 min reduced the frequency of spontaneous excitatory postsynaptic current in a manner sensitive to a μ-opioid receptor antagonist CTAP; its amplitude and also a response of SG neurons to bath-applied AMPA were hardly affected. The presynaptic effect of M1 was different from that of noradrenaline or serotonin which was examined in the same neuron. M1 also reduced by almost the same extent the peak amplitudes of monosynaptic primary-afferent Aδ-fiber and C-fiber excitatory postsynaptic currents evoked by stimulating the dorsal root. These actions of M1 persisted for >10 min after its washout. These results indicate that M1 inhibits the quantal release of L-glutamate from nerve terminals by activating μ-opioid but not noradrenaline and serotonin receptors; this inhibition is comparable in extent between monosynaptic primary-afferent Aδ-fiber and C-fiber transmissions. Considering that the SG plays a pivotal role in regulating nociceptive transmission, the present findings could contribute to at least a part of the inhibitory action of tramadol on nociceptive transmission together with its hyperpolarizing effect as reported previously.
Collapse
Affiliation(s)
- Akiko Koga
- 1 Department of Physiology, Saga Medical School, Saga, Japan.,2 Department of Anesthesiology & Critical Care Medicine, Saga Medical School, Saga, Japan
| | - Tsugumi Fujita
- 1 Department of Physiology, Saga Medical School, Saga, Japan
| | - Lian-Hua Piao
- 1 Department of Physiology, Saga Medical School, Saga, Japan
| | | | - Eiichi Kumamoto
- 1 Department of Physiology, Saga Medical School, Saga, Japan
| |
Collapse
|
10
|
Moriarty O, Harrington L, Beggs S, Walker SM. Opioid analgesia and the somatosensory memory of neonatal surgical injury in the adult rat. Br J Anaesth 2018; 121:314-324. [PMID: 29935586 PMCID: PMC6200106 DOI: 10.1016/j.bja.2017.11.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Background Nociceptive input during early development can produce somatosensory memory that influences future pain response. Hind-paw incision during the 1st postnatal week in the rat enhances re-incision hyperalgesia in adulthood. We now evaluate its modulation by neonatal analgesia. Methods Neonatal rats [Postnatal Day 3 (P3)] received saline, intrathecal morphine 0.1 mg kg−1 (IT), subcutaneous morphine 1 mg kg−1 (SC), or sciatic levobupivacaine block (LA) before and after plantar hind-paw incision (three×2 hourly injections). Six weeks later, behavioural thresholds and electromyography (EMG) measures of re-incision hyperalgesia were compared with an age-matched adult-only incision (IN) group. Morphine effects on spontaneous (conditioned place preference) and evoked (EMG sensitivity) pain after adult incision were compared with prior neonatal incision and saline or morphine groups. The acute neonatal effects of incision and analgesia on behavioural hyperalgesia at P3 were also evaluated. Results Adult re-incision hyperalgesia was not prevented by neonatal peri-incision morphine (saline, IT, and SC groups > IN; P<0.05–0.01). Neonatal sciatic block, but not morphine, prevented the enhanced re-incision reflex sensitivity in adulthood (LA < saline and morphine groups, P<0.01; LA vs IN, not significant). Morphine efficacy in adulthood was altered after morphine alone in the neonatal period, but not when administered with neonatal incision. Morphine prevented the acute incision-induced hyperalgesia in neonatal rats, but only sciatic block had a preventive analgesic effect at 24 h. Conclusions Long-term effects after neonatal injury highlight the need for preventive strategies. Despite effective analgesia at the time of neonatal incision, morphine as a sole analgesic did not alter the somatosensory memory of early-life surgical injury.
Collapse
Affiliation(s)
- O Moriarty
- Developmental Neurosciences Programme (Pain Research), UCL Great Ormond Street Institute of Child Health, London, UK
| | - L Harrington
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - S Beggs
- Developmental Neurosciences Programme (Pain Research), UCL Great Ormond Street Institute of Child Health, London, UK; Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - S M Walker
- Developmental Neurosciences Programme (Pain Research), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
11
|
Panahi Y, Saboory E, Rassouli A, Sadeghi‐Hashjin G, Roshan‐Milani S, Derafshpour L, Rasmi Y. The effect of selective opioid receptor agonists and antagonists on epileptiform activity in morphine‐dependent infant mice hippocampal slices. Int J Dev Neurosci 2017; 60:56-62. [DOI: 10.1016/j.ijdevneu.2017.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/01/2017] [Accepted: 04/24/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Yousef Panahi
- Department of Pharmacology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical SciencesUrmiaIran
| | - Ali Rassouli
- Department of Pharmacology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | | | - Shiva Roshan‐Milani
- Department of Physiology, Faculty of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Leila Derafshpour
- Neurophysiology Research Center, Urmia University of Medical SciencesUrmiaIran
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical SciencesUrmiaIran
| |
Collapse
|
12
|
Ventilation and the Response to Hypercapnia after Morphine in Opioid-naive and Opioid-tolerant Rats. Anesthesiology 2016; 124:945-57. [PMID: 26734964 DOI: 10.1097/aln.0000000000000997] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Opioid-related deaths are a leading cause of accidental death, with most occurring in patients receiving chronic pain therapy. Respiratory arrest is the usual cause of death, but mechanisms increasing that risk with increased length of treatment remain unclear. Repeated administration produces tolerance to opioid analgesia, prompting increased dosing, but depression of ventilation may not gain tolerance to the same degree. This study addresses differences in the degree to which chronic morphine (1) produces tolerance to ventilatory depression versus analgesia and (2) alters the magnitude and time course of ventilatory depression. METHODS Juvenile rats received subcutaneous morphine for 3 days (n = 116) or vehicle control (n = 119) and were then tested on day 4 following one of a range of morphine doses for (a) analgesia by paw withdraw from heat or (b) respiratory parameters by plethysmography-respirometry. RESULTS Rats receiving chronic morphine showed significant tolerance to morphine sedation and analgesia (five times increased ED50). When sedation was achieved for all animals in a dose group (lowest effective doses: opioid-tolerant, 15 mg/kg; opioid-naive, 3 mg/kg), the opioid-tolerant showed similar magnitudes of depressed ventilation (-41.4 ± 7.0%, mean ± SD) and hypercapnic response (-80.9 ± 15.7%) as found for morphine-naive (-35.5 ± 16.9% and -67.7 ± 15.1%, respectively). Ventilation recovered due to tidal volume without recovery of respiratory rate or hypercapnic sensitivity and more slowly in morphine-tolerant. CONCLUSIONS In rats, gaining tolerance to morphine analgesia does not reduce ventilatory depression effects when sedated and may inhibit recovery of ventilation.
Collapse
|
13
|
Craig MM, Bajic D. Long-term behavioral effects in a rat model of prolonged postnatal morphine exposure. Behav Neurosci 2015; 129:643-55. [PMID: 26214209 PMCID: PMC4586394 DOI: 10.1037/bne0000081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prolonged morphine treatment in neonatal pediatric populations is associated with a high incidence of opioid tolerance and dependence. Despite the clinical relevance of this problem, our knowledge of long-term consequences is sparse. The main objective of this study was to investigate whether prolonged morphine administration in a neonatal rat is associated with long-term behavioral changes in adulthood. Newborn animals received either morphine (10 mg/kg) or equal volume of saline subcutaneously twice daily for the first 2 weeks of life. Morphine-treated animals underwent 10 days of morphine weaning to reduce the potential for observable physical signs of withdrawal. Animals were subjected to nonstressful testing (locomotor activity recording and a novel-object recognition test) at a young age (Postnatal Days [PDs] 27-31) or later in adulthood (PDs 55-56), as well as stressful testing (calibrated forceps test, hot plate test, and forced swim test) only in adulthood. Analysis revealed that prolonged neonatal morphine exposure resulted in decreased thermal but not mechanical threshold. Importantly, no differences were found for total locomotor activity (proxy of drug reward/reinforcement behavior), individual forced swim test behaviors (proxy of affective processing), or novel-object recognition test. Performance on the novel-object recognition test was compromised in the morphine-treated group at the young age, but the effect disappeared in adulthood. These novel results provide insight into the long-term consequences of opioid treatment during an early developmental period and suggest long-term neuroplastic differences in sensory processing related to thermal stimuli.
Collapse
Affiliation(s)
- Michael M. Craig
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, USA
| |
Collapse
|
14
|
Chiang YC, Ye LC, Hsu KY, Liao CW, Hung TW, Lo WJ, Ho IK, Tao PL. Beneficial effects of co-treatment with dextromethorphan on prenatally methadone-exposed offspring. J Biomed Sci 2015; 22:19. [PMID: 25890152 PMCID: PMC4376496 DOI: 10.1186/s12929-015-0126-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background Heroin use among young women of reproductive age has drawn much attention around the world. Although methadone is widely used in maintenance therapy for heroin/morphine addiction, the long-term effects of prenatal exposure to methadone and preventative therapy remain unclear. For revealing this question, female pregnant Sprague–Dawley rats were sub-grouped to receive (1) vehicle, (2) methadone 5 mg/kg at embryonic day 3 (E3) and then 7 mg/kg from E4 to E20, (3) dextromethorphan (DM) 3 mg/kg, and (4) methadone + DM (the rats received methadone followed by DM treatment), subcutaneously, twice a day from E3 to E20. The body weight, natural withdrawal, pain sensitivity, ED50, conditioned place preference and water maze were conducted at different postnatal stages (P1 to P79) of offspring. The quantitative real-time RT-PCR and electrophysiology were also used to measure the gene expression of opioid receptors in the spinal cord and changes of LTP/LTD in the hippocampus, separately. Results Prenatal exposure to methadone or DM did not affect survival rate, body weight, water maze and LTP or LTD of offspring. However, prenatal methadone significantly increased the withdrawal symptoms, pain sensitivity, addiction liability and decreased the mRNA expression of pain related opioid receptors. Co-administration of DM with methadone in the maternal rats effectively prevented these abnormalities of offspring induced by methadone. Conclusions Our study clearly showed that co-administration of dextromethorphan with methadone in the maternal rats prevented the adverse effects induced by prenatal methadone exposure. It implies that dextromethorphan may have a potential to be used in combination with methadone for maintenance treatment in pregnant heroin-addicted women to prevent the adverse effects induced by methadone on offspring. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0126-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao-Chang Chiang
- Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan. .,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
| | - Li-Ci Ye
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| | - Kuei-Ying Hsu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | - Chien-Wei Liao
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | - Tsai-Wei Hung
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | - Wan-Jou Lo
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | - Ing-Kang Ho
- Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan. .,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
| | - Pao-Luh Tao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan. .,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| |
Collapse
|
15
|
D'Amato FR. Evaluation of social and nonsocial behaviors mediated by opioids in mouse pups. Methods Mol Biol 2015; 1230:313-322. [PMID: 25293338 DOI: 10.1007/978-1-4939-1708-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The experimental approach to carry out a behavioral study involving opioids in mouse pups needs equipments and procedures different from those used for adult animals. Pups are immature at birth and only slowly acquire all the potentialities that characterize adult con-specifics. The standard and abnormal development of behavioral systems and their neural correlates can be followed during the first postnatal weeks, using appropriate methodologies that exploit characteristic pups' capabilities. Behavioral tests designed for pups to evaluate the activity and involvement of the opioid system, according to the well-known role of the system in adult animals, are described in this chapter.
Collapse
Affiliation(s)
- Francesca R D'Amato
- Cell Biology and Neurobiology Institute, CNR/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, Rome, 00143, Italy,
| |
Collapse
|
16
|
Maitra S, Baidya DK, Khanna P, Ray BR, Panda SS, Bajpai M. Acute perioperative pain in neonates: An evidence-based review of neurophysiology and management. ACTA ACUST UNITED AC 2014; 52:30-7. [DOI: 10.1016/j.aat.2014.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
17
|
Abstract
Effective management of procedural and postoperative pain in neonates is required to minimize acute physiological and behavioral distress and may also improve acute and long-term outcomes. Painful stimuli activate nociceptive pathways, from the periphery to the cortex, in neonates and behavioral responses form the basis for validated pain assessment tools. However, there is an increasing awareness of the need to not only reduce acute behavioral responses to pain in neonates, but also to protect the developing nervous system from persistent sensitization of pain pathways and potential damaging effects of altered neural activity on central nervous system development. Analgesic requirements are influenced by age-related changes in both pharmacokinetic and pharmacodynamic response, and increasing data are available to guide safe and effective dosing with opioids and paracetamol. Regional analgesic techniques provide effective perioperative analgesia, but higher complication rates in neonates emphasize the importance of monitoring and choice of the most appropriate drug and dose. There have been significant improvements in the understanding and management of neonatal pain, but additional research evidence will further reduce the need to extrapolate data from older age groups. Translation into improved clinical care will continue to depend on an integrated approach to implementation that encompasses assessment and titration against individual response, education and training, and audit and feedback.
Collapse
Affiliation(s)
- Suellen M Walker
- Correspondence Suellen Walker, Portex Unit: Pain Research; 6th Floor Cardiac Wing, UCL Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK,
| |
Collapse
|
18
|
Kwok CHT, Devonshire IM, Bennett AJ, Hathway GJ. Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. Pain 2013; 155:168-178. [PMID: 24076162 PMCID: PMC3894430 DOI: 10.1016/j.pain.2013.09.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/03/2013] [Accepted: 09/20/2013] [Indexed: 12/31/2022]
Abstract
Significant opioid-dependent changes occur during the fourth postnatal week in supraspinal sites (rostroventral medulla [RVM], periaqueductal grey [PAG]) that are involved in the descending control of spinal excitability via the dorsal horn (DH). Here we report developmentally regulated changes in the opioidergic signalling within the PAG and DH, which further increase our understanding of pain processing during early life. Microinjection of the μ-opioid receptor (MOR) agonist DAMGO (30 ng) into the PAG of Sprague-Dawley rats increased spinal excitability and lowered mechanical threshold to noxious stimuli in postnatal day (P)21 rats, but had inhibitory effects in adults and lacked efficacy in P10 pups. A tonic opioidergic tone within the PAG was revealed in adult rats by intra-PAG microinjection of CTOP (120 ng, MOR antagonist), which lowered mechanical thresholds and increased spinal reflex excitability. Spinal adminstration of DAMGO inhibited spinal excitability in all ages, yet the magnitude of this was greater in younger animals than in adults. The expression of MOR and related peptides were also investigated using TaqMan real-time polymerase chain reaction and immunohistochemistry. We found that pro-opiomelanocortin peaked at P21 in the ventral PAG, and MOR increased significantly in the DH as the animals aged. Enkephalin mRNA transcripts preceded the increase in enkephalin immunoreactive fibres in the superficial dorsal horn from P21 onwards. These results illustrate that profound differences in the endogenous opioidergic signalling system occur throughout postnatal development.
Collapse
Affiliation(s)
- Charlie H T Kwok
- Laboratory of Developmental Nociception, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK FRAME Laboratory, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
19
|
Saboory E, Gholami M, Zare S, Roshan-Milani S. The long-term effects of neonatal morphine administration on the pentylenetetrazol seizure model in rats: the role of hippocampal cholinergic receptors in adulthood. Dev Psychobiol 2013; 56:498-509. [PMID: 23775703 DOI: 10.1002/dev.21117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 03/04/2013] [Indexed: 11/07/2022]
Abstract
Early life exposure to opiates may affect neuropathological conditions, such as epilepsy, during adulthood. We investigated whether neonatal morphine exposure affects pentylenetetrazol (PTZ)-induced seizures in adulthood. Male rats were subcutaneously injected with morphine or saline on postnatal days 8-14. During adulthood, each rat was assigned to 1 of the following 10 sub-groups: saline, nicotine (0.1, 0.5, or 1 μg), atropine (0.25 or 1 μg), oxotremorine M (0.1 or 1 μg), or mecamylamine (2 or 8 μg). An intrahippocampal infusion of the indicated compound was administered 30 min before seizure induction (80 mg/kg PTZ). Compared with the saline/oxotremorine (1 μg), saline/saline, and morphine/saline groups, the morphine/oxotremorine (1 μg) group showed a significantly increased latency to the first epileptic behavior. The duration of tonic-clonic seizures was significantly lower in the morphine/oxotremorine (1 μg) group compared to the saline/saline and morphine/saline groups. The severity of seizure was significantly decreased in the morphine/atropine (1 μg) group than in the saline/atropine (1 μg). Seizure severity was also decreased in the morphine/mecamylamine (2 μg) group than in the saline/mecamylamine (2 μg) group. Latency for death was significantly lower in the morphine/mecamylamine (2 μg) group compared with the saline/mecamylamine (2 μg) group. Mortality rates in the morphine/atropine (1 μg) and morphine/mecamylamine (2 μg) groups were significantly lower than those in the saline/atropine (1 μg) and saline/mecamylamine (2 μg) groups, respectively. Chronic neonatal morphine administration attenuated PTZ-induced seizures, reduced the mortality rate, and decreased the impact of the hippocampal cholinergic system on seizures and mortality rate in adult rats. Neonatal morphine exposure induces changes to μ-receptors that may lead to activation of GABAergic neurons in the hippocampus. This pathway may explain the anti-convulsant effects of morphine observed in our study.
Collapse
Affiliation(s)
- Ehsan Saboory
- Faculty of Medicine, Department of Physiology, Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | | |
Collapse
|
20
|
Opioid analgesia in mechanically ventilated children: results from the multicenter Measuring Opioid Tolerance Induced by Fentanyl study. Pediatr Crit Care Med 2013; 14:27-36. [PMID: 23132396 PMCID: PMC3581608 DOI: 10.1097/pcc.0b013e318253c80e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the clinical factors associated with increased opioid dose among mechanically ventilated children in the pediatric intensive care unit. DESIGN Prospective, observational study with 100% accrual of eligible patients. SETTING Seven pediatric intensive care units from tertiary-care children's hospitals in the Collaborative Pediatric Critical Care Research Network. PATIENTS Four hundred nineteen children treated with morphine or fentanyl infusions. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Data on opioid use, concomitant therapy, demographic and explanatory variables were collected. Significant variability occurred in clinical practices, with up to 100-fold differences in baseline opioid doses, average daily or total doses, or peak infusion rates. Opioid exposure for 7 or 14 days required doubling of the daily opioid dose in 16% patients (95% confidence interval 12%-19%) and 20% patients (95% confidence interval 16%-24%), respectively. Among patients receiving opioids for longer than 3 days (n = 225), this occurred in 28% (95% confidence interval 22%-33%) and 35% (95% confidence interval 29%-41%) by 7 or 14 days, respectively. Doubling of the opioid dose was more likely to occur following opioid infusions for 7 days or longer (odds ratio 7.9, 95% confidence interval 4.3-14.3; p < 0.001) or co-therapy with midazolam (odds ratio 5.6, 95% confidence interval 2.4-12.9; p < 0.001), and it was less likely to occur if morphine was used as the primary opioid (vs. fentanyl) (odds ratio 0.48, 95% confidence interval 0.25-0.92; p = 0.03), for patients receiving higher initial doses (odds ratio 0.96, 95% confidence interval 0.95-0.98; p < 0.001), or if patients had prior pediatric intensive care unit admissions (odds ratio 0.37, 95% confidence interval 0.15-0.89; p = 0.03). CONCLUSIONS Mechanically ventilated children require increasing opioid doses, often associated with prolonged opioid exposure or the need for additional sedation. Efforts to reduce prolonged opioid exposure and clinical practice variation may prevent the complications of opioid therapy.
Collapse
|
21
|
Morphine treatment in early life alters glutamate uptake in the spinal synaptosomes of adult rats. Neurosci Lett 2012; 529:51-4. [DOI: 10.1016/j.neulet.2012.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/22/2012] [Accepted: 09/07/2012] [Indexed: 01/28/2023]
|
22
|
Pain management, morphine administration, and outcomes in preterm infants: a review of the literature. Neonatal Netw 2012; 31:21-30. [PMID: 22232038 DOI: 10.1891/0730-0832.31.1.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Infants in the Neonatal Intensive Care Unit may experience a myriad of painful procedures and stressful experiences. Pain management for infants requiring mechanical ventilation is complex and challenging especially in the preterm population. Many infants may not receive analgesia, primarily due to the unknown long-term neurodevelopmental effects of morphine exposure on the developing brain. Currently, there is no consensus on how to treat pain related to mechanical ventilation due to conflicting scientific evidence lacks clarity and certainty about the role of morphine in pain in preterm infants. The Advance Practice Neonatal Nurse must make the best use of available information about morphine analgesia for the preterm infant, and use it to guide policy and practice for infants. The Advance Practice Neonatal Nurse must use his/her clinical expertise to judicially balance the risks and benefits of morphine analgesia, when used, and tailor the treatment plan to each infant's specific needs.
Collapse
|
23
|
Gholami M, Saboory E. Morphine exposure induces age-dependent alterations in pentylenetetrazole-induced epileptic behaviors in prepubertal rats. Dev Psychobiol 2012; 55:881-7. [DOI: 10.1002/dev.21080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/10/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Morteza Gholami
- Faculty of Science; Department of Biology; University of Urmia; Urmia Iran
| | - Ehsan Saboory
- Neurophysiology Research Center; Urmia University of Medical Sciences; Urmia Iran
| |
Collapse
|
24
|
Walker SM, Yaksh TL. Neuraxial analgesia in neonates and infants: a review of clinical and preclinical strategies for the development of safety and efficacy data. Anesth Analg 2012; 115:638-62. [PMID: 22798528 DOI: 10.1213/ane.0b013e31826253f2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuraxial drugs provide robust pain control, have the potential to improve outcomes, and are an important component of the perioperative care of children. Opioids or clonidine improves analgesia when added to perioperative epidural infusions; analgesia is significantly prolonged by the addition of clonidine, ketamine, neostigmine, or tramadol to single-shot caudal injections of local anesthetic; and neonatal intrathecal anesthesia/analgesia is increasing in some centers. However, it is difficult to determine the relative risk-benefit of different techniques and drugs without detailed and sensitive data related to analgesia requirements, side effects, and follow-up. Current data related to benefits and complications in neonates and infants are summarized, but variability in current neuraxial drug use reflects the relative lack of high-quality evidence. Recent preclinical reports of adverse effects of general anesthetics on the developing brain have increased awareness of the potential benefit of neuraxial anesthesia/analgesia to avoid or reduce general anesthetic dose requirements. However, the developing spinal cord is also vulnerable to drug-related toxicity, and although there are well-established preclinical models and criteria for assessing spinal cord toxicity in adult animals, until recently there had been no systematic evaluation during early life. Therefore, in the second half of this review, we present preclinical data evaluating age-dependent changes in the pharmacodynamic response to different spinal analgesics, and recent studies evaluating spinal toxicity in specific developmental models. Finally, we advocate use of neuraxial drugs with the widest demonstrable safety margin and suggest minimum standards for preclinical evaluation before adoption of new analgesics or preparations into routine clinical practice.
Collapse
Affiliation(s)
- Suellen M Walker
- Portex Unit: Pain Research, UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK.
| | | |
Collapse
|
25
|
Zhao J, Xin X, Xie GX, Palmer PP, Huang YG. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance. Mol Pain 2012; 8:38. [PMID: 22612909 PMCID: PMC3517334 DOI: 10.1186/1744-8069-8-38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/09/2012] [Indexed: 01/17/2023] Open
Abstract
The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins) change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA) receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Anesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | | | | |
Collapse
|
26
|
Honda H, Kawasaki Y, Baba H, Kohno T. The mu opioid receptor modulates neurotransmission in the rat spinal ventral horn. Anesth Analg 2012; 115:703-12. [PMID: 22584545 DOI: 10.1213/ane.0b013e318259393d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Opioids inhibit excitatory neurotransmission and produce antinociception through μ opioid receptors (MORs). Although MORs are expressed in the spinal ventral horn, their functions and effects are largely unknown. Therefore, we examined the neuromodulatory effects of μ opioids in spinal lamina IX neurons at the cellular level. METHODS The effects of the selective μ agonist [D-Ala(2),-N-Me-Phe(4), Gly(5)-ol]enkephalin (DAMGO) on synaptic transmission were examined in spinal lamina IX neurons of neonatal rats using the whole-cell patch-clamp technique. RESULTS DAMGO produced outward currents in 56% of the lamina IX neurons recorded, with a 50% effective concentration of 0.1 μM. Analysis of the current-voltage relationship revealed a reversal potential of approximately -86 mV. These currents were not blocked by tetrodotoxin but were inhibited by Ba(2+) or a selective μ antagonist. Moreover, the currents were suppressed by the addition of Cs(+) and tetraethylammonium or guanosine 5'-[β-thio]diphosphate trilithium salt to the pipette solution. In addition, DAMGO decreased the frequency of spontaneous excitatory and inhibitory postsynaptic currents, and these effects were unaltered by treatment with tetrodotoxin. CONCLUSION Our results suggest that DAMGO hyperpolarizes spinal lamina IX neurons by G protein-mediated activation of K(+) channels after activation of MORs. Furthermore, activation of MORs on presynaptic terminals reduces both excitatory and inhibitory transmitter release. Although traditionally opioids are not thought to affect motor function, the present study documents neuromodulatory effects of μ opioids in spinal lamina IX neurons, suggesting that MORs can influence motor activity.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | |
Collapse
|
27
|
Nielsen CK, Simms JA, Li R, Mill D, Yi H, Feduccia AA, Santos N, Bartlett SE. δ-opioid receptor function in the dorsal striatum plays a role in high levels of ethanol consumption in rats. J Neurosci 2012; 32:4540-52. [PMID: 22457501 PMCID: PMC6622068 DOI: 10.1523/jneurosci.5345-11.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/21/2022] Open
Abstract
Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.
Collapse
Affiliation(s)
- Carsten K. Nielsen
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Jeffrey A. Simms
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Rui Li
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Douglas Mill
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Henry Yi
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Allison A. Feduccia
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Nathan Santos
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Selena E. Bartlett
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
28
|
Berde CB, Walco GA, Krane EJ, Anand KJS, Aranda JV, Craig KD, Dampier CD, Finkel JC, Grabois M, Johnston C, Lantos J, Lebel A, Maxwell LG, McGrath P, Oberlander TF, Schanberg LE, Stevens B, Taddio A, von Baeyer CL, Yaster M, Zempsky WT. Pediatric analgesic clinical trial designs, measures, and extrapolation: report of an FDA scientific workshop. Pediatrics 2012; 129:354-64. [PMID: 22250028 PMCID: PMC9923552 DOI: 10.1542/peds.2010-3591] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Analgesic trials pose unique scientific, ethical, and practical challenges in pediatrics. Participants in a scientific workshop sponsored by the US Food and Drug Administration developed consensus on aspects of pediatric analgesic clinical trial design. The standard parallel-placebo analgesic trial design commonly used for adults has ethical and practical difficulties in pediatrics, due to the likelihood of subjects experiencing pain for extended periods of time. Immediate-rescue designs using opioid-sparing, rather than pain scores, as a primary outcome measure have been successfully used in pediatric analgesic efficacy trials. These designs maintain some of the scientific benefits of blinding, with some ethical and practical advantages over traditional designs. Preferred outcome measures were recommended for each age group. Acute pain trials are feasible for children undergoing surgery. Pharmacodynamic responses to opioids, local anesthetics, acetaminophen, and nonsteroidal antiinflammatory drugs appear substantially mature by age 2 years. There is currently no clear evidence for analgesic efficacy of acetaminophen or nonsteroidal antiinflammatory drugs in neonates or infants younger than 3 months of age. Small sample designs, including cross-over trials and N of 1 trials, for particular pediatric chronic pain conditions and for studies of pain and irritability in pediatric palliative care should be considered. Pediatric analgesic trials can be improved by using innovative study designs and outcome measures specific for children. Multicenter consortia will help to facilitate adequately powered pediatric analgesic trials.
Collapse
Affiliation(s)
- Charles B. Berde
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Children's Hospital, Boston, Boston, Massachusetts;,Harvard Medical School, Boston, Massachusetts;,Address correspondence to Charles Berde, MD, PhD, Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital, Boston, 333 Longwood Ave, 5th floor, Boston, MA 02115. E-mail:
| | - Gary A. Walco
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, Seattle, Washington;,University of Washington School of Medicine, Seattle, Washington
| | - Elliot J. Krane
- Stanford University School of Medicine, Stanford, California;,Lucile Packard Children's Hospital, Stanford, California
| | - K. J. S. Anand
- Division of Pediatric Critical Care Medicine, Le Bonheur Children's Hospital, Memphis, Tennessee;,University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jacob V. Aranda
- The Children's Hospital of Brooklyn, State University of New York, New York, New York;,Pediatric Pharmacology Research Unit Network, Children's Hospital of Michigan, Detroit, Michigan
| | - Kenneth D. Craig
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carlton D. Dampier
- Emory University School of Medicine, Atlanta, Georgia;,Atlanta Clinical Translational Science Institute, Atlanta, Georgia
| | - Julia C. Finkel
- Department of Anesthesiology George Washington University, Washington, District of Columbia;,Division of Anesthesiology and Pain Medicine, Children's National Medical Center, Washington, District of Columbia
| | - Martin Grabois
- Baylor College of Medicine, Houston, Texas;,University of Texas Health Science Center-Houston, Houston, Texas
| | | | - John Lantos
- Children's Mercy Bioethics Center, Children's Mercy Hospital, Kansas City, Missouri;,University of Missouri–Kansas City, Kansas City, Missouri
| | - Alyssa Lebel
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Children's Hospital, Boston, Boston, Massachusetts;,Harvard Medical School, Boston, Massachusetts
| | - Lynne G. Maxwell
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;,Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Patrick McGrath
- IWK Health Centre, Halifax, Nova Scotia, Canada;,Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timothy F. Oberlander
- Division of Developmental Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada;,BC Children's Hospital, Vancouver, British Columbia, Canada
| | | | - Bonnie Stevens
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Anna Taddio
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Carl L. von Baeyer
- Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Myron Yaster
- Division of Pediatric Anesthesiology, Department of Anesthesiology and Critical Care Medicine, Children's Medical and Surgical Center, The Johns Hopkins Hospital, Baltimore, Maryland; and
| | - William T. Zempsky
- Division of Pain and Palliative Medicine, Connecticut Children's Medical Center, University of Connecticut School of Medicine, Hartford, Connecticut
| |
Collapse
|
29
|
Abstract
Pain in neonates is now well established. Studies of the developmental neurobiology of pain have revealed that pain processing in the immature is very different from that in the mature nervous system. Neonates undergo considerable maturation of peripheral, spinal and supraspinal afferent pain transmission over the early postnatal period but are able to respond to tissue injury with specific behaviour and with autonomic, hormonal and metabolic signs of stress and distress. Opioid analgesia is now widely used in neonates. There is evidence that morphine requirements may be low in the youngest patients. Sensory threshold testing in rat pups has shown that the analgesic potency of systemic morphine mechanical stimulation is significantly greater in the neonate and declines with postnatal age. The changing morphine sensitivity in the postnatal period may be part of a general reorganisation in the structure and function of primary afferent synapses, neurotransmitter/receptor expression and function and excitatory and inhibitory modulation from higher brain centres. Importantly opioid receptor expression undergoes significant developmental regulation - mu opioid receptors, observed to be exuberantly expressed in the neonatal rat, have been found to be functional. These findings have important implications for the human neonate as they provide a possible explanation for the differences in morphine requirements observed in the youngest patients. The study of the underlying mechanisms of pain and analgesia in development has enabled important changes in clinical practice. However, pain in the newborn remains poorly understood and continued research and intensive study in this area is essential for further effective analgesic intervention and the discovery of new targets for therapy.
Collapse
Affiliation(s)
- R Nandi
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
30
|
Fentanyl administration in infant rats produces long‐term behavioral responses. Int J Dev Neurosci 2011; 30:25-30. [DOI: 10.1016/j.ijdevneu.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/22/2022] Open
|
31
|
Kim HJ, Seol TK, Lee HJ, Yaksh TL, Jun JH. The effect of intrathecal mu, delta, kappa, and alpha-2 agonists on thermal hyperalgesia induced by mild burn on hind paw in rats. J Anesth 2011; 25:884-91. [DOI: 10.1007/s00540-011-1240-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
|
32
|
Spinal anesthesia in infant rats: development of a model and assessment of neurologic outcomes. Anesthesiology 2011; 114:1325-35. [PMID: 21555934 DOI: 10.1097/aln.0b013e31821b5729] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Previous studies in infant rats and case-control studies of human infants undergoing surgery have raised concerns about potential neurodevelopmental toxicities of general anesthesia. Spinal anesthesia is an alternative to general anesthesia for some infant surgeries. To test for potential toxicity, a spinal anesthesia model in infant rats was developed. METHODS Rats of postnatal ages 7, 14, and 21 days were assigned to no treatment, 1% isoflurane for either 1 h or 6 h, or lumbar spinal injection of saline or bupivacaine at doses of 3.75 mg/kg (low dose) or 7.5 mg/kg (high dose). Subgroups of animals underwent neurobehavioral testing and blood gas analysis. Brain and lumbar spinal cord sections were examined for apoptosis using cleaved caspase-3 immunostaining. The lumbar spinal cord was examined histologically.Rats exposed to spinal or general anesthesia as infants underwent Rotarod testing of motor performance as adults. Data were analyzed using ANOVA with general linear models, Friedman tests, and Mann-Whitney U tests, as appropriate. RESULTS Bupivacaine 3.75 mg/kg was effective for spinal anesthesia in all age groups. Impairments in sensory and motor function recovered in 40-60 min. Blood gases were similar among groups. Brain and spinal cord apoptosis increased in rats receiving 6 h of 1% isoflurane, but not among the other treatments. All groups showed intact motor performance at adulthood. CONCLUSIONS Spinal anesthesia is technically feasible in infant rats and appears benign in terms of neuroapoptotic and neuromotor sequelae.
Collapse
|
33
|
Messerer B, Gutmann A, Vittinghoff M, Weinberg A, Meissner W, Sandner-Kiesling A. Postoperative Schmerzmessung bei speziellen Patientengruppen. Schmerz 2011; 25:245-55. [DOI: 10.1007/s00482-011-1060-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
|
35
|
Medeiros LF, Rozisky JR, de Souza A, Hidalgo MP, Netto CA, Caumo W, Battastini AMO, Torres ILDS. Lifetime behavioural changes after exposure to anaesthetics in infant rats. Behav Brain Res 2010; 218:51-6. [PMID: 21056062 DOI: 10.1016/j.bbr.2010.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/17/2010] [Accepted: 10/22/2010] [Indexed: 11/15/2022]
Abstract
The aim of this study was to assess the effect of acute use of general anaesthetic with or without a surgical procedure, at post-natal day 14 (P14), on behavioural responses in the short-, medium- and long-term, evaluated in open field (OF) and elevated plus-maze (EPM) tests. Fourteen-day-old male Wistar rats were divided into two experimental designs (ED): inhalation and intravenous anaesthetic, and these groups were subdivided into: 1st ED - control (C), isoflurane (ISO), isoflurane/surgery (ISO-SUR); 2nd ED - control (C), fentanyl/S(+)-ketamine (FK) and fentanyl+ketamine-s/surgery (FK-SUR). In the OF the following were found: (a) in the 1st ED: an increase in the locomotor activity in the ISO group at P14, and ISO and ISO-SUR groups at P30; the ISO-SUR group showed a reduced latency to leave the first quadrant at P30 and P60; (b) in the 2nd ED: FK and FK-SUR groups presented increased locomotor activity at P30, and the FK group showed a reduction in the number of faecal boluses. In the EPM the following were found: FK and FK-SUR groups presented an increase in the number of non-protected head-dipping (NPHD) movements and in the number of entries and time spent in open arms at P30; the FK group showed an increased number of protected head-dipping movements, NPHD and entries and time spent in the open arms at P60. The behavioural changes observed may be related to locomotor activity (1st ED) and anxiety level (2nd ED) and they may result from changes in neurotransmitters/hormones (DA, 5HT, CRH) and glutamate/NMDA receptors, respectively.
Collapse
Affiliation(s)
- Liciane Fernandes Medeiros
- Post Graduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences (ICBS), Universidade Federal do Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Morphine exposure in early life increases nociceptive behavior in a rat formalin tonic pain model in adult life. Brain Res 2010; 1367:122-9. [PMID: 20977897 DOI: 10.1016/j.brainres.2010.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 11/23/2022]
Abstract
Considering the importance of a deeper understanding of the effect throughout life of opioid analgesia at birth, our objective was to determine whether morphine administration in early life, once a day for 7 days in 8-day-old rats, alters the nociceptive response over the short (P16), medium (P30), and long term (P60) and to evaluate which system is involved in the altered nociceptive response. The nociceptive responses were assessed by the formalin test, and the behavior analyzed was the total time spent in biting and flicking of the formalin-injected hindpaw, recorded during the first 5 min (phase I) and from 15-30 min (phase II). The morphine group showed no change in nociceptive response at P16, but at P30 and P60, the nociceptive response was increased in phase I, and in both phases, respectively. At P30 and P60, the animals received a non-steroidal anti-inflammatory drug (indomethacin) or NMDA receptor antagonist (ketamine) 30 min before the formalin test. The increase in the nociceptive response was completely reversed by ketamine, and partially by indomethacin. These results indicate that early morphine exposure causes an increase in the nociceptive response in adult life. It is possible that this lower nociception threshold is due to neuroadaptations in nociceptive circuits, such as the glutamatergic system. Thus, this work demonstrates the importance of evaluating clinical consequences related to early opioid administration and suggests a need for a novel design of agents that may counteract opiate-induced neuroplastic changes.
Collapse
|
37
|
Rasakham K, Liu-Chen LY. Sex differences in kappa opioid pharmacology. Life Sci 2010; 88:2-16. [PMID: 20951148 DOI: 10.1016/j.lfs.2010.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/24/2010] [Accepted: 10/06/2010] [Indexed: 12/31/2022]
Abstract
In recent years it has become apparent that sex is a major factor involved in modulating the pharmacological effects of exogenous opioids. The kappa opioid receptor (KOPR) system is a potential therapeutic target for pain, mood disorders and addiction. In humans mixed KOPR/MOPR ligands have been found to produce greater analgesia in women than men. In contrast, in animals, selective KOPR agonists have been found to produce greater antinociceptive effects in males than females. Collectively, the studies indicate that the direction and magnitude of sex differences of KOPR-mediated antinociception/analgesia are dependent on species, strain, ligand and pain model examined. Of interest, and less studied, is whether sex differences in other KOPR-mediated effects exist. In the studies conducted thus far, greater effects of KOPR agonists in males have been found in neuroprotection against stroke and suppression of food intake behavior. On the other hand, greater effects of KOPR agonists were found in females in mediation of prolactin release. In modulation of drugs of abuse, sex differences in KOPR effects were observed but appear to be dependent on the drug examined. The mechanism(s) underlying sex differences in KOPR-mediated effects may be mediated by sex chromosomes, gonadal hormonal influence on organization (circuitry) and/or acute hormonal influence on KOPR expression, distribution and localization. In light of the diverse pharmacology of KOPR we discuss the need for future studies characterizing the sexual dimorphism of KOPR neural circuitry and in examining other behaviors and processes that are modulated by the KOPR.
Collapse
Affiliation(s)
- Khampaseuth Rasakham
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | | |
Collapse
|
38
|
Mulla H. Understanding developmental pharmacodynamics: importance for drug development and clinical practice. Paediatr Drugs 2010; 12:223-33. [PMID: 20593907 DOI: 10.2165/11319220-000000000-00000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Developmental pharmacodynamics is the study of age-related maturation of the structure and function of biologic systems and how this affects response to pharmacotherapy. This may manifest as a change in the potency, efficacy, or therapeutic range of a drug. The paucity of studies exploring developmental pharmacodynamics reflects the lack of suitable juvenile animal models and the ethical and practical constraints of conducting studies in children. However, where data from animal models are available, valuable insight has been gained into how response to therapy can change through the course of development. For example, animal neurodevelopmental models have revealed that temporal differences in the maturation of norepinephrine and serotonin neurotransmitter systems may explain the lack of efficacy of some antidepressants in children. GABA(A) receptors that switch from an excitatory to inhibitory mode during early development help to explain paradoxical seizures experienced by infants after exposure to benzodiazepines. The increased sensitivity of neonates to morphine may be due to increased postnatal expression of the mu opioid receptor. An age dependency to the pharmacokinetic-pharmacodynamic relationship has also been found in some clinical studies. For example, immunosuppressive effects of ciclosporin (cyclosporine) revealed markedly enhanced sensitivity in infants compared with older children and adults. A study of sotalol in the treatment of children with supraventricular tachycardia showed that neonates exhibited a higher sensitivity towards QTc interval prolongation compared with older children. However, the data are limited and efforts to increase and establish data on developmental pharmacodynamics are necessary to achieve optimal drug therapy in children and to ensure long-term success of pediatric drug development. This requires a dual 'bottom up' (ontogeny knowledge driven) and 'top down' (pediatric pharmacokinetic-pharmacodynamic studies) approach.
Collapse
Affiliation(s)
- Hussain Mulla
- Centre for Therapeutic Evaluation of Drugs in Children, University Hospitals of Leicester, Leicester, UK.
| |
Collapse
|
39
|
Validation of a preclinical spinal safety model: effects of intrathecal morphine in the neonatal rat. Anesthesiology 2010; 113:183-99. [PMID: 20526189 DOI: 10.1097/aln.0b013e3181dcd6ec] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long-term function after intrathecal morphine in the neonatal rat. METHODS Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P) 3, 10, and 21. The relationship between injectate volume and segmental spread was assessed postmortem and by in vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 min after intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis, and glial response were evaluated 1 and 7 days after P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. RESULTS Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally mediated analgesia at all ages with lower dose requirements in younger pups. High-dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. CONCLUSIONS The therapeutic ratio for intrathecal morphine (toxic dose/antinociceptive dose) was at least 300 at P3 and at least 20 at P21 (latter doses limited by side effects). These data provide relative efficacy and safety for comparison with other analgesic preparations and contribute supporting evidence for the validity of this preclinical neonatal safety model.
Collapse
|
40
|
Durrmeyer X, Vutskits L, Anand KJS, Rimensberger PC. Use of analgesic and sedative drugs in the NICU: integrating clinical trials and laboratory data. Pediatr Res 2010; 67:117-27. [PMID: 20091937 DOI: 10.1203/pdr.0b013e3181c8eef3] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in neonatal intensive care include and are partly attributable to growing attention for comfort and pain control in the term and preterm infant requiring intensive care.Limitation of painful procedures is certainly possible, but most critically ill infants require unavoidable painful or stressful procedures such as intubation, mechanical ventilation, or catheterization.Many analgesics (opioids and nonsteroidal anti-inflammatory drugs)and sedatives (benzodiazepines and other anesthetic agents) are available but their use varies considerably among units. This review summarizes current experimental knowledge on the effects of sedative and analgesic drugs on brain development and reviews clinical evidence that speaks for or against the use of common analgesic and sedative drugs in the NICU but avoids any discussion of anesthesia during surgery. Risk/benefit ratios of intermittent boluses or continuous infusions for the commonly used sedative and analgesic agents are discussed in the light of clinical and experimental studies. The limitations of extrapolating experimental results from animals to humans must be considered while making practical recommendations based on the currently available evidence.
Collapse
Affiliation(s)
- Xavier Durrmeyer
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Créteil, Créteil 94000, France
| | | | | | | |
Collapse
|
41
|
Rozisky JR, Dantas G, Adachi LS, Alves VS, Ferreira MBC, Sarkis JJF, Torres ILDS. Long-term effect of morphine administration in young rats on the analgesic opioid response in adult life. Int J Dev Neurosci 2008; 26:561-5. [PMID: 18579332 DOI: 10.1016/j.ijdevneu.2008.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/07/2008] [Accepted: 05/10/2008] [Indexed: 11/28/2022] Open
Abstract
Neonates, infants and children are often exposed to pain from invasive procedures during intensive care and during the post-operative period. Opioid anesthesia and post-operative opioid analgesia have been used in infants and result in clinical benefits. The objectives of this study were to verify the effect of repeated 5 microg morphine administration (subcutaneous), once a day for 7 days in 8-day-old rats, at P8 until P14. To verify the long-term effect of morphine, the animals were submitted to a second exposure of 5mg/kg (intraperitoneal) of morphine at P80 until P86. Animals that received morphine for 7 days, at P14 did not develop tolerance, however at P80, rats demonstrated greater morphine analgesia. At P86, after 7 days of morphine administration, animals showed classical tolerance. These findings may have important implications for the human neonate, suggesting a possible explanation for the differences in the requirements of morphine observed in the youngest patients.
Collapse
Affiliation(s)
- Joanna Ripoll Rozisky
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, 90050-170 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Significant advances in the assessment and management of acute pain in children have been made, and are supported by an increase in the availability and accessibility of evidence-based data. However, methodological and practical issues in the design and performance of clinical paediatric trials limit the quantity, and may influence the quality, of current data, which lags behind that available for adult practice. Collaborations within research networks, which incorporate both preclinical and clinical studies, may increase the feasibility and specificity of future trials. In early life, the developing nervous system responds differently to pain, analgesia, and injury, resulting in effects not seen in later life and which may have long-term consequences. Translational laboratory studies further our understanding of developmental changes in nociceptor pathway structure and function, analgesic pharmacodynamics, and the impact of different forms of injury. Chronic pain in children has a negative impact on quality of life, resulting in social and emotional consequences for both the child and the family. Despite age-related differences in many chronic pain conditions, such as neuropathic pain, management in children is often empirically based on data from studies in adults. There is a major need for further clinical research, training of health-care providers, and increased resources, to improve management and outcomes for children with chronic pain.
Collapse
Affiliation(s)
- S M Walker
- Portex Department of Anaesthesia, UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
43
|
Nakatsuka T, Fujita T, Inoue K, Kumamoto E. Activation of GIRK channels in substantia gelatinosa neurones of the adult rat spinal cord: a possible involvement of somatostatin. J Physiol 2008; 586:2511-22. [PMID: 18356203 DOI: 10.1113/jphysiol.2007.146076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have suggested that spinal G-protein-coupled, inwardly rectifying K(+) (GIRK) channels play an important role in thermal nociception and the analgesic actions of morphine and other agents. In this study, we show that spinal GIRK channels are activated by an endogenous neurotransmitter using whole-cell patch-clamp recordings from substantia gelatinosa (SG) neurones in adult rat spinal cord slices. Although repetitive stimuli applied to the dorsal root did not induce any slow responses, ones focally applied to the spinal dorsal horn produced slow inhibitory postsynaptic currents (IPSCs) at a holding potential of -50 mV in about 30% of the SG neurones recorded. The amplitude and duration of slow IPSCs increased with the number of stimuli and decreased with removal of Ca(2+) from the external Krebs solution. Slow IPSCs were associated with an increase in membrane conductance; their polarity was reversed at a potential close to the equilibrium potential for K(+), calculated from the Nernst equation. Slow IPSCs were blocked by addition of GDP-beta-S into the patch-pipette solution, reduced in amplitude in the presence of Ba(2+), and significantly suppressed in the presence of an antagonist of GIRK channels, tertiapin-Q. Somatostatin produced an outward current in a subpopulation of SG neurones and the slow IPSC was occluded during the somatostatin-induced outward current. Moreover, slow IPSCs were significantly inhibited by the somatostatin receptor antagonist cyclo-somatostatin. These results suggest that endogenously released somatostatin may induce slow IPSCs through the activation of GIRK channels in SG neurones; this slow synaptic transmission might play an important role in spinal antinociception.
Collapse
Affiliation(s)
- Terumasa Nakatsuka
- Department of Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | | | | | | |
Collapse
|
44
|
Zhang GH, Sweitzer SM. Neonatal morphine enhances nociception and decreases analgesia in young rats. Brain Res 2008; 1199:82-90. [PMID: 18267316 DOI: 10.1016/j.brainres.2007.12.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/19/2023]
Abstract
The recognition of the impact of neonatal pain experience on subsequent sensory processing has led to the increased advocacy for the use of opioids for pain relief in infants. However, following long-term opioid exposure in intensive care units more than 48% of infants exhibited behaviors indicative of opioid abstinence syndrome, a developmentally equivalent set of behaviors to opioid withdrawal as seen in adults. Little is known about the long-term influence of repeated neonatal morphine exposure on nociception and analgesia. To investigate this, we examined mechanical and thermal nociception on postnatal days 11, 13, 15, 19, 24, 29, 39 and 48 following subcutaneous administration of morphine (3 mg/kg) once daily on postnatal days 1-9. The cumulative morphine dose-response was assessed on postnatal days 20 and 49, and stress-induced analgesia was assessed on postnatal days 29 and 49. Both basal mechanical and thermal nociception in neonatal, morphine-exposed rats were significantly lower than those in saline-exposed, handled-control rats and naive rats until P29. A rightward-shift of cumulative dose-response curves for morphine analgesia upon chronic neonatal morphine was observed both on P20 and P49. The swim stress-induced analgesia was significantly decreased in neonatal morphine-exposed rats on P29, but not on P49. These data indicate that morphine exposure equivalent to the third trimester of gestation produced prolonged pain hypersensitivity, decreased morphine antinociception, and decreased stress-induced analgesia. The present study illustrates the need to examine the long-term influence of prenatal morphine exposure on pain and analgesia in the human pediatric population.
Collapse
Affiliation(s)
- Guo Hua Zhang
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | |
Collapse
|
45
|
Abstract
Pain in the newborn is complex, involving a variety of receptors and mechanisms within the developing nervous system. When pain is generated, a series of sequential neurobiologic changes occur within the central nervous system. If pain is prolonged or repetitive, the developing nervous system could be permanently modified, with altered processing at spinal and supraspinal levels. In addition, pain is associated with a number of adverse physiologic responses that include alterations in circulatory (tachycardia, hypertension, vasoconstriction), metabolic (increased catabolism), immunologic (impaired immune response), and hemostatic (platelet activation) systems. This "stress response" associated with cardiac surgery in neonates could be profound and is associated with increased morbidity and mortality. Neonates undergoing cardiac operations are exposed to extensive tissue damage related to surgery and additional painful stimulation related to endotracheal and thoracostomy tubes that may remain in place for variable periods of time following surgery. In addition, postoperatively neonates endure repeated procedural pain from suctioning of endotracheal tubes, placement of vascular catheters, and manipulation of wounds (eg, sternal closure) and dressings. The treatment and/or prevention of pain are widely considered necessary for humanitarian and physiologic reasons. Improved clinical and developmental outcomes underscore the importance of providing adequate analgesia for newborns who undergo major surgery, mechanical ventilation, and related procedures in the intensive care unit. This article reviews published information regarding opioid administration and associated issues of tolerance and abstinence syndromes (withdrawal) in neonates with an emphasis on those having undergone cardiac surgery.
Collapse
Affiliation(s)
- Gregory B Hammer
- Department of Anesthesia, Stanford University Medical Center, CA 94305-5640, USA.
| | | |
Collapse
|
46
|
Dubynin VA, Ivleva YA, Stovolosov IS, Belyaeva YA, Dobryakova YV, Andreeva LA, Alfeeva LY, Kamenskii AA, Myasoedov NF. Effect of beta-casomorphines on mother-oriented ("child's") behavior of white rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2007; 412:1-4. [PMID: 17515027 DOI: 10.1134/s0012496607010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- V A Dubynin
- Faculty of Biology, Moscow State University, Leninskie gory, Moscow, 119992, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blivis D, Mentis GZ, O'donovan MJ, Lev-Tov A. Differential Effects of Opioids on Sacrocaudal Afferent Pathways and Central Pattern Generators in the Neonatal Rat Spinal Cord. J Neurophysiol 2007; 97:2875-86. [PMID: 17287435 DOI: 10.1152/jn.01313.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of opioids on sacrocaudal afferent (SCA) pathways and the pattern-generating circuitry of the thoracolumbar and sacrocaudal segments of the spinal cord were studied in isolated spinal cord and brain stem-spinal cord preparations of the neonatal rat. The locomotor and tail moving rhythm produced by activation of nociceptive and nonnociceptive sacrocaudal afferents was completely blocked by specific application of the μ-opioid receptor agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate salt (DAMGO) to the sacrocaudal but not the thoracolumbar segments of the spinal cord. The rhythmic activity could be restored after addition of the opioid receptor antagonist naloxone to the experimental chamber. The opioid block of the SCA-induced rhythm is not due to impaired rhythmogenic capacity of the spinal cord because a robust rhythmic activity could be initiated in the thoracolumbar and sacrocaudal segments in the presence of DAMGO, either by stimulation of the ventromedial medulla or by bath application of N-methyl-d-aspartate/serotonin. We suggest that the opioid block of the SCA-induced rhythm involves suppression of synaptic transmission through sacrocaudal interneurons interposed between SCA and the pattern-generating circuitry. The expression of μ opioid receptors in several groups of dorsal, intermediate and ventral horn interneurons in the sacrocaudal segments of the cord, documented in this study, provides an anatomical basis for this suggestion.
Collapse
MESH Headings
- Afferent Pathways/drug effects
- Analgesics, Opioid/pharmacology
- Animals
- Animals, Newborn/physiology
- Brain Stem/drug effects
- Brain Stem/physiology
- Data Interpretation, Statistical
- Electric Stimulation
- Electrophysiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Immunohistochemistry
- Instinct
- Locomotion/physiology
- Microscopy, Confocal
- Movement/physiology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Spinal Cord/drug effects
- Spinal Cord/physiology
- Tail/innervation
- Tail/physiology
Collapse
Affiliation(s)
- D Blivis
- Dept. of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem, 91010, Israel
| | | | | | | |
Collapse
|
48
|
Anand KJS, Hall RW. Pharmacological therapy for analgesia and sedation in the newborn. Arch Dis Child Fetal Neonatal Ed 2006; 91:F448-53. [PMID: 17056842 PMCID: PMC2672765 DOI: 10.1136/adc.2005.082263] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2006] [Indexed: 12/21/2022]
Abstract
Rapid advances have been made in the use of pharmacological analgesia and sedation for newborns requiring neonatal intensive care. Practical considerations for the use of systemic analgesics (opioids, non-steroidal anti-inflammatory agents, other drugs), local and topical anaesthetics, and sedative or anaesthetic agents (benzodiazepines, barbiturates, other drugs) are summarised using an evidence-based medicine approach, while avoiding mention of the underlying basic physiology or pharmacology. These developments have inspired more humane approaches to neonatal intensive care. Despite these advances, little is known about the clinical effectiveness, immediate toxicity, effects on special patient populations, or long-term effects after neonatal exposure to analgesics or sedatives. The desired or adverse effects of drug combinations, interactions with non-pharmacological interventions or use for specific conditions also remain unknown. Despite the huge gaps in our knowledge, preliminary evidence for the use of neonatal analgesia and sedation is available, but must be combined with a clear definition of clinical goals, continuous physiological monitoring, evaluation of side effects or tolerance, and consideration of long-term clinical outcomes.
Collapse
Affiliation(s)
- K J S Anand
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | |
Collapse
|
49
|
Zissen MH, Zhang G, McKelvy A, Propst JT, Kendig JJ, Sweitzer SM. Tolerance, opioid-induced allodynia and withdrawal associated allodynia in infant and young rats. Neuroscience 2006; 144:247-62. [PMID: 17055659 PMCID: PMC1858640 DOI: 10.1016/j.neuroscience.2006.08.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 08/23/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Our laboratory has previously characterized age-dependent changes in nociception upon acute morphine withdrawal. This study characterizes changes in mechanical and thermal nociception following acute, intermittent, or continuous morphine administration in infant (postnatal days 5-8) and young (postnatal days 19-21) rats. Morphine was given as a single acute administration (AM), intermittently twice a day for 3 days (IM), or continuously for 72 h via pump (CM). AM did not produce long-term changes in mechanical or thermal nociception in either infant or young rats. CM produced changes in mechanical nociception that included the development of tolerance, opioid-induced mechanical allodynia and withdrawal-associated mechanical allodynia in young rats, but only tolerance and a prolonged withdrawal-associated mechanical allodynia in infant rats. IM produced withdrawal-associated mechanical allodynia in both infant and young rats. Measuring paw withdrawal responses to thermal stimuli, infant and young rats showed tolerance without opioid-induced thermal hyperalgesia or withdrawal-associated thermal hyperalgesia following CM. In contrast to CM, withdrawal-associated thermal hyperalgesia was seen in both ages following IM. In conclusion, CM versus IM differentially modified mechanical and thermal nociception, suggesting that opioid-dependent thermal hyperalgesia and mechanical allodynia can be dissociated from each other in infant and young rats. Furthermore, tolerance, opioid-induced hypersensitivity, and withdrawal-associated hypersensitivity are age-specific and may be mediated by distinct mechanisms.
Collapse
Affiliation(s)
- Maurice H. Zissen
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305
| | - Guohua Zhang
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29229
| | - Alvin McKelvy
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29229
| | - John T. Propst
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29229
| | - Joan J. Kendig
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305
| | - Sarah M. Sweitzer
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29229
| |
Collapse
|
50
|
Kong LL, Yu LC. Involvement of mu- and delta-opioid receptors in the antinociceptive effects induced by AMPA receptor antagonist in the spinal cord of rats. Neurosci Lett 2006; 402:180-3. [PMID: 16644121 DOI: 10.1016/j.neulet.2006.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/26/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
The present study was performed to explore the involvement of opioid receptors in the antinociception induced by a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist in rats. The hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation was assessed by hot plate test and the Randall Selitto Test. Intrathecal injection of 20 nmol of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo[f]quinoxaline-7-sulfonamide (NBQX) disodium, a competitive AMPA receptor antagonist, increased significantly the HWLs to both thermal and mechanical stimulation in rats. The increased HWLs induced by NBQX were dose-dependently attenuated by the opioid receptor antagonist naloxone, while naloxone itself had no marked influences on the HWL of rats. Furthermore, the increased HWLs induced by NBQX were inhibited by the mu-opioid antagonist beta-funaltrexamine (beta-FNA) or the delta-opioid antagonist naltrindole, but not by the kappa-opioid antagonist nor-binaltorphimine (nor-BNI). The results suggest that mu- and delta-opioid receptors, not kappa-opioid receptor, are involved in the antinociception induced by AMPA antagonist in the spinal cord of rats.
Collapse
Affiliation(s)
- Ling-Ling Kong
- Laboratory of Neurobiology and National Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | |
Collapse
|