1
|
Netterfield TS, Ostheimer GJ, Tentner AR, Joughin BA, Dakoyannis AM, Sharma CD, Sorger PK, Janes KA, Lauffenburger DA, Yaffe MB. Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition. Cell Syst 2023; 14:582-604.e10. [PMID: 37473730 PMCID: PMC10627503 DOI: 10.1016/j.cels.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Tatiana S Netterfield
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerard J Ostheimer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea R Tentner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra M Dakoyannis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charvi D Sharma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Computer Science and Molecular Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin A Janes
- Department of Biomedical Engineering and Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Acute Care Surgery, Trauma, and Surgical Critical Care, and Division of Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Freund SS, Bendtsen MM, Safwat A, Joergensen PH. Multidrug resistance protein 1 silencing in osteosarcoma and chondrosarcoma cell lines. J Cancer Res Ther 2023; 19:S278-S284. [PMID: 37148005 DOI: 10.4103/jcrt.jcrt_565_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Background The poor response of metastatic osteo- and chondrosarcomas to chemotherapy could be the result of multidrug resistance (MDR), which may be overcome through the use of small interfering RNA (siRNA). However, several methodologic questions remain unresolved. Aims To test the toxicity of three commonly used siRNA transfection reagents and apply the least toxic reagent to investigate the siRNA-induced MDR1 mRNA knockdown. Methods The toxicity of TransIT-TKO, Lipofectamine 2000, and X-tremeGENE siRNA transfection reagents was investigated on osteosarcoma (MG-63) and chondrosarcoma (SW1353) cell lines. The toxicity was measured at 4 and 24 hours using a MTT toxicity assay. The least toxic transfection reagent was applied to investigate the siRNA-induced MDR1 mRNA knockdown effect using qRT-PCR. Furthermore, five housekeeping genes were assessed in the BestKeeper software to obtain mRNA expression normalization. Results Lipofectamine 2000 was the least toxic transfection reagent, reducing the cell viability only in chondrosarcoma 24 hours following exposure to the highest dose. In contrast, TransIT-TKO and X-tremeGENE transfection reagents displayed a significant reduction in cell viability in both chondrosarcoma after 4 hours and in osteosarcoma after 24 hours. Significant MDR1 mRNA silencing of over 80% was achieved in osteo- and chondrosarcoma using Lipofectamine at a final siRNA concentration of 25 nM. No significant dose response was observed in knockdown efficiency in either Lipofectamine or siRNA concentration. Conclusion Lipofectamine 2000 was the least toxic transfection reagent in osteo- and chondrosarcoma. Successful siRNA-induced MDR1 mRNA silencing of over 80% was achieved.
Collapse
Affiliation(s)
- Sarah S Freund
- Department of Orthopedics, Aarhus University Hospital, Denmark
| | | | - Akmal Safwat
- Department of Oncology, Aarhus University Hospital, Denmark
| | | |
Collapse
|
3
|
Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication. Cell 2023; 186:528-542.e14. [PMID: 36681079 DOI: 10.1016/j.cell.2022.12.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.
Collapse
|
4
|
Wu H, Liu S, Chen S, Hua Y, Li X, Zeng Q, Zhou Y, Yang X, Zhu X, Tu C, Zhang X. A Selective Reduction of Osteosarcoma by Mitochondrial Apoptosis Using Hydroxyapatite Nanoparticles. Int J Nanomedicine 2022; 17:3691-3710. [PMID: 36046839 PMCID: PMC9423115 DOI: 10.2147/ijn.s375950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background In recent years, using hydroxyapatite nanoparticles (HANPs) for tumor therapy attracted increasing attention because HANPs were found to selectively suppress the growth of tumor cells but exhibit ignorable toxicity to normal cells. Purpose This study aimed to investigate the capacities of HANPs with different morphologies and particle sizes against two kinds of osteosarcoma (OS) cells, human OS 143B cells and rat OS UMR106 cells. Methods Six kinds of HANPs with different morphologies and particle sizes were prepared by wet chemical method. Then, the antitumor effect of these nanoparticles was characterized by means of in vitro cell experiments and in vivo tumor-bearing mice model. The underlying antitumor mechanism involving mitochondrial apoptosis was also investigated by analysis of intracellular calcium, expression of apoptosis-related genes, reactive oxygen species (ROS), and the endocytosis efficiency of the particles in tumor cells. Results Both in vitro cell experiments and in vivo mice model evaluation revealed the anti-OS performance of HANPs depended on the concentration, morphology, and particle size of the nanoparticles, as well as the OS cell lines. Among the six HANPs, rod-like HANPs (R-HANPs) showed the best inhibitory activity on 143B cells, while needle-like HANPs (N-HANPs) inhibited the growth of UMR106 cells most efficiently. We further demonstrated that HANPs induced mitochondrial apoptosis by selectively raising intracellular Ca2+ and the gene expression levels of mitochondrial apoptosis-related molecules, and depolarizing mitochondrial membrane potential in tumor cells but not in MC3T3-E1, a mouse pre-osteoblast line. Additionally, the anti-OS activity of HANPs also linked with the endocytosis efficiency of the particles in the tumor cells, and their ability to drive oxidative damage and immunogenic cell death (ICD). Conclusion The current study provides an effective strategy for OS therapy where the effectiveness was associated with the particle morphology and cell line.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuchen Hua
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, People's Republic of China
| |
Collapse
|
5
|
Lossaint G, Horvat A, Gire V, Bacevic K, Mrouj K, Charrier-Savournin F, Georget V, Fisher D, Dulic V. Reciprocal regulation of p21 and Chk1 controls the Cyclin D1-RB pathway to mediate senescence onset after G2 arrest. J Cell Sci 2022; 135:274865. [PMID: 35343565 DOI: 10.1242/jcs.259114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Senescence is an irreversible proliferation withdrawal that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 requires p53 and RB family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the CDK inhibitor p21 and Chk1 controls D-type cyclin-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting Cyclin D1-CDK2/CDK4. The resulting G2 exit, which precedes appearance of senescence markers, is associated with a mitotic bypass, Chk1 downregulation and DNA damage foci reduction. In p53/RB-proficient cancer cells, compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely Cyclin E1 re-expression and genome reduplication. Conversely, Chk1 depletion promotes senescence by inducing p21 binding to Cyclin D1 and Cyclin E1-CDK complexes and down-regulating CDK6, whereas Chk2 knockdown enables RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus promoting DNA damage-induced senescence onset in G2.
Collapse
Affiliation(s)
| | | | | | | | - Karim Mrouj
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France.,Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
6
|
Kuriyama S, Tanaka G, Takagane K, Itoh G, Tanaka M. Pigment Epithelium Derived Factor Is Involved in the Late Phase of Osteosarcoma Metastasis by Increasing Extravasation and Cell-Cell Adhesion. Front Oncol 2022; 12:818182. [PMID: 35174090 PMCID: PMC8842676 DOI: 10.3389/fonc.2022.818182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Organ tropism of metastatic cells is not well understood. To determine the key factors involved in the selection of a specific organ upon metastasis, we established metastatic cell lines and analyzed their homing to specific tissues. Toward this, 143B osteosarcoma cells were injected intracardially until the kidney-metastasizing sub-cell line Bkid was established, which significantly differed from the parental 143B cells. The candidate genes responsible for kidney metastasis were validated, and SerpinF1/Pigment epithelium derived factor (PEDF) was identified as the primary target. Bkid cells with PEDF knockdown injected intracardially did not metastasize to the kidneys. In contrast, PEDF overexpressing 143B cells injected into femur metastasized to the lungs and kidneys. PEDF triggered mesenchymal-to-epithelial transition (MET) in vitro as well as in vivo. Based on these results, we hypothesized that the MET might be a potential barrier to extravasation. PEDF overexpression in various osteosarcoma cell lines increased their extravasation to the kidneys and lungs. Moreover, when cultured close to the renal endothelial cell line TKD2, Bkid cells disturbed the TKD2 layer and hindered wound healing via the PEDF-laminin receptor (lamR) axis. Furthermore, novel interactions were observed among PEDF, lamR, lysyl oxidase-like 1 (Loxl1), and SNAI3 (Snail-like transcription factor) during endothelial-to-mesenchymal transition (EndoMT). Collectively, our results show that PEDF induces cancer cell extravasation by increasing the permeability of kidney and lung vasculature acting via lamR and its downstream genes. We also speculate that PEDF promotes extravasation via inhibiting EndoMT, and this warrants investigation in future studies.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Gentaro Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan.,Department of Lifescience, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita City, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| |
Collapse
|
7
|
Franceschini N, Lam SW, Cleton-Jansen AM, Bovée JVMG. What's new in bone forming tumours of the skeleton? Virchows Arch 2020; 476:147-157. [PMID: 31741049 PMCID: PMC6969005 DOI: 10.1007/s00428-019-02683-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Bone tumours are difficult to diagnose and treat, as they are rare and over 60 different subtypes are recognised. The emergence of next-generation sequencing has partly elucidated the molecular mechanisms behind these tumours, including the group of bone forming tumours (osteoma, osteoid osteoma, osteoblastoma and osteosarcoma). Increased knowledge on the molecular mechanism could help to identify novel diagnostic markers and/or treatment options. Osteoid osteoma and osteoblastoma are bone forming tumours without malignant potential that have overlapping morphology. They were recently shown to carry FOS and-to a lesser extent-FOSB rearrangements suggesting that these tumours are closely related. The presence of these rearrangements could help discriminate these entities from other lesions with woven bone deposition. Osteosarcoma is a malignant bone forming tumour for which different histological subtypes are recognised. High-grade osteosarcoma is the prototype of a complex karyotype tumour, and extensive research exploring its molecular background has identified phenomena like chromothripsis and kataegis and some recurrent alterations. Due to lack of specificity, this has not led to a valuable novel diagnostic marker so far. Nevertheless, these studies have also pointed towards potential targetable drivers of which the therapeutic merit remains to be further explored.
Collapse
Affiliation(s)
- Natasja Franceschini
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, L1-Q, 2300 RC, Leiden, Netherlands
| | - Suk Wai Lam
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, L1-Q, 2300 RC, Leiden, Netherlands
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, L1-Q, 2300 RC, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, L1-Q, 2300 RC, Leiden, Netherlands.
| |
Collapse
|
8
|
The Impact of p53 Dysfunction in ATR Inhibitor Cytotoxicity and Chemo- and Radiosensitisation. Cancers (Basel) 2018; 10:cancers10080275. [PMID: 30127241 PMCID: PMC6116113 DOI: 10.3390/cancers10080275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 08/14/2018] [Indexed: 01/24/2023] Open
Abstract
Ataxia telangiectasia mutated and Rad3 related kinase (ATR) signals replication stress and DNA damage to S and G2 arrest and promotes DNA repair. Mutations in p53, critical for G1 checkpoint control, are common in cancer and predicted to confer vulnerability to ATR inhibitors. Reported data on the impact of p53 status are variable possibly because of the use of unmatched cells and surrogate endpoints of survival. The cytotoxicity of VE-821 alone and its ability to potentiate radiation and gemcitabine cytotoxicity was determined in isogenic and unmatched p53 wild-type (wt) and null/mutant cells, as well as immortalised nonmalignant MCF10 (immortalised non-neoplastic) cells, by colony-forming assay. The effect on cell cycle checkpoints was determined by flow cytometry. The isogenic p53 defective cells were not more sensitive to VE-821 alone. Defective p53 consistently conferred greater chemo- and radiosensitisation, particularly at high dose levels in isogenic cells but not unmatched cells. VE-821 did not sensitise MCF10 cells. We conclude that p53 status is just one factor contributing to chemo- and radiosensitisation by ATR inhibition, the lack of chemo- or radiosensitisation in the noncancerous cells suggests an element of tumour-specificity that warrants further investigation. The greater sensitisation at high-dose irradiation suggests that ATR inhibitors may be most effective with hypofractionated radiotherapy.
Collapse
|
9
|
Abstract
Accurate transmission of the genetic information requires complete duplication of the chromosomal DNA each cell division cycle. However, the idea that replication forks would form at origins of DNA replication and proceed without impairment to copy the chromosomes has proven naive. It is now clear that replication forks stall frequently as a result of encounters between the replication machinery and template damage, slow-moving or paused transcription complexes, unrelieved positive superhelical tension, covalent protein-DNA complexes, and as a result of cellular stress responses. These stalled forks are a major source of genome instability. The cell has developed many strategies for ensuring that these obstructions to DNA replication do not result in loss of genetic information, including DNA damage tolerance mechanisms such as lesion skipping, whereby the replisome jumps the lesion and continues downstream; template switching both behind template damage and at the stalled fork; and the error-prone pathway of translesion synthesis.
Collapse
Affiliation(s)
- Kenneth J Marians
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
| |
Collapse
|
10
|
Stockum A, Snijders AP, Maertens GN. USP11 deubiquitinates RAE1 and plays a key role in bipolar spindle formation. PLoS One 2018; 13:e0190513. [PMID: 29293652 PMCID: PMC5749825 DOI: 10.1371/journal.pone.0190513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/15/2017] [Indexed: 11/26/2022] Open
Abstract
Correct segregation of the mitotic chromosomes into daughter cells is a highly regulated process critical to safeguard genome stability. During M phase the spindle assembly checkpoint (SAC) ensures that all kinetochores are correctly attached before its inactivation allows progression into anaphase. Upon SAC inactivation, the anaphase promoting complex/cyclosome (APC/C) E3 ligase ubiquitinates and targets cyclin B and securin for proteasomal degradation. Here, we describe the identification of Ribonucleic Acid Export protein 1 (RAE1), a protein previously shown to be involved in SAC regulation and bipolar spindle formation, as a novel substrate of the deubiquitinating enzyme (DUB) Ubiquitin Specific Protease 11 (USP11). Lentiviral knock-down of USP11 or RAE1 in U2OS cells drastically reduces cell proliferation and increases multipolar spindle formation. We show that USP11 is associated with the mitotic spindle, does not regulate SAC inactivation, but controls ubiquitination of RAE1 at the mitotic spindle, hereby functionally modulating its interaction with Nuclear Mitotic Apparatus protein (NuMA).
Collapse
Affiliation(s)
- Anna Stockum
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Norfolk Place, London, United Kingdom
| | - Ambrosius P. Snijders
- Francis Crick Institute, The Crick Mass Spectrometry Science Technology Platform, 1 Midland Road, London, United Kingdom
| | - Goedele N. Maertens
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Norfolk Place, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Yang Z, Maciejowski J, de Lange T. Nuclear Envelope Rupture Is Enhanced by Loss of p53 or Rb. Mol Cancer Res 2017; 15:1579-1586. [PMID: 28811362 DOI: 10.1158/1541-7786.mcr-17-0084] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/05/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023]
Abstract
The mammalian nuclear envelope (NE) forms a stable physical barrier between the nucleus and the cytoplasm, normally breaking down only during mitosis. However, spontaneous transient NE rupture in interphase can occur when NE integrity is compromised, such as when the nucleus experiences mechanical stress. For instance, deficiencies in the nuclear lamins and their associated proteins can cause NE rupture that is promoted by forces exerted by actin filaments. NE rupture can allow cytoplasmic nucleases to access chromatin, potentially compromising genome integrity. Importantly, spontaneous NE rupture was noted in several human cancer cell lines, but the cause of this defect is not known. Here, we investigated the mechanistic contributions of two major tumor suppressors, p53 (TP53) and Rb (RB1), to the repression of NE rupture. NE rupture was induced in normal human epithelial RPE-1 cells upon impairment of either Rb or p53 achieved by shRNA knockdown and CRISPR/Cas9 gene editing. NE rupture did not involve diminished expression of NE components or greater cell motility. However, cells that underwent NE rupture displayed a larger nuclear projection area. In conclusion, the data indicate that NE rupture in cancer cells is likely due to loss of either the Rb or the p53 pathway.Implications: These findings imply that tumor suppression by Rb and p53 includes the ability to prevent NE rupture, thereby protecting against genome alterations. Mol Cancer Res; 15(11); 1579-86. ©2017 AACR.
Collapse
Affiliation(s)
- Zhe Yang
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York
| | - John Maciejowski
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York.
| |
Collapse
|
12
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Tang Y, Yang C, Guo Z, Fu Y, Yu X, Liu B, Zhou H, Wang J, Li W, Pang Q. P16 protein expression as a useful predictive biomarker for neoadjuvant chemotherapy response in patients with high-grade osteosarcoma: A systematic meta-analysis under guideline of PRISMA. Medicine (Baltimore) 2017; 96:e6714. [PMID: 28489748 PMCID: PMC5428582 DOI: 10.1097/md.0000000000006714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy for patients with high-grade osteosarcoma has highly improved the clinical survival. However, the prognostic and predictive role of P16 expression after neoadjuvant chemotherapy remains unclear. We first determined whether P16 expression can become a potential prognostic and predictive biomarker in high-grade osteosarcoma. METHODS This meta-analysis was conducted based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline. Eligible studies were pooled and the overall odds ratios (ORs) and hazard ratios (HRs) with the corresponding 95% confidence intervals (95% CIs) were calculated in this analysis. RESULTS Four studies involving a total of 527 patients with high-grade osteosarcoma receiving neoadjuvant chemotherapy were identified. We did not find that P16 expression was correlated with sex status, histologic subtype, and tumor site (P > .1). P16 expression was found to be significantly associated with a "good" response to neoadjuvant chemotherapy (OR = 4.69, P < .001). A significant relationship was observed between p16 expression and pathologic complete response after neoadjuvant chemotherapy using multivariate analysis (OR = 9.63, P = .001). The expression of the P16 was not associated with clinical outcomes in overall survival (OS) and disease-free survival (DFS) by multivariate analysis (OS: P = .448; DFS: P = .263). CONCLUSIONS The use of P16 expression could become a promising predictive biomarker of the response to neoadjuvant chemotherapy in the white population with high-grade osteosarcoma. However, it was not correlated with the prognosis of patients in OS and DFS. More clinical researches are very essential in Asians in the future.
Collapse
|
14
|
O'Brien R, Tran SL, Maritz MF, Liu B, Kong CF, Purgato S, Yang C, Murray J, Russell AJ, Flemming CL, von Jonquieres G, Pickett HA, London WB, Haber M, Gunaratne PH, Norris MD, Perini G, Fletcher JI, MacKenzie KL. MYC-Driven Neuroblastomas Are Addicted to a Telomerase-Independent Function of Dyskerin. Cancer Res 2016; 76:3604-17. [PMID: 27197171 DOI: 10.1158/0008-5472.can-15-0879] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
The RNA-binding protein dyskerin, encoded by the DKC1 gene, functions as a core component of the telomerase holoenzyme as well as ribonuclear protein complexes involved in RNA processing and ribosome biogenesis. The diverse roles of dyskerin across many facets of RNA biology implicate its potential contribution to malignancy. In this study, we examined the expression and function of dyskerin in neuroblastoma. We show that DKC1 mRNA levels were elevated relative to normal cells across a panel of 15 neuroblastoma cell lines, where both N-Myc and c-Myc directly targeted the DKC1 promoter. Upregulation of MYCN was shown to dramatically increase DKC1 expression. In two independent neuroblastoma patient cohorts, high DKC1 expression correlated strongly with poor event-free and overall survival (P < 0.0001), independently of established prognostic factors. RNAi-mediated depletion of dyskerin inhibited neuroblastoma cell proliferation, including cells immortalized via the telomerase-independent ALT mechanism. Furthermore, dyskerin attenuation impaired anchorage-independent proliferation and tumor growth. Overexpression of the telomerase RNA component, hTR, demonstrated that this proliferative impairment was not a consequence of telomerase suppression. Instead, ribosomal stress, evidenced by depletion of small nucleolar RNAs and nuclear dispersal of ribosomal proteins, was the likely cause of the proliferative impairment in dyskerin-depleted cells. Accordingly, dyskerin suppression caused p53-dependent G1 cell-cycle arrest in p53 wild-type cells, and a p53-independent pathway impaired proliferation in cells with p53 dysfunction. Together, our findings highlight dyskerin as a new therapeutic target in neuroblastoma with crucial telomerase-independent functions and broader implications for the spectrum of malignancies driven by MYC family oncogenes. Cancer Res; 76(12); 3604-17. ©2016 AACR.
Collapse
Affiliation(s)
- Rosemary O'Brien
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Sieu L Tran
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Michelle F Maritz
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Cheng Fei Kong
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Chen Yang
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Jayne Murray
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Amanda J Russell
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Claudia L Flemming
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Georg von Jonquieres
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Laboratory, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Michelle Haber
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Murray D Norris
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Varshney J, Scott MC, Largaespada DA, Subramanian S. Understanding the Osteosarcoma Pathobiology: A Comparative Oncology Approach. Vet Sci 2016; 3:vetsci3010003. [PMID: 29056713 PMCID: PMC5644613 DOI: 10.3390/vetsci3010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is an aggressive primary bone tumor in humans and is among the most common cancer afflicting dogs. Despite surgical advancements and intensification of chemo- and targeted therapies, the survival outcome for osteosarcoma patients is, as of yet, suboptimal. The presence of metastatic disease at diagnosis or its recurrence after initial therapy is a major factor for the poor outcomes. It is thought that most human and canine patients have at least microscopic metastatic lesions at diagnosis. Osteosarcoma in dogs occurs naturally with greater frequency and shares many biological and clinical similarities with osteosarcoma in humans. From a genetic perspective, osteosarcoma in both humans and dogs is characterized by complex karyotypes with highly variable structural and numerical chromosomal aberrations. Similar molecular abnormalities have been observed in human and canine osteosarcoma. For instance, loss of TP53 and RB regulated pathways are common. While there are several oncogenes that are commonly amplified in both humans and dogs, such as MYC and RAS, no commonly activated proto-oncogene has been identified that could form the basis for targeted therapies. It remains possible that recurrent aberrant gene expression changes due to gene amplification or epigenetic alterations could be uncovered and these could be used for developing new, targeted therapies. However, the remarkably high genomic complexity of osteosarcoma has precluded their definitive identification. Several advantageous murine models of osteosarcoma have been generated. These include spontaneous and genetically engineered mouse models, including a model based on forward genetics and transposon mutagenesis allowing new genes and genetic pathways to be implicated in osteosarcoma development. The proposition of this review is that careful comparative genomic studies between human, canine and mouse models of osteosarcoma may help identify commonly affected and targetable pathways for alternative therapies for osteosarcoma patients. Translational research may be found through a path that begins in mouse models, and then moves through canine patients, and then human patients.
Collapse
Affiliation(s)
- Jyotika Varshney
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Surgery, University of Minnesota Medical School, Moos Tower, 11-212420 Delaware Street, S.E.; MMC 195, Minneapolis, MN 55455, USA.
| | - Milcah C Scott
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55455, USA.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Surgery, University of Minnesota Medical School, Moos Tower, 11-212420 Delaware Street, S.E.; MMC 195, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Kosemehmetoglu K, Ardic F, Karslioglu Y, Kandemir O, Ozcan A. p16 expression predicts neoadjuvant tumor necrosis in osteosarcomas: reappraisal with a larger series using whole sections. Hum Pathol 2015; 50:170-5. [PMID: 26997452 DOI: 10.1016/j.humpath.2015.09.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/26/2015] [Accepted: 09/10/2015] [Indexed: 01/28/2023]
Abstract
The presence of greater than or equal to 90% necrosis after neoadjuvant chemotherapy is a favorable prognostic factor in osteosarcomas. A recent study using tissue microarrays of 40 conventional osteosarcomas showed that p16 expression independently predicted the necrotic response to neoadjuvant chemotherapy. In this study, we investigated this finding using whole sections in a larger group of osteosarcomas. Cases of 83 patients who had pretreatment biopsies and received neoadjuvant chemotherapy and surgical resection were collected from 3 reference hospital archives. Age, sex, tumor size, tumor subtype, location, and percentage of tumor necrosis were recorded; 4-μm sections from pretreatment biopsies were stained for p16. More than 30% strong nuclear staining was regarded as positive. The median age was 17 years (5-68 years), and male/female ratio was 2.3. The mean tumor diameter was 9.9 cm (2-30 cm). Tumors were most commonly of the osteoblastic type (60%) and located at the femur (47%). p16 positivity was seen in 66% of the patients. The median pathologic necrosis was 65%, and 39% of the patients responded favorably (≥%90 necrosis) to neoadjuvant therapy. In univariate analysis, p16 expression significantly correlated with greater than or equal to 90% response (P = .022). On multivariate analysis, p16 expression (odds ratio [OR], 7.71; P = .008), female sex (OR, 8.62; P = .006), and smaller tumor size (OR, 0.86; P = .023) were independent predictors of favorable response to neoadjuvant chemotherapy. We confirmed the finding that p16 expression predicts postchemotherapy necrotic response in conventional osteosarcomas.
Collapse
Affiliation(s)
- Kemal Kosemehmetoglu
- Department of Pathology, Hacettepe University School of Medicine, 06230 Ankara, Turkey.
| | - Fisun Ardic
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, 06200 Ankara, Turkey
| | - Yildirim Karslioglu
- Department of Pathology, Gulhane Military Medical Academy, 06010 Ankara, Turkey
| | - Olcay Kandemir
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, 06200 Ankara, Turkey
| | - Ayhan Ozcan
- Department of Pathology, Gulhane Military Medical Academy, 06010 Ankara, Turkey
| |
Collapse
|
17
|
Scott MC, Sarver AL, Tomiyasu H, Cornax I, Van Etten J, Varshney J, O'Sullivan MG, Subramanian S, Modiano JF. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma. J Biol Chem 2015; 290:28070-28083. [PMID: 26378234 DOI: 10.1074/jbc.m115.679696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma.
Collapse
Affiliation(s)
- Milcah C Scott
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center
| | - Aaron L Sarver
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences
| | - Hirotaka Tomiyasu
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center
| | - Ingrid Cornax
- Animal Cancer Care and Research Program; Masonic Cancer Center; Veterinary Population Medicine
| | - Jamie Van Etten
- Masonic Cancer Center; Department of Surgery, School of Medicine
| | - Jyotika Varshney
- Animal Cancer Care and Research Program; Department of Surgery, School of Medicine; Veterinary Medicine Graduate Program, College of Veterinary Medicine
| | - M Gerard O'Sullivan
- Animal Cancer Care and Research Program; Masonic Cancer Center; Veterinary Population Medicine
| | - Subbaya Subramanian
- Animal Cancer Care and Research Program; Masonic Cancer Center; Department of Surgery, School of Medicine
| | - Jaime F Modiano
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center; Stem Cell Institute; Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
18
|
Lindström L, Villoutreix BO, Lehn S, Hellsten R, Nilsson E, Crneta E, Olsson R, Alvarado-Kristensson M. Therapeutic Targeting of Nuclear γ-Tubulin in RB1-Negative Tumors. Mol Cancer Res 2015; 13:1073-82. [PMID: 25934692 DOI: 10.1158/1541-7786.mcr-15-0063-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/28/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED In addition to its cytosolic function, γ-tubulin is a chromatin-associated protein. Reduced levels of nuclear γ-tubulin increase the activity of E2 promoter-binding factors (E2F) and raise the levels of retinoblastoma (RB1) tumor suppressor protein. In tumor cells lacking RB1 expression, decreased γ-tubulin levels induce cell death. Consequently, impairment of the nuclear activity of γ-tubulin has been suggested as a strategy for targeted chemotherapy of RB1-deficient tumors; thus, tubulin inhibitors were tested to identify compounds that interfere with γ-tubulin. Interestingly, citral increased E2F activity but impaired microtubule dynamics while citral analogues, such citral dimethyl acetal (CDA), increased E2F activity without affecting microtubules. The cytotoxic effect of CDA on tumor cells was attenuated by increased expression of either RB1 or γ-tubulin, and increased by reduced levels of either RB1 or γ-tubulin. Mechanistic study, in silico and in vitro, demonstrated that CDA prevents GTP binding to γ-tubulin and suggested that the FDA-approved drug dimethyl fumarate is also a γ-tubulin inhibitor. Finally, in vivo growth of xenograft tumors carrying defects in the RB1 signaling pathway were inhibited by CDA treatment. These results demonstrate that inhibition of γ-tubulin has the potential to specifically target tumor cells and may aid in the design of safer and more efficient chemotherapeutic regimes. IMPLICATIONS The in vivo antitumorigenic activity of γ-tubulin inhibitors paves the way for the development of a novel broad range targeted anticancer therapy that causes fewer side effects.
Collapse
Affiliation(s)
- Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 Inserm, Paris, France. Inserm, U973, Paris, France
| | - Sophie Lehn
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Rebecka Hellsten
- Division of Urological Cancers, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Elise Nilsson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Enisa Crneta
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, BMC, Lund University, Lund, Sweden
| | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
19
|
MK3 modulation affects BMI1-dependent and independent cell cycle check-points. PLoS One 2015; 10:e0118840. [PMID: 25853770 PMCID: PMC4390245 DOI: 10.1371/journal.pone.0118840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/14/2015] [Indexed: 01/04/2023] Open
Abstract
Although the MK3 gene was originally found deleted in some cancers, it is highly expressed in others. The relevance of MK3 for oncogenesis is currently not clear. We recently reported that MK3 controls ERK activity via a negative feedback mechanism. This prompted us to investigate a potential role for MK3 in cell proliferation. We here show that overexpression of MK3 induces a proliferative arrest in normal diploid human fibroblasts, characterized by enhanced expression of replication stress- and senescence-associated markers. Surprisingly, MK3 depletion evokes similar senescence characteristics in the fibroblast model. We previously identified MK3 as a binding partner of Polycomb Repressive Complex 1 (PRC1) proteins. In the current study we show that MK3 overexpression results in reduced cellular EZH2 levels and concomitant loss of epigenetic H3K27me3-marking and PRC1/chromatin-occupation at the CDKN2A/INK4A locus. In agreement with this, the PRC1 oncoprotein BMI1, but not the PCR2 protein EZH2, bypasses MK3-induced senescence in fibroblasts and suppresses P16INK4A expression. In contrast, BMI1 does not rescue the MK3 loss-of-function phenotype, suggesting the involvement of multiple different checkpoints in gain and loss of MK3 function. Notably, MK3 ablation enhances proliferation in two different cancer cells. Finally, the fibroblast model was used to evaluate the effect of potential tumorigenic MK3 driver-mutations on cell proliferation and M/SAPK signaling imbalance. Taken together, our findings support a role for MK3 in control of proliferation and replicative life-span, in part through concerted action with BMI1, and suggest that the effect of MK3 modulation or mutation on M/SAPK signaling and, ultimately, proliferation, is cell context-dependent.
Collapse
|
20
|
Colin DJ, Hain KO, Allan LA, Clarke PR. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins. Open Biol 2015; 5:140156. [PMID: 25761368 PMCID: PMC4389791 DOI: 10.1098/rsob.140156] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 02/18/2015] [Indexed: 01/16/2023] Open
Abstract
Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.
Collapse
Affiliation(s)
- Didier J Colin
- Division of Cancer Research, Medical Research Institute, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Karolina O Hain
- Division of Cancer Research, Medical Research Institute, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Lindsey A Allan
- Division of Cancer Research, Medical Research Institute, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Paul R Clarke
- Division of Cancer Research, Medical Research Institute, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
21
|
Silva G, Aboussekhra A. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1. Mol Carcinog 2015; 55:525-36. [PMID: 25728247 DOI: 10.1002/mc.22299] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
Abstract
Extracellular signal-regulated kinase (ERK) is a downstream component of the evolutionarily conserved mitogen-activated protein kinase-signaling pathway, which controls the expression of a plethora of genes implicated in various physiological processes. This pathway is often hyper-activated by mutations or abnormal extracellular signaling in different types of human cancer, including the most common primary malignant bone tumor osteosarcomas. p16(INK4A) is an important tumor suppressor gene frequently lost in osteosarcomas, and is associated with the progression of these malignancies. We have shown, here, that the ERK1/2 protein kinase is also activated by p16(INK4A) down-regulation in osteosarcoma cells and normal human as well as mouse cells. This inhibitory effect is associated with the suppression of the upstream kinase MEK1/2, and is mediated via the repression of miR-21-5p and the consequent up-regulation of the MEK/ERK antagonist SPRY2 in osteosarcoma cells. Furthermore, we have shown that p16(INK4) inhibits the migration/invasion abilities of these cells through miR-21-5p-dependent inhibition of ERK1/2. In addition, we present clear evidence that p16(INK4) represses the paracrine pro-migratory effect of osteosarcoma cells on stromal fibroblasts through the inhibition of the TGF-β1 expression/secretion. This effect is also ERK1/2-dependent, indicating that in addition to their cell-autonomous actions, p16(INK4) and ERK1/2 have also non-cell-autonomous cancer-related functions. Together, these results indicate that the tumor suppressor p16(INK4) protein represses the carcinogenic process of osteosarcoma cells not only as a cell cycle regulator, but also as a negative regulator of pro-carcinogenic/-metastatic pathways. This indicates that targeting the ERK pathway is of utmost therapeutic value.
Collapse
Affiliation(s)
- Gabriela Silva
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA
| |
Collapse
|
22
|
Wang L, Liu R, Ye P, Wong C, Chen GY, Zhou P, Sakabe K, Zheng X, Wu W, Zhang P, Jiang T, Bassetti MF, Jube S, Sun Y, Zhang Y, Zheng P, Liu Y. Intracellular CD24 disrupts the ARF-NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nat Commun 2015; 6:5909. [PMID: 25600590 PMCID: PMC4300525 DOI: 10.1038/ncomms6909] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
CD24 is overexpressed in nearly 70% human cancers, whereas TP53 is the most frequently mutated tumour-suppressor gene that functions in a context-dependent manner. Here we show that both targeted mutation and short hairpin RNA (shRNA) silencing of CD24 retard the growth, progression and metastasis of prostate cancer. CD24 competitively inhibits ARF binding to NPM, resulting in decreased ARF, increase MDM2 and decrease levels of p53 and the p53 target p21/CDKN1A. CD24 silencing prevents functional inactivation of p53 by both somatic mutation and viral oncogenes, including the SV40 large T antigen and human papilloma virus 16 E6-antigen. In support of the functional interaction between CD24 and p53, in silico analyses reveal that TP53 mutates at a higher rate among glioma and prostate cancer samples with higher CD24 mRNA levels. These data provide a general mechanism for functional inactivation of ARF and reveal an important cellular context for genetic and viral inactivation of TP53. P53 is a tumour suppressor that is frequently mutated or downregulated in cancer. Here, Wang et al. show that CD24, a molecule frequently overexpressed in cancer, promotes p53 degradation by disrupting a regulatory ARF–MDM2 interaction, and silencing CD24 prevents the downregulation of p53.
Collapse
Affiliation(s)
- Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Peiying Ye
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA
| | - Chunshu Wong
- 1] Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA [2] Program of Immunology, Integrated Biomedical Graduate Program, University of Michigan School of Medicine, Ann Arbor, Michigan 48103, USA
| | - Guo-Yun Chen
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA
| | - Penghui Zhou
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kaoru Sakabe
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA
| | | | - Wei Wu
- OncoImmune, Inc., Rockville, Maryland 20852, USA
| | - Peng Zhang
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Taijiao Jiang
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Michael F Bassetti
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Sandro Jube
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA
| | - Yi Sun
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Pan Zheng
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA
| | - Yang Liu
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA
| |
Collapse
|
23
|
PRMT4-mediated arginine methylation negatively regulates retinoblastoma tumor suppressor protein and promotes E2F-1 dissociation. Mol Cell Biol 2014; 35:238-48. [PMID: 25348716 DOI: 10.1128/mcb.00945-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The retinoblastoma protein (pRb/p105) tumor suppressor plays a pivotal role in cell cycle regulation by blockage of the G1-to-S-phase transition. pRb tumor suppressor activity is governed by a variety of posttranslational modifications, most notably phosphorylation by cyclin-dependent kinase (Cdk) complexes. Here we report a novel regulation of pRb through protein arginine methyltransferase 4 (PRMT4)-mediated arginine methylation, which parallels phosphorylation. PRMT4 specifically methylates pRb at the pRb C-terminal domain (pRb C(term)) on arginine (R) residues R775, R787, and R798 in vitro and R787 in vivo. Arginine methylation is important for efficient pRb C(term) phosphorylation, as manifested by the reduced phosphorylation of a methylation-impaired mutant, pRb (R3K). A methylmimetic form of pRb, pRb (R3F), disrupts the formation of the E2F-1/DP1-pRb complex in cells as well as in an isolated system. Finally, studies using a Gal4-E2F-1 reporter system show that pRb (R3F) expression reduces the ability of pRb to repress E2F-1 transcriptional activation, while pRb (R3K) expression further represses E2F-1 transcriptional activation relative to that for cells expressing wild-type pRb. Together, our results suggest that arginine methylation negatively regulates the tumor suppressor function of pRb during cell cycle control, in part by creating a better substrate for Cdk complex phosphorylation and disrupting the interaction of pRb with E2F-1.
Collapse
|
24
|
Li B, Ye Z. Epigenetic alterations in osteosarcoma: promising targets. Mol Biol Rep 2014; 41:3303-15. [PMID: 24500341 DOI: 10.1007/s11033-014-3193-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 01/22/2014] [Indexed: 01/10/2023]
Abstract
Cancer is being reinterpreted due to recent discoveries related to epigenetic regulation during development, and the importance of epigenetic mechanisms in initiation and progression of cancer has been further highlighted by the recent explosion in medical information. Osteosarcoma is highly genetically unstable, and current therapeutic regimens are subject to chemoresistance and tumor relapse. Understanding the epigenetic mechanisms in the pathogenesis of osteosarcoma will provide novel avenues for cancer therapy. In this review, we examine the epigenetic alterations in gene expression in osteosarcoma, and discuss the utilization of epigenetic regulation therapy in treatment against osteosarcoma.
Collapse
Affiliation(s)
- Binghao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310008, China
| | | |
Collapse
|
25
|
Williams RT, Barnhill LM, Kuo HH, Lin WD, Batova A, Yu AL, Diccianni MB. Chimeras of p14ARF and p16: functional hybrids with the ability to arrest growth. PLoS One 2014; 9:e88219. [PMID: 24505435 PMCID: PMC3914946 DOI: 10.1371/journal.pone.0088219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/03/2014] [Indexed: 01/23/2023] Open
Abstract
The INK4A locus codes for two independent tumor suppressors, p14ARF and p16/CDKN2A, and is frequently mutated in many cancers. Here we report a novel deletion/substitution from CC to T in the shared exon 2 of p14ARF/p16 in a melanoma cell line. This mutation aligns the reading frames of p14ARF and p16 mid-transcript, producing one protein which is half p14ARF and half p16, chimera ARF (chARF), and another which is half p16 and half non-p14ARF/non-p16 amino acids, p16-Alternate Carboxyl Terminal (p16-ACT). In an effort to understand the cellular impact of this novel mutation and others like it, we expressed the two protein products in a tumor cell line and analyzed common p14ARF and p16 pathways, including the p53/p21 and CDK4/cyclin D1 pathways, as well as the influence of the two proteins on growth and the cell cycle. We report that chARF mimicked wild-type p14ARF by inducing the p53/p21 pathway, inhibiting cell growth through G2/M arrest and maintaining a certain percentage of cells in G1 during nocodazole-induced G2 arrest. chARF also demonstrated p16 activity by binding CDK4. However, rather than preventing cyclin D1 from binding CDK4, chARF stabilized this interaction through p21 which bound CDK4. p16-ACT had no p16-related function as it was unable to inhibit cyclin D1/CDK4 complex formation and was unable to arrest the cell cycle, though it did inhibit colony formation. We conclude that these novel chimeric proteins, which are very similar to predicted p16/p14ARF chimeric proteins found in other primary cancers, result in maintained p14ARF-p53-p21 signaling while p16-dependent CDK4 inhibition is lost.
Collapse
Affiliation(s)
- Richard T. Williams
- Department of Pediatric Hematology/Oncology, University of California San Diego, San Diego, California, United States of America
| | - Lisa M. Barnhill
- Department of Pediatric Hematology/Oncology, University of California San Diego, San Diego, California, United States of America
| | - Huan-Hsien Kuo
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Der Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ayse Batova
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Alice L. Yu
- Department of Pediatric Hematology/Oncology, University of California San Diego, San Diego, California, United States of America
| | - Mitchell B. Diccianni
- Department of Pediatric Hematology/Oncology, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhang R, Misra V. Effects of cyclic AMP response element binding protein-Zhangfei (CREBZF) on the unfolded protein response and cell growth are exerted through the tumor suppressor p53. Cell Cycle 2013; 13:279-92. [PMID: 24200963 DOI: 10.4161/cc.27053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zhangfei/CREBZF, a basic region-leucine zipper (bLZip) transcription factor, is a potent suppressor of growth and the unfolded protein response (UPR) in some cancer cell lines, including the canine osteosarcoma cell line, D-17. However, the effects of Zhangfei are not universal, and it has no obvious effects on untransformed cells and some cancer cell lines, suggesting that Zhangfei may act through an intermediary that is either not induced or is defective in cells that it does not affect. Here we identify the tumor suppressor protein p53 as this intermediary. We show the following: in cells ectopically expressing Zhangfei, the protein stabilizes p53 and co-localizes with it in cellular nuclei; the bLZip domain of Zhangfei is required for its profound effects on cell growth and interaction with p53. Suppression of p53 by siRNA at least partially inhibits the effects of Zhangfei on the UPR and cell growth. The effects of Zhangfei on D-17 cells is mirrored by its effects on the p53-expressing human osteosarcoma cell line U2OS, while Zhangfei has no effect on the p53-null osteosarcoma cell line MG63. In U2OS cells, Zhangfei displaces the E3 ubiquitin ligase mouse double minute homolog 2 (Mdm2) from its association with p53, suggesting a mechanism for the effects of Zhangfei on p53.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Microbiology; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| | - Vikram Misra
- Department of Microbiology; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol Cell Biol 2013; 33:4660-71. [PMID: 24061479 DOI: 10.1128/mcb.01174-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Humans have evolved elaborate mechanisms to activate p53 in response to insults that lead to cancer, including the binding and inhibition of Hdm2 by the 60S ribosomal proteins (RPs) RPL5 and RPL11. This same mechanism appears to be activated upon impaired ribosome biogenesis, a risk factor for cancer initiation. As loss of RPL5/RPL11 abrogates ribosome biogenesis and protein synthesis to the same extent as loss of other essential 60S RPs, we reasoned the loss of RPL5 and RPL11 would induce a p53-independent cell cycle checkpoint. Unexpectedly, we found that their depletion in primary human lung fibroblasts failed to induce cell cycle arrest but strongly suppressed cell cycle progression. We show that the effects on cell cycle progression stemmed from reduced ribosome content and translational capacity, which suppressed the accumulation of cyclins at the translational level. Thus, unlike other tumor suppressors, RPL5/RPL11 play an essential role in normal cell proliferation, a function cells have evolved to rely on in lieu of a cell cycle checkpoint.
Collapse
|
28
|
Blackburn G, Scott TG, Bayer IS, Ghosh A, Biris AS, Biswas A. Bionanomaterials for bone tumor engineering and tumor destruction. J Mater Chem B 2013; 1:1519-1534. [DOI: 10.1039/c3tb00536d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Stein C, Riedl S, Rüthnick D, Nötzold RR, Bauer UM. The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res 2012; 40:9522-33. [PMID: 22904088 PMCID: PMC3479209 DOI: 10.1093/nar/gks767] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The protein arginine methyltransferase 6 (PRMT6) is a coregulator of gene expression and executes its repressing as well as activating function by asymmetric dimethylation of histone H3 at R2 (H3 R2me2a). Given that elevated expression levels of PRMT6 have been reported in various cancer types, we explore here its role in cell proliferation and senescence. We find that knockdown of PRMT6 results in proliferation defects of transformed as well as non-transformed cells, causes G1-phase arrest and induces senescence. This phenotype is accompanied by transcriptional upregulation of important cell cycle regulators, most prominently the cyclin-dependent kinase (CDK) inhibitor gene p21 (p21CIP1/WAF1, CDKN1A) and p16 (p16INK4A, CDKN2A). Chromatin immuno-precipitation analysis reveals that the p21 gene is a direct target of PRMT6 and the corresponding histone mark H3 R2me2a. Using a cell model of oncogene-induced senescence (OIS), in which p21 is an essential activator of the senescent phenotype, we show that PRMT6 expression declines upon induction of senescence and conversely p21 gene expression increases. Moreover, overexpression of PRMT6 leads to reduced levels of OIS. These findings indicate that the transcriptional repressor activity of PRMT6 facilitates cell proliferation and blocks senescence by regulation of tumor suppressor genes and that this might contribute to the oncogenic capacity of PRMT6.
Collapse
Affiliation(s)
- Claudia Stein
- Institute for Molecular Biology and Tumor Research, University of Marburg, Emil-Mannkopff-Strasse 2, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Bennani-Baiti IM. Epigenetic and epigenomic mechanisms shape sarcoma and other mesenchymal tumor pathogenesis. Epigenomics 2012; 3:715-32. [PMID: 22126291 DOI: 10.2217/epi.11.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sarcomas comprise a large number of rare, histogenetically heterogeneous, mesenchymal tumors. Cancers such as Ewing's sarcoma, liposarcoma, rhabdomyosarcoma and synovial sarcoma can be generated by the transduction of mesenchymal stem cell progenitors with sarcoma-pathognomonic oncogenic fusions, a neoplastic transformation process accompanied by profound locus-specific and pangenomic epigenetic alterations. The epigenetic activities of histone-modifying and chromatin-remodeling enzymes such as SUV39H1/KMT1A, EZH2/KMT6A and BMI1 are central to epigenetic-regulated transformation, a property we coin oncoepigenic. Sarcoma-specific oncoepigenic aberrations modulate critical signaling pathways that control cell growth and differentiation including several miRNAs, Wnt, PI3K/AKT, Sav-RASSF1-Hpo and regulators of the G1 and G2/M checkpoints of the cell cycle. Herein an overview of the current knowledge of this rapidly evolving field that will undoubtedly uncover additional oncoepigenic mechanisms and yield druggable targets in the near future is discussed.
Collapse
|
31
|
Dai MS, Challagundla KB, Sun XX, Palam LR, Zeng SX, Wek RC, Lu H. Physical and functional interaction between ribosomal protein L11 and the tumor suppressor ARF. J Biol Chem 2012; 287:17120-17129. [PMID: 22467867 DOI: 10.1074/jbc.m111.311902] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ARF tumor suppressor protein activates p53 in response to oncogenic stress, whereas ribosomal protein L11 induces p53 following ribosomal stress. Both proteins bind to central, albeit non-overlapping, regions of MDM2 and suppress MDM2 activity toward p53. However, it is not known whether the two pathways are functionally connected. Here we show that ARF directly binds to L11 in vitro and in cells, which then forms a complex with MDM2 and p53. L11 collaboratively enhances ARF-induced p53 transcriptional activity and cell cycle arrest. Supporting these results, knocking down L11 reduces ARF-mediated p53 accumulation and alleviates ARF-induced cell cycle arrest. Interestingly, overexpression of ARF increases the levels of ribosome-free L11 and enhances the interaction of L11 with MDM2 and p53. These results demonstrate that ARF activates p53, at least partly by induction of ribosomal stress, which results in L11 suppression of MDM2, and suggest that the ARF-MDM2-p53 and the L11-MDM2-p53 pathways are functionally connected.
Collapse
Affiliation(s)
- Mu-Shui Dai
- Department of Biochemistry and Molecular Biology and Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202; Departments of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Kishore B Challagundla
- Departments of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Xiao-Xin Sun
- Department of Biochemistry and Molecular Biology and Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202; Departments of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Lakshmi Reddy Palam
- Department of Biochemistry and Molecular Biology and Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology and Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112.
| |
Collapse
|
32
|
Tentner AR, Lee MJ, Ostheimer GJ, Samson LD, Lauffenburger DA, Yaffe MB. Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Mol Syst Biol 2012; 8:568. [PMID: 22294094 PMCID: PMC3296916 DOI: 10.1038/msb.2012.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022] Open
Abstract
Following DNA damage, cells display complex multi-pathway signaling dynamics that connect cell-cycle arrest and DNA repair in G1, S, or G2/M phase with phenotypic fate decisions made between survival, cell-cycle re-entry and proliferation, permanent cell-cycle arrest, or cell death. How these phenotypic fate decisions are determined remains poorly understood, but must derive from integrating genotoxic stress signals together with inputs from the local microenvironment. To investigate this in a systematic manner, we undertook a quantitative time-resolved cell signaling and phenotypic response study in U2OS cells receiving doxorubicin-induced DNA damage in the presence or absence of TNFα co-treatment; we measured key nodes in a broad set of DNA damage signal transduction pathways along with apoptotic death and cell-cycle regulatory responses. Two relational modeling approaches were then used to identify network-level relationships between signals and cell phenotypic events: a partial least squares regression approach and a complementary new technique which we term 'time-interval stepwise regression.' Taken together, the results from these analysis methods revealed complex, cytokine-modulated inter-relationships among multiple signaling pathways following DNA damage, and identified an unexpected context-dependent role for Erk in both G1/S arrest and apoptotic cell death following treatment with this commonly used clinical chemotherapeutic drug.
Collapse
Affiliation(s)
- Andrea R Tentner
- Departments of Biology and Biological Engineering, David H Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael J Lee
- Departments of Biology and Biological Engineering, David H Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gerry J Ostheimer
- Departments of Biology and Biological Engineering, David H Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leona D Samson
- Departments of Biology and Biological Engineering, David H Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Departments of Biology and Biological Engineering, David H Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael B Yaffe
- Departments of Biology and Biological Engineering, David H Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
33
|
Inhibition of the single downstream target BAG1 activates the latent apoptotic potential of MYC. Mol Cell Biol 2011; 31:5037-45. [PMID: 21986497 DOI: 10.1128/mcb.06297-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aberrant MYC expression is a common oncogenic event in human cancer. Paradoxically, MYC can either drive cell cycle progression or induce apoptosis. The latent ability of MYC to induce apoptosis has been termed "intrinsic tumor suppressor activity," and reactivating this apoptotic function in tumors is widely considered a valuable therapeutic goal. As a transcription factor, MYC controls the expression of many downstream targets, and for the majority of these, it remains unclear whether or not they play direct roles in MYC function. To identify the subset of genes specifically required for biological activity, we conducted a screen for functionally important MYC targets and identified BAG1, which encodes a prosurvival chaperone protein. Expression of BAG1 is regulated by MYC in both a mouse model of breast cancer and transformed human cells. Remarkably, BAG1 induction is essential for protecting cells from MYC-induced apoptosis. Ultimately, the synthetic lethality we have identified between MYC overexpression and BAG1 inhibition establishes a new pathway that might be exploited to reactivate the latent apoptotic potential of MYC as a cancer therapy.
Collapse
|
34
|
Fragkos M, Beard P. Mitotic catastrophe occurs in the absence of apoptosis in p53-null cells with a defective G1 checkpoint. PLoS One 2011; 6:e22946. [PMID: 21853057 PMCID: PMC3154265 DOI: 10.1371/journal.pone.0022946] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/01/2011] [Indexed: 01/07/2023] Open
Abstract
Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV) that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD) that are deficient in p53 and lack the G1 cell cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was independent of caspases, apoptosis-inducing factor (AIF), autophagy and necroptosis. These findings were confirmed by time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint, mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by centrosome overduplication, and not as a consequence of a suicide signal.
Collapse
Affiliation(s)
- Michalis Fragkos
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Peter Beard
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Pérot G, Chibon F, Montero A, Lagarde P, de Thé H, Terrier P, Guillou L, Ranchère D, Coindre JM, Aurias A. Constant p53 pathway inactivation in a large series of soft tissue sarcomas with complex genetics. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 177:2080-90. [PMID: 20884963 DOI: 10.2353/ajpath.2010.100104] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations of the p53 pathway are among the most frequent aberrations observed in human cancers. We have performed an exhaustive analysis of TP53, p14, p15, and p16 status in a large series of 143 soft tissue sarcomas, rare tumors accounting for around 1% of all adult cancers, with complex genetics. For this purpose, we performed genomic studies, combining sequencing, copy number assessment, and expression analyses. TP53 mutations and deletions are more frequent in leiomyosarcomas than in undifferentiated pleomorphic sarcomas. Moreover, 50% of leiomyosarcomas present TP53 biallelic inactivation, whereas most undifferentiated pleomorphic sarcomas retain one wild-type TP53 allele (87.2%). The spectrum of mutations between these two groups of sarcomas is different, particularly with a higher rate of complex mutations in undifferentiated pleomorphic sarcomas. Most tumors without TP53 alteration exhibit a deletion of p14 and/or lack of mRNA expression, suggesting that p14 loss could be an alternative genotype for direct TP53 inactivation. Nevertheless, the fact that even in tumors altered for TP53, we could not detect p14 protein suggests that other p14 functions, independent of p53, could be implicated in sarcoma oncogenesis. In addition, both p15 and p16 are frequently codeleted or transcriptionally co-inhibited with p14, essentially in tumors with two wild-type TP53 alleles. Conversely, in TP53-altered tumors, p15 and p16 are well expressed, a feature not incompatible with an oncogenic process.
Collapse
Affiliation(s)
- Gaëlle Pérot
- Institut Curie, Genetics and Biology of Cancers, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vernier M, Bourdeau V, Gaumont-Leclerc MF, Moiseeva O, Bégin V, Saad F, Mes-Masson AM, Ferbeyre G. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 2011; 25:41-50. [PMID: 21205865 DOI: 10.1101/gad.1975111] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor suppressor PML (promyelocytic leukemia protein) regulates cellular senescence and terminal differentiation, two processes that implicate a permanent exit from the cell cycle. Here, we show that the mechanism by which PML induces a permanent cell cycle exit and activates p53 and senescence involves a recruitment of E2F transcription factors bound to their promoters and the retinoblastoma (Rb) proteins to PML nuclear bodies enriched in heterochromatin proteins and protein phosphatase 1α. Blocking the functions of the Rb protein family or adding back E2Fs to PML-expressing cells can rescue their defects in E2F-dependent gene expression and cell proliferation, inhibiting the senescent phenotype. In benign prostatic hyperplasia, a neoplastic disease that displays features of senescence, PML was found to be up-regulated and forming nuclear bodies. In contrast, PML bodies were rarely visualized in prostate cancers. The newly defined PML/Rb/E2F pathway may help to distinguish benign tumors from cancers, and suggest E2F target genes as potential targets to induce senescence in human tumors.
Collapse
Affiliation(s)
- Mathieu Vernier
- Biochemistry Department, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Scarola M, Schoeftner S, Schneider C, Benetti R. miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res 2010; 70:6925-33. [PMID: 20713524 DOI: 10.1158/0008-5472.can-10-0141] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations of retinoblastoma family (Rb) proteins drive tumorigenesis by overcoming barriers to cellular proliferation. Consequently, factors modulating Rb function are of great clinical import. Here, we show that miR-335 is differentially expressed in human cancer cells and that it tightly regulates the expression of Rb1 (pRb/p105) by specifically targeting a conserved sequence motif in its 3' untranslated region. We found that by altering Rb1 (pRb/p105) levels, miR-335 activates the p53 tumor suppressor pathway to limit cell proliferation and neoplastic cell transformation. DNA damage elicited an increase in miR-335 expression in a p53-dependent manner. miR-335 and p53 cooperated in a positive feedback loop to drive cell cycle arrest. Together, these results indicate that miR-335 helps control proliferation by balancing the activities of the Rb and p53 tumor suppressor pathways. Further, they establish that miR-335 activation plays an important role in the induction of p53-dependent cell cycle arrest after DNA damage.
Collapse
Affiliation(s)
- Michele Scarola
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Cancer Epigenetics Program, Trieste, Italy
| | | | | | | |
Collapse
|
38
|
Li B, Gordon GM, Charles HD, Xu J, Du W. Specific killing of Rb mutant cancer cells by inactivating TSC2. Cancer Cell 2010; 17:469-80. [PMID: 20478529 PMCID: PMC2873973 DOI: 10.1016/j.ccr.2010.03.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/30/2009] [Accepted: 04/02/2010] [Indexed: 12/18/2022]
Abstract
The retinoblastoma (Rb) tumor suppressor is often inactivated in cancers. To identify genes that can be used to specifically target such cancers, we carried out a genetic screen in Drosophila. We identified gig (fly TSC2) and found that inactivation of rbf (fly Rb) and gig synergistically induced cell death. Interestingly, inactivation of TSC2 specifically kills Rb mutant cancer cells under stress conditions, which is correlated with an inhibition of tumor growth. We show that cancer cell killing induced by concomitant inactivation of Rb and TSC2 is mediated by increased cellular stress, including oxidative stress. Inactivation of TSC2 and Rb synergistically induce oxidative stress via increased protein synthesis, inhibited de novo lipid synthesis, and decreased reactive oxygen species scavenger enzyme SOD2 induction.
Collapse
Affiliation(s)
- Binghui Li
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57 Street, Chicago, IL 60637, USA
| | - Gabriel M. Gordon
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57 Street, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, 929 E. 57 Street, Chicago, IL 60637, USA
| | - H. Du Charles
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57 Street, Chicago, IL 60637, USA
| | - Jinhua Xu
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57 Street, Chicago, IL 60637, USA
| | - Wei Du
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57 Street, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, 929 E. 57 Street, Chicago, IL 60637, USA
- Corresponding author: , Phone: 773-834-1949, Fax 773-702-4476
| |
Collapse
|
39
|
Herkert B, Dwertmann A, Herold S, Abed M, Naud JF, Finkernagel F, Harms GS, Orian A, Wanzel M, Eilers M. The Arf tumor suppressor protein inhibits Miz1 to suppress cell adhesion and induce apoptosis. ACTA ACUST UNITED AC 2010; 188:905-18. [PMID: 20308430 PMCID: PMC2845071 DOI: 10.1083/jcb.200908103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arf assembles a complex containing Miz1, heterochromatin, and histone H3K3 to block expression of genes involved in cell adhesion and signal transduction. The resulting blockade of cell–cell and cell–matrix interactions facilitates elimination of cells carrying oncogenic mutations. Oncogenic stress induces expression of the alternate reading frame (Arf) tumor suppressor protein. Arf then stabilizes p53, which leads to cell cycle arrest or apoptosis. The mechanisms that distinguish both outcomes are incompletely understood. In this study, we show that Arf interacts with the Myc-associated zinc finger protein Miz1. Binding of Arf disrupts the interaction of Miz1 with its coactivator, nucleophosmin, induces the sumoylation of Miz1, and facilitates the assembly of a heterochromatic complex that contains Myc and trimethylated H3K9 in addition to Miz1. Arf-dependent assembly of this complex leads to the repression of multiple genes involved in cell adhesion and signal transduction and induces apoptosis. Our data point to a tumor-suppressive pathway that weakens cell–cell and cell–matrix interactions in response to expression of Arf and that may thereby facilitate the elimination of cells harboring an oncogenic mutation.
Collapse
Affiliation(s)
- Barbara Herkert
- Theodor-Boveri-Institute and 2 Rudolf-Virchow-Center, University of Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ingemarsdotter C, Keller D, Beard P. The DNA damage response to non-replicating adeno-associated virus: Centriole overduplication and mitotic catastrophe independent of the spindle checkpoint. Virology 2010; 400:271-86. [PMID: 20199789 DOI: 10.1016/j.virol.2010.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/25/2010] [Accepted: 02/03/2010] [Indexed: 12/17/2022]
Abstract
Adeno-associated virus (AAV) type 2 or UV-inactivated AAV (UV-AAV2) infection provokes a DNA damage response that leads to cell cycle arrest at the G2/M border. p53-deficient cells cannot sustain the G2 arrest, enter prolonged impaired mitosis, and die. Here, we studied how non-replicating AAV2 kills p53-deficient osteosarcoma cells. We found that the virus uncouples centriole duplication from the cell cycle, inducing centrosome overamplification that is dependent on Chk1, ATR and CDK kinases, and on G2 arrest. Interference with spindle checkpoint components Mad2 and BubR1 revealed unexpectedly that mitotic catastrophe occurs independently of spindle checkpoint function. We conclude that, in the p53-deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. As AAV2 acts through cellular damage response pathways, the results provide information on the role of Chk1 in mitotic catastrophe after DNA damage signaling in general.
Collapse
Affiliation(s)
- Carin Ingemarsdotter
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
41
|
Trougakos IP, Chondrogianni N, Amarantos I, Blake J, Schwager C, Wirkner U, Ansorge W, Gonos ES. Genome-wide transcriptome profile of the human osteosarcoma Sa OS and U-2 OS cell lines. ACTA ACUST UNITED AC 2010; 196:109-18. [PMID: 20082845 DOI: 10.1016/j.cancergencyto.2009.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/09/2009] [Accepted: 09/20/2009] [Indexed: 12/27/2022]
Abstract
With the use of genome-wide cDNA microarrays, we investigated the transcriptome profile of the human osteosarcoma Sa OS and U-2 OS cell lines. In all, 1,098 chip entries were differentially regulated in the two cell lines; of these, 796 entries corresponded to characterized mRNAs. The identified genes are mostly expressed in epithelial tissues and localize on chromosomes 1, 10, and 20. Furthermore, signaling cascades for cell cycle, glycolysis, and gluconeogenesis, the p53 pathway, cell communication, and focal adhesion were found to be differently regulated in the two cell lines. The transcriptome profiles reported here provide novel information about the considerable molecular differences between these two widely used human osteosarcoma cell lines.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology & Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Roch-Lefevre S, Daino K, Altmeyer-Morel S, Guilly MN, Chevillard S. Cytogenetic and molecular characterization of plutonium-induced rat osteosarcomas. JOURNAL OF RADIATION RESEARCH 2010; 51:243-250. [PMID: 20505263 DOI: 10.1269/jrr.09110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The association between ionizing radiation and the subsequent development of osteosarcoma has been well described, but little is known about the cytogenetic and molecular events, which could be involved in the formation of radiation-induced osteosarcomas. Here, we performed comparative genomic hybridization (CGH) to detect chromosomal copy number changes in a series of 16 rat osteosarcomas induced by injection of plutonium-238. Recurrent gains/amplifications were observed at chromosomal regions 3p12-q12, 3q41-qter, 4q41-qter, 6q12-q16, 7q22-q34, 8q11-q23, 9q11-q22, 10q32.1-qter, and 12q, whereas recurrent losses were observed at 1p, 1q, 3q23-q35, 5q21-q33, 8q24-q31, 10q22-q25, 15p, 15q, and 18q. The gained region at 7q22-q34 was homologous to human chromosome bands 12q13-q15/8q24/22q11-q13, including the loci of Mdm2, Cdk4, c-Myc and Pdgf-b genes. The lost regions at 5q21-q33, 10q22-q25 and 15q contained tumor suppressor genes such as p16INK4a/p19ARF, Tp53 and Rb1. To identify potential target gene(s) for the chromosomal aberrations, we compared the expression levels of several candidate genes, located within the regions of frequent chromosomal aberrations, between the tumors and normal osteoblasts by using quantitative RT-PCR analysis. The Cdk4, c-Myc, Pdgf-b and p57KIP2 genes were thought to be possible target genes for the frequent chromosomal gain at 7q22-34 and loss at 1q in the tumors, respectively. In addition, mutations of the Tp53 gene were found in 27% (4 of 15) osteosarcomas. Our data may contribute to further understanding of the molecular mechanisms underlying osteosarcomas induced by ionizing radiation in human.
Collapse
|
43
|
Shi Z, Huang X, Liu B, Tao H, Cai Y, Tang R. Biological response of osteosarcoma cells to size-controlled nanostructured hydroxyapatite. J Biomater Appl 2009; 25:19-37. [PMID: 19726533 DOI: 10.1177/0885328209339396] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteosarcoma is a primary malignant bone tumor, most prevalent in children and adolescents, and is usually highly aggressive and eventually lethal. Despite multimodal therapies, there is no effective approach to treat this malignant disease. In this study, we observed the biological response of osteosarcoma cells to two kinds of hydroxyapatite nanoparticles (Nano HA), NanoHA-S and NanoHA-L. These nanospheres have the same crystallinity (phase) and morphology, but they differ in size. Cells treated with two kinds of Nano HA were inhibited and mainly led to apoptotic cell death. Caspase-9-dependent intrinsic apoptotic pathway plays a role. It was interesting that the suppression and the apoptosis of osteosarcoma cells was directly related to the size of nanoparticles and that the larger-sized Nano HA exhibited more effectiveness than the smaller one. This in vitro study suggested the potential of size-controlled calcium phosphate nanoparticles for use in therapeutic replacement and reconstruction of bone merits after osteosarcoma extraction.
Collapse
Affiliation(s)
- Zhongli Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
44
|
Irelan JT, Gutierrez del Arroyo A, Gutierrez A, Peters G, Quon KC, Miraglia L, Chanda SK. A functional screen for regulators of CKDN2A reveals MEOX2 as a transcriptional activator of INK4a. PLoS One 2009; 4:e5067. [PMID: 19340300 PMCID: PMC2659797 DOI: 10.1371/journal.pone.0005067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/24/2009] [Indexed: 12/02/2022] Open
Abstract
The CDKN2A locus encodes two important tumor suppressors, INK4a and ARF, which respond to oncogenic stresses by inducing cellular senescence. We conducted a genome-scale cDNA overexpression screen using a reporter containing INK4a regulatory sequences to identify novel transcriptional activators of this locus. This screen revealed 285 cDNAs that putatively regulate the transcriptional activation of INK4a. Of these, 56 are annotated as transcription factors, including two previously reported activators of the locus, ETS2 and JUNB. Fourteen genes were further validated for activity and specificity, including several homeodomain proteins. We found that the transcription of one of these, the homeodomain protein MEOX2 (GAX) is enhanced in primary cells during the induction of senescence, and forced expression of this protein results in the induction of premature senescence. We further demonstrate that MEOX2-induced senescence is dependent upon INK4a activity, and chromatin immunoprecipitation studies indicate that MEOX2 directly binds the INK4a promoter. These results support a role for this homeodomain protein as a direct regulator of INK4a transcription and senescence in human cells.
Collapse
Affiliation(s)
- Jeffrey T. Irelan
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (JTI); (SKC)
| | | | - Abel Gutierrez
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Gordon Peters
- CRUK London Research Institute, London, United Kingdom
| | - Kim C. Quon
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Loren Miraglia
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Sumit K. Chanda
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (JTI); (SKC)
| |
Collapse
|
45
|
Ianari A, Natale T, Calo E, Ferretti E, Alesse E, Screpanti I, Haigis K, Gulino A, Lees JA. Proapoptotic function of the retinoblastoma tumor suppressor protein. Cancer Cell 2009; 15:184-94. [PMID: 19249677 PMCID: PMC2880703 DOI: 10.1016/j.ccr.2009.01.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 08/03/2008] [Accepted: 01/26/2009] [Indexed: 12/25/2022]
Abstract
The retinoblastoma protein (pRB) tumor suppressor blocks cell proliferation by repressing the E2F transcription factors. This inhibition is relieved through mitogen-induced phosphorylation of pRB, triggering E2F release and activation of cell-cycle genes. E2F1 can also activate proapoptotic genes in response to genotoxic or oncogenic stress. However, pRB's role in this context has not been established. Here we show that DNA damage and E1A-induced oncogenic stress promote formation of a pRB-E2F1 complex even in proliferating cells. Moreover, pRB is bound to proapoptotic promoters that are transcriptionally active, and pRB is required for maximal apoptotic response in vitro and in vivo. Together, these data reveal a direct role for pRB in the induction of apoptosis in response to genotoxic or oncogenic stress.
Collapse
Affiliation(s)
- Alessandra Ianari
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
| | - Tiziana Natale
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
| | - Eliezer Calo
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | - Elisabetta Ferretti
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
| | - Edoardo Alesse
- Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Isabella Screpanti
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
| | - Kevin Haigis
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, MA 02129
| | - Alberto Gulino
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
- Neuromed Institute, 86077 Pozzilli, Italy
- Corresponding authors: (A.G.) Department of Experimental Medicine and Pathology, La Sapienza, University of Rome, Viale Regina Elena 324, Rome, Italy 00161, Tel. (39 06) 446 4021, . (J.A.L.) MIT Koch Institute, E17-517B, 40 Ames St., Cambridge, MA 02139, (617) 252 1972,
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
- Corresponding authors: (A.G.) Department of Experimental Medicine and Pathology, La Sapienza, University of Rome, Viale Regina Elena 324, Rome, Italy 00161, Tel. (39 06) 446 4021, . (J.A.L.) MIT Koch Institute, E17-517B, 40 Ames St., Cambridge, MA 02139, (617) 252 1972,
| |
Collapse
|
46
|
Macy ME, Sawczyn KK, Garrington TP, Graham DK, Gore L. Pediatric developmental therapies: interesting new drugs now in early-stage clinical trials. Curr Oncol Rep 2009; 10:477-90. [PMID: 18928662 DOI: 10.1007/s11912-008-0073-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current high cure rates for children diagnosed with cancer can be attributed in part to emphasis on large cooperative group clinical trials. The significant improvement in pediatric cancer survival over the past few decades is the result of optimized chemotherapy drug dosing, timing, and intensity; however, further alterations in traditional chemotherapy agents are unlikely to produce substantially better outcomes. Furthermore, there remains a subset of patients who have a very poor prognosis due to tumor type or stage at presentation, or who have a dismal prognosis with relapse or recurrence. As such, innovative approaches to therapy and new drugs are clearly needed for introduction into the current pediatric oncology arsenal. A variety of biologically targeted therapies that have shown promise in preclinical studies and early-phase adult clinical trials are now being explored in pediatric clinical trials. These novel agents hold the promise for continuing to drive forward improvements in patient survival, with potentially less toxicity than exists with traditional chemotherapy drugs.
Collapse
|
47
|
Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S, Furu M, Kohno Y, Ito K, Fujibayashi S, Neo M, Nakayama T, Nakamura T, Toguchida J. Expression of the p16INK4A Gene Is Associated Closely with Senescence of Human Mesenchymal Stem Cells and Is Potentially Silenced by DNA Methylation During In Vitro Expansion. Stem Cells 2009; 25:2371-82. [PMID: 17569790 DOI: 10.1634/stemcells.2007-0225] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The precise biological characteristics of human mesenchymal stem cells (hMSCs), including growth regulatory mechanisms, have not yet been defined. Using 29 strains of hMSCs isolated from bone marrow, we have performed extensive analyses of the growth profiles of hMSCs in vitro. All 29 strains stopped proliferating with a mean population doubling (PD) of 28, although there was a considerable difference among strains. The mean telomere restriction fragment length of the cells passaged twice correlated well with the final number of PDs in each strain, suggesting the value of this measurement to be predictive of the growth potential of hMSCs. The expression level of the p16INK4A gene was associated closely with the PD number of each strain (p = .00000001). Most of the p16INK4A-positive cells were Ki67-negative and senescence associated beta-galactosidase-positive, and the suppression of p16INK4A gene expression by small interfering RNA in senescent hMSCs reduced the number of senescent cells and endowed them with the ability to proliferate. Twenty-five of the 29 strains showed a steady gradual increase in the expression of p16INK4A. The remaining four strains (13.8%) showed different profiles, in which DNA methylation in the promoter region occurred in vitro. One of the four strains continued to proliferate for much longer than the others and showed chromosomal aberrations in the later stages. These results indicated p16INK4A to be a key factor in the regulation of hMSC growth, and, most importantly, careful monitoring of DNA methylation should be considered during the culture of hMSCs, particularly when a prolonged and extended propagation is required.
Collapse
Affiliation(s)
- Kotaro R Shibata
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Marella NRV, Zeitz MJ, Malyavantham KS, Pliss A, Matsui SI, Goetze S, Bode J, Raska I, Berezney R. Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63. Chromosome Res 2008; 16:1177-92. [PMID: 19005637 PMCID: PMC2990676 DOI: 10.1007/s10577-008-1267-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
The organization of the type I interferon (IFN) gene cluster (9p21.3) was studied in a human osteosarcoma cell line (MG63). Array comparative genomic hybridization (aCGH) showed an amplification of approximately 6-fold which ended at both ends of the gene cluster with a deletion that extended throughout the 9p21.3 band. Spectral karyotyping (SKY) combined with fluorescence in-situ hybridization (FISH) identified an arrangement of the gene cluster in a ladder-like array of 5-7 'bands' spanning a single chromosome termed the 'IFN chromosome'. Chromosome painting revealed that the IFN chromosome is derived from components of chromosomes 4, 8 and 9. Labelling with centromeric probes demonstrated a ladder-like amplification of centromeric 4 and 9 sequences that co-localized with each other and a similar banding pattern of chromosome 4, as well as alternating with the IFN gene clusters. In contrast, centromere 8 was not detected on the IFN chromosome. One of the amplified centromeric 9 bands was identified as the functional centromere based on its location at the chromosome constriction and immunolocalization of the CENP-C protein. A model is presented for the generation of the IFN chromosome that involves breakage-fusion-bridge events.
Collapse
Affiliation(s)
- Narasimha Rao V. Marella
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Michael J. Zeitz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kishore S. Malyavantham
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Artem Pliss
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sei-ichi Matsui
- SKY Core Resource Facility, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sandra Goetze
- HZI, Helmholtz Centre for Infection Research/Epigenetic Regulation, Inhoffenstr. 7, -38124 Braunschweig, Germany
| | - Juergen Bode
- HZI, Helmholtz Centre for Infection Research/Epigenetic Regulation, Inhoffenstr. 7, -38124 Braunschweig, Germany
| | - Ivan Raska
- First Faculty of Medicine, Charles University in Prague and Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Albertov 4, 128 00 Prague, Czech Republic
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
49
|
Kovacevic A, Hammer A, Stadelmeyer E, Windischhofer W, Sundl M, Ray A, Schweighofer N, Friedl G, Windhager R, Sattler W, Malle E. Expression of serum amyloid A transcripts in human bone tissues, differentiated osteoblast-like stem cells and human osteosarcoma cell lines. J Cell Biochem 2008; 103:994-1004. [PMID: 17849429 PMCID: PMC4861207 DOI: 10.1002/jcb.21472] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the liver is the primary site of cytokine-mediated expression of acute-phase serum amyloid A (SAA) protein, extrahepatic production has also been reported. Besides its role in amyloidosis and lipid homeostasis during the acute-phase, SAA has recently been assumed to contribute to bone and cartilage destruction. However, expression of SAA in human osteogenic tissue has not been studied. Therefore, we first show that SAA1 (coding for the major SAA isoform) but not SAA2 transcripts are expressed in human trabecular and cortical bone fractions and bone marrow. Next, we show expression of (i) IL-1, IL-6, and TNF receptor transcripts; (ii) the human homolog of SAA-activating factor-1 (SAF-1, a transcription factor involved in cytokine-mediated induction of SAA genes); and (iii) SAA1/2 transcripts in non-differentiated and, to a higher extent, in osteoblast-like differentiated human mesenchymal stem cells. Third, we provide evidence that human osteoblast-like cells of tumor origin (MG-63 and SAOS-2) express SAF-1 under basal conditions. SAA1/2 transcripts are expressed under basal conditions (SAOS-2) and cytokine-mediated conditions (MG-63 and SAOS-2). RT-PCR, Western blot analysis, and immunofluorescence technique confirmed cytokine-mediated expression of SAA on RNA and protein level in osteosarcoma cell lines while SAA4, a protein of unknown function, is constitutively expressed in all osteogenic tissues investigated.
Collapse
Affiliation(s)
- Alenka Kovacevic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Elke Stadelmeyer
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Monika Sundl
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211
| | - Natascha Schweighofer
- Division of Endocrinology and Nuclear Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerald Friedl
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Reinhard Windhager
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
- Correspondence to: Ernst Malle, Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
50
|
Interferonα enhances etoposide-induced apoptosis in human osteosarcoma U2OS cells by a p53-dependent pathway. Life Sci 2008; 82:393-401. [DOI: 10.1016/j.lfs.2007.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 11/04/2007] [Accepted: 11/24/2007] [Indexed: 01/10/2023]
|