1
|
Assis MA, Carranza PG, Ambrosio E. A "Drug-Dependent" Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021; 13:v13050722. [PMID: 33919273 PMCID: PMC8143316 DOI: 10.3390/v13050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Psychostimulant use is a major comorbidity in people living with HIV, which was initially explained by them adopting risky behaviors that facilitate HIV transmission. However, the effects of drug use on the immune system might also influence this phenomenon. Psychostimulants act on peripheral immune cells even before they reach the central nervous system (CNS) and their effects on immunity are likely to influence HIV infection. Beyond their canonical activities, classic neurotransmitters and neuromodulators are expressed by peripheral immune cells (e.g., dopamine and enkephalins), which display immunomodulatory properties and could be influenced by psychostimulants. Immune receptors, like Toll-like receptors (TLRs) on microglia, are modulated by cocaine and amphetamine exposure. Since peripheral immunocytes also express TLRs, they may be similarly affected by psychostimulants. In this review, we will summarize how psychostimulants are currently thought to influence peripheral immunity, mainly focusing on catecholamines, enkephalins and TLR4, and shed light on how these drugs might affect HIV infection. We will try to shift from the classic CNS perspective and adopt a more holistic view, addressing the potential impact of psychostimulants on the peripheral immune system and how their systemic effects could influence HIV infection.
Collapse
Affiliation(s)
- María Amparo Assis
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
- Correspondence:
| | - Pedro Gabriel Carranza
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Santiago del Estero G4206, Argentina
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| |
Collapse
|
2
|
Assis MA, Valdomero A, García-Keller C, Sotomayor C, Cancela LM. Decrease of lymphoproliferative response by amphetamine is mediated by dopamine from the nucleus accumbens: influence on splenic met-enkephalin levels. Brain Behav Immun 2011; 25:647-57. [PMID: 21237264 DOI: 10.1016/j.bbi.2011.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 02/08/2023] Open
Abstract
Despite the mesocorticolimbic dopaminergic pathway being one of the main substrates underlying stimulating and reinforcing effects induced by psychostimulant drugs, there is little information regarding its role in their effects at the immune level. We have previously demonstrated that acute exposure to amphetamine (5 mg/kg, i.p.) induced an inhibitory effect on the splenic T-cell proliferative response, along with an increase in the methionine(met)-enkephalin content at limbic and immune levels, 4 days after drug administration. In this study, we investigated if a possible dopamine mechanism underlies these amphetamine-induced effects by administering D1 and D2 dopaminergic antagonists or a dopaminergic terminal neurotoxin before the drug. Pre-treatment with either SCH-23390 (0.1 mg/kg, i.p.) or raclopride (0.1 mg/kg, i.p.), a D1 or D2 dopaminergic receptor antagonist, respectively, abrogated the effects of amphetamine on the lymphoproliferative response and on met-enkephalin levels of the spleen. The amphetamine-induced increase in limbic met-enkephalin content was suppressed by SCH-23390 but not by raclopride pre-treatment. Finally, an intra-accumbens 6-hydroxy-dopamine injection administered 2 weeks previously prevented amphetamine-induced effects on the lymphoproliferative response and on met-enkephalin levels in the prefrontal cortex and spleen. These findings strongly suggest that D1 and D2 dopaminergic receptors are involved in amphetamine-induced effects at immune level as regards the lymphoproliferative response and the changes in spleen met-enkephalin content, whereas limbic met-enkephalin levels were modulated only by the D1 dopaminergic receptors. In addition, this study showed that a mesolimbic component modulated amphetamine-induced effects on the immune response, as previously shown at a behavioral level.
Collapse
Affiliation(s)
- María Amparo Assis
- Departamento de Farmacología (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
3
|
Abstract
Although Nature's antisense approaches are clearly impressive, this Perspectives article focuses on the experimental uses of antisense reagents (ASRs) for control of biological processes. ASRs comprise antisense oligonucleotides (ASOs), and their catalytically active counterparts ribozymes and DNAzymes, as well as small interfering RNAs (siRNAs). ASOs and ribozymes/DNAzymes target RNA molecules on the basis of Watson-Crick base pairing in sequence-specific manner. ASOs generally result in destruction of the target RNA by RNase-H mediated mechanisms, although they may also sterically block translation, also resulting in loss of protein production. Ribozymes and DNAzymes cleave target RNAs after base pairing via their antisense flanking arms. siRNAs, which contain both sense and antisense regions from a target RNA, can mediate target RNA destruction via RNAi and the RISC, although they can also function at the transcriptional level. A considerable number of ASRs (mostly ASOs) have progressed into clinical trials, although most have relatively long histories in Phase I/II settings. Clinical trial results are surprisingly difficult to find, although few ASRs appear to have yet established efficacy in Phase III levels. Evolution of ASRs has included: (a) Modifications to ASOs to render them nuclease resistant, with analogous modifications to siRNAs being developed; and (b) Development of strategies to select optimal sites for targeting. Perhaps the biggest barrier to effective therapies with ASRs is the "Delivery Problem." Various liposomal vehicles have been used for systemic delivery with some success, and recent modifications appear to enhance systemic delivery, at least to liver. Various nanoparticle formulations are now being developed which may also enhance delivery. Going forward, topical applications of ASRs would seem to have the best chances for success. In summary, modifications to ASRs to enhance stability, improve targeting, and incremental improvements in delivery vehicles continue to make ASRs attractive as molecular therapeutics, but their advance toward the bedside has been agonizingly slow.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- DNA, Catalytic/chemistry
- DNA, Catalytic/therapeutic use
- Drug Delivery Systems/methods
- Drug Delivery Systems/trends
- Humans
- Oligonucleotides, Antisense/adverse effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/toxicity
- RNA, Catalytic/chemistry
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Wei-Hua Pan
- Gittlen Cancer Research Foundation, Hershey Medical Center, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
4
|
Assis MA, Hansen C, Lux-Lantos V, Cancela LM. Sensitization to amphetamine occurs simultaneously at immune level and in met-enkephalin of the nucleus accumbens and spleen: an involved NMDA glutamatergic mechanism. Brain Behav Immun 2009; 23:464-73. [PMID: 19486656 DOI: 10.1016/j.bbi.2009.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 11/28/2022] Open
Abstract
Administration of psychostimulants can elicit a sensitized response to the stimulating and reinforcing properties of the drugs, although there is scarce information regarding their effects at immune level. We previously demonstrated that an acute exposure to amphetamine (5 mg/kg, i.p.) induced an inhibitory effect on the splenic T-cell proliferative response, along with an increase in met-enkephalin at limbic and immune levels, 4 days following drug administration. In this study, we evaluated the amphetamine-induced effects at weeks one and three after the same single dose treatment (5 mg/kg, i.p.) on the lymphoproliferative response and on the met-enkephalin in the nucleus accumbens (NAc), prefrontal cortex (PfC), spleen and thymus. It was demonstrated that these effects disappeared completely after three weeks, although re-exposure to an amphetamine challenge induced the expression of sensitization to the effects of amphetamine on the lymphoproliferative response and on the met-enkephalin from NAc, spleen and thymus, but not in the PfC. Pre-treatment with MK-801 (0.1 mg/kg, i.p.), an N-methyl-d-aspartate (NMDA) glutamatergic receptor antagonist, blocked the effects of a single amphetamine exposure on the lymphoproliferative response and on met-enkephalin in the NAc and spleen. Furthermore, the NMDA receptor antagonist administered prior to amphetamine challenge also blocked the expression of sensitization in both parameters evaluated. These findings show a long-lasting amphetamine-induced sensitization phenomenon at the immune level in a parallel way to that occurring in the limbic and immune enkephalineric system. A glutamate mechanism is implied in the long-term amphetamine-induced effects at immune level and in the met-enkephalin from NAc and spleen.
Collapse
Affiliation(s)
- María Amparo Assis
- National University of Córdoba, School of Chemical Sciences, Department of Pharmacology, Instituto de Farmacología Experimental de Córdoba-CONICET, Medina Allende y Haya de la Torre, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | | | | | |
Collapse
|
5
|
Assis MA, Collino C, Figuerola MDL, Sotomayor C, Cancela LM. Amphetamine triggers an increase in met-enkephalin simultaneously in brain areas and immune cells. J Neuroimmunol 2006; 178:62-75. [PMID: 16904191 DOI: 10.1016/j.jneuroim.2006.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 05/16/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
We analyzed effects of amphetamine on proenkephalin-derived peptides in brain areas and immune cells in rats. Acute, as well as a repeated amphetamine treatment, decreased the concanavalin-A-induced lymphocyte proliferation, concomitantly with an increase of free met-enkephalin in nucleus accumbens, prefrontal cortex, spleen, thymus and splenic macrophages. Proenkephalin protein increased in prefrontal cortex, thymus (32 kDa isoform), nucleus accumbens and spleen (44 kDa isoform), while proenkephalin mRNA levels decreased in brain stem. The influence of met-ENK in key brain areas for sensitization and in immune organs is consistent with the idea that changes on met-ENK could underlie amphetamine's effects on brain and IS.
Collapse
Affiliation(s)
- María A Assis
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
6
|
An introduction to the HPA axis. HANDBOOK OF STRESS AND THE BRAIN - PART 1: THE NEUROBIOLOGY OF STRESS 2005. [DOI: 10.1016/s0921-0709(05)80006-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Jason TLH, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 2004; 201:66-83. [PMID: 15519609 DOI: 10.1016/j.taap.2004.04.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 04/28/2004] [Indexed: 12/24/2022]
Abstract
Targeting unique mRNA molecules using antisense approaches, based on sequence specificity of double-stranded nucleic acid interactions should, in theory, allow for design of drugs with high specificity for intended targets. Antisense-induced degradation or inhibition of translation of a target mRNA is potentially capable of inhibiting the expression of any target protein. In fact, a large number of proteins of widely varied character have been successfully downregulated using an assortment of antisense-based approaches. The most prevalent approach has been to use antisense oligonucleotides (ASOs), which have progressed through the preclinical development stages including pharmacokinetics and toxicological studies. A small number of ASOs are currently in human clinical trials. These trials have highlighted several toxicities that are attributable to the chemical structure of the ASOs, and not to the particular ASO or target mRNA sequence. These include mild thrombocytopenia and hyperglycemia, activation of the complement and coagulation cascades, and hypotension. Dose-limiting toxicities have been related to hepatocellular degeneration leading to decreased levels of albumin and cholesterol. Despite these toxicities, which are generally mild and readily treatable with available standard medications, the clinical trials have clearly shown that ASOs can be safely administered to patients. Alternative chemistries of ASOs are also being pursued by many investigators to improve specificity and antisense efficacy and to reduce toxicity. In the design of ASOs for anticancer therapeutics in particular, the goal is often to enhance the cytotoxicity of traditional drugs toward cancer cells or to reduce the toxicity to normal cells to improve the therapeutic index of existing clinically relevant cancer chemotherapy drugs. We predict that use of antisense ASOs in combination with small molecule therapeutics against the target protein encoded by the antisense-targeted mRNA, or an alternate target in the same or a connected biological pathway, will likely be the most beneficial application of this emerging class of therapeutic agent.
Collapse
Affiliation(s)
- Tracey L H Jason
- Cancer Research Laboratories, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | |
Collapse
|
8
|
Jessop DS. Neuropeptides: modulators of immune responses in health and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 52:67-91. [PMID: 12498101 DOI: 10.1016/s0074-7742(02)52006-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- David S Jessop
- University Research Center for Neuroendocrinology, University of Bristol, Bristol BS2 8HW, United Kingdom
| |
Collapse
|
9
|
Jessop DS, Richards LJ, Harbuz MS. Opioid peptides endomorphin-1 and endomorphin-2 in the immune system in humans and in a rodent model of inflammation. Ann N Y Acad Sci 2002; 966:456-63. [PMID: 12114304 DOI: 10.1111/j.1749-6632.2002.tb04247.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endomorphin (EM)-1 and EM-2 are tetrapeptides with high affinity and selectivity for the micro-opioid receptor. We have utilized specific radioimmunoassays to characterize EM-1 and EM-2 in immune tissues from normal human subjects and from rats with adjuvant arthritis (AA). PBLs from three normal human subjects contained 248, 13, and 303 pg EM-1 per 100 million cells, whereas EM-2 was measured in two subjects at 69 and 588 pg per 100 million cells. In AA rats, EM-1 (but not EM-2) contents in the spleen and thymus were elevated compared with levels in tissues from non-AA controls. EM-1 was detectable in five of eight samples of synovial tissue from inflamed hind paws, whereas EM-2 was detectable in two of eight synovial extracts. Neither EM-1 nor EM-2 were detectable in synovial tissue from non-AA rats. To our knowledge, this is the first report of endomorphins in normal human immune cells. Increased endomorphin expression or uptake in peripheral tissues in a rodent model of chronic inflammation provides potential for endomorphins to selectively modulate chronic inflammation in mammals.
Collapse
Affiliation(s)
- David S Jessop
- University Research Centre for Neuroendocrinology, University of Bristol, Bristol, United Kingdom.
| | | | | |
Collapse
|
10
|
Abstract
This paper is the twenty-third installment of the annual review of research concerning the opiate system. It summarizes papers published during 2000 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
11
|
Knapp PE, Itkis OS, Zhang L, Spruce BA, Bakalkin G, Hauser KF. Endogenous opioids and oligodendroglial function: possible autocrine/paracrine effects on cell survival and development. Glia 2001; 35:156-65. [PMID: 11460271 DOI: 10.1002/glia.1080] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous work has shown that oligodendrocytes (OLs) express both micro- and kappa-opioid receptors. In developing OLs, micro receptor activation increases OL proliferation, while the kappa-antagonist nor-binaltorphimine (NorBNI) affects OL differentiation. Because exogenous opioids were not present in our defined culture medium, we hypothesized that NorBNI blocked endogenous opioids produced by the OLs themselves. To test this, intact and partially processed proenkephalin and prodynorphin-derived peptides were assessed in OLs using immunocytochemistry or Western blot analysis, or both. Immature OLs possessed large amounts of intact and partially processed proenkephalin precursors, as well as posttranslational products of prodynorphin including dynorphin A (1-17). With maturation, however, intact or partially processed proenkephalin was expressed by only about 50% of OLs, while dynorphin A (1-17) was undetectable. To assess the function of OL-derived opioids, the effect of kappa-agonists/antagonists on OL differentiation and death was explored. kappa-Agonists alone had no effect. In contrast, NorBNI significantly increased OL death. Additive OL losses were evident when NorBNI was paired with toxic levels of glutamate, suggesting that kappa-receptor blockade alone is sufficient to induce OL death. Thus, the results indicate that OLs express proenkephalin and prodynorphin peptides in a developmentally regulated manner, and further suggest that opioids produced by OLs modulate OL maturation and survival through local (i.e., autocrine and/or paracrine) mechanisms.
Collapse
Affiliation(s)
- P E Knapp
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Salzet M, Tasiemski A. Involvement of pro-enkephalin-derived peptides in immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:177-185. [PMID: 11164883 DOI: 10.1016/s0145-305x(00)00047-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is widely accepted that all organisms have processes that maintain their state of health. Failure of these processes, such as those involving the naturally occurring antibacterial peptides, may lead to pathological events. Recent results demonstrate that these peptides, such as peptide B, appear in invertebrates and vertebrates (including humans) immediately after tissue trauma, and maintain themselves for long durations (over 4h). Their degradation products lead to other inflammatory peptides, such as Met-enkephalin-Arg-Phe. These newly described antibacterial peptides, which are released and not induced, are present on neuropeptide precursors such as proenkephalin. This is a new field of research, in that the same protein contains proposed neuropeptides, antibacterial peptides, and immune stimulatory peptides. The focus of this review is to describe how the pro-enkephalin derived peptides participate in immune processes.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, UPRESA CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59650 Villeneuve d'Ascq Cedex, France.
| | | |
Collapse
|