Li HM, Li KY, Xing Y, Tang XX, Yang DM, Dai XM, Lu DX, Wang HD. Phenylephrine Attenuated Sepsis-Induced Cardiac Inflammation and Mitochondrial Injury Through an Effect on the PI3K/Akt Signaling Pathway.
J Cardiovasc Pharmacol 2019;
73:186-194. [PMID:
30839512 DOI:
10.1097/fjc.0000000000000651]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE
To investigate whether phenylephrine (PE) inhibits sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway.
METHODS
A rat model of sepsis was established by cecal ligation and puncture. PE and/or wortmannin (a PI3K inhibitor) were administered to investigate the role of PI3K/Akt signaling in mediating the effects of PE on inhibiting sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury. Hematoxylin-eosin staining, echocardiography, and Langendorff system were used to examine the myocardial injury and function. The concentrations of TNF-α and IL-6 were analyzed by enzyme-linked immunosorbent assay. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), myeloperoxidase, mitochondria-related fusion/fission proteins, and PI3K/Akt signaling pathway-associated proteins were analyzed by Western blotting.
RESULTS
PE improved the cardiac function and survival in septic rats. PE decreased TNF-α, IL-6, ICAM-1, VCAM-1, and myeloperoxidase contents in the myocardium of septic rats. Meanwhile, PE increased the fusion-related proteins and decreased the fission-related proteins in the myocardial mitochondria of septic rats. On the other hand, PE activated the PI3K/Akt signaling pathway in the cecal ligation and puncture-treated rats, and all the protective effects of PE were abolished by wortmannin.
CONCLUSIONS
PE attenuated sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway.
Collapse