1
|
Ganeyan A, Ganesh CB. Organization of enkephalinergic neuronal system in the central nervous system of the gecko Hemidactylus frenatus. Brain Struct Funct 2024; 229:1365-1395. [PMID: 38713249 DOI: 10.1007/s00429-024-02805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Enkephalins are endogenous opioid pentapeptides that play a role in neurotransmission and pain modulation in vertebrates. However, the distribution pattern of enkephalinergic neurons in the brains of reptiles has been understudied. This study reports the organization of the methionine-enkephalin (M-ENK) and leucine-enkephalin (L-ENK) neuronal systems in the central nervous system of the gecko Hemidactylus frenatus using an immunofluorescence labeling method. Although M-ENK and L-ENK-immunoreactive (ir) fibers extended throughout the pallial and subpallial subdivisions, including the olfactory bulbs, M-ENK and L-ENK-ir cells were found only in the dorsal septal nucleus. Enkephalinergic perikarya and fibers were highly concentrated in the periventricular and lateral preoptic areas, as well as in the anterior and lateral subdivisions of the hypothalamus, while enkephalinergic innervation was observed in the hypothalamic periventricular nucleus, infundibular recess nucleus and median eminence. The dense accumulation of enkephalinergic content was noticed in the pars distalis of the hypophysis. In the thalamus, the nucleus rotundus and the dorsolateral, medial, and medial posterior thalamic nuclei contained M-ENK and L-ENK-ir fibers, whereas clusters of M-ENK and L-ENK-ir neurons were observed in the pretectum, mesencephalon, and rhombencephalon. The enkephalinergic fibers were also seen in the area X around the central canal, as well as the dorsal and ventral horns. The widespread distribution of enkephalin-containing neurons within the central nervous system implies that enkephalins regulate a variety of functions in the gecko, including sensory, behavioral, hypophysiotropic, and neuroendocrine functions.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
2
|
Zhou NB, Wang KG, Fu ZJ. Effect of morphine and a low dose of ketamine on the T cells of patients with refractory cancer pain in vitro. Oncol Lett 2019; 18:4230-4236. [PMID: 31516618 PMCID: PMC6732974 DOI: 10.3892/ol.2019.10750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/18/2019] [Indexed: 02/05/2023] Open
Abstract
The combination of morphine and ketamine is considered safe and efficacious in many patients. However, a considerable number of immunomodulatory effects have been reported to be produced by both morphine and ketamine. The aim of the present study was to assess the direct effect of morphine and a low dose of ketamine on the T cells of patients with refractory cancer pain in vitro. Venous blood was obtained from patients with refractory cancer pain and peripheral blood mononuclear cells were isolated using the Ficoll-Hypaque density gradient method. Anti-CD3 beads were used to isolate T cells by positive selection. Subsequently, the T cells were treated with vehicle, 200 ng/ml of morphine or 200 ng/ml of morphine + 100 ng/ml ketamine for 24 h, following which the cells were stimulated with anti-CD3 and anti-CD28. Flow cytometric analysis of CD3+ T cells, and interleukin (IL)-2 and interferon (IFN)-γ in the supernatant, reverse transcription-quantitative PCR analysis for the detection of IL-2 and IFN-γ and western blotting for the detection of p65 nuclear factor (NF)-κB were performed. In vitro, the CD4+ and CD8+ T cell counts, CD4+/CD8+ ratio, secretion of IL-2 and IFN-γ in the supernatant, mRNA expression levels of IL-2 and IFN-γ and expression of p65 NF-κB were significantly decreased following treatment with morphine and morphine + ketamine, compared with results in the control group (all P<0.05). However, there was no significant difference between treatment with morphine and that with morphine + ketamine. Treatment with morphine + ketamine in vitro decreased the immune functions of patients with refractory cancer pain, although the effect of treatment with morphine and a low dose of ketamine did not differ significantly from that with morphine treatment alone.
Collapse
Affiliation(s)
- Nai-Bao Zhou
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Kai-Guo Wang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhi-Jian Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
3
|
Zhang EY, Xiong J, Parker BL, Chen AY, Fields PE, Ma X, Qiu J, Yankee TM. Depletion and recovery of lymphoid subsets following morphine administration. Br J Pharmacol 2012; 164:1829-44. [PMID: 21557737 DOI: 10.1111/j.1476-5381.2011.01475.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioid use and abuse has been linked to significant immunosuppression, which has been attributed, in part, to drug-induced depletion of lymphocytes. We sought to define the mechanisms by which lymphocyte populations are depleted and recover following morphine treatment in mice. EXPERIMENTAL APPROACH Mice were implanted with morphine pellets and B- and T-cell subsets in the bone marrow, thymus, spleen and lymph nodes were analysed at various time points. We also examined the effects of morphine on T-cell development using an ex vivo assay. KEY RESULTS The lymphocyte populations most susceptible to morphine-induced depletion were the precursor cells undergoing selection. As the lymphocytes recovered, more lymphocyte precursors proliferated than in control mice. In addition, peripheral T-cells displayed evidence that they had undergone homeostatic proliferation during the recovery phase of the experiments. CONCLUSIONS AND IMPLICATIONS The recovery of lymphocytes following morphine-induced depletion occurred in the presence of morphine and via increased proliferation of lymphoid precursors and homeostatic proliferation of T-cells.
Collapse
Affiliation(s)
- E Y Zhang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids 2011; 45:9-24. [PMID: 22170499 DOI: 10.1007/s00726-011-1163-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/15/2011] [Indexed: 12/13/2022]
Abstract
Endogenous opioids are synthesized in vivo to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abuser-based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid-mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review, we will discuss the role of opioid receptors and their ligands in mediating immune-suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system, as well as the role of opioids in exacerbation of certain disease states.
Collapse
|
5
|
Abstract
As the armamentarium for sedation in the critically ill expands, opportunities will develop to modulate the immune responses of patients by way of the direct immune and neural-immune interactions of the sedatives. Control of autonomic activity through the use of appropriate sedation may be critical in this matter. Likewise analgesic-based sedation, with increased opioid dosage, may not prove beneficial in the setting of infection; whether avoidance of morphine in preference for a fentanyl derivative will help is unclear. However, as the immune effects seem dependent on the m receptor, it is improbable that a significant difference would be uncovered. Similarly, the present evidence suggests benzodiazepines are deleterious in infection; further studies are required urgently to evaluate this evidence. As an alternative to benzodiazepine-based sedation, dexmedetomidine has shown a remarkable 70% mortality benefit in a small secondary analysis of septic patients from the MENDS trial. Further powered clinical studies should now be undertaken to investigate the potential benefit of the α2-adrenoceptor agonist in this setting, with comparisons with propofol.
Collapse
Affiliation(s)
- Robert D Sanders
- Magill Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, SW10 9NH, London, UK.
| | | | | |
Collapse
|
6
|
Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, Kirchner VA, Koodie L, Ma J, Meng J, Barke RA. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J Neuroimmune Pharmacol 2011; 6:442-65. [PMID: 21789507 PMCID: PMC3601186 DOI: 10.1007/s11481-011-9292-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/27/2011] [Indexed: 12/13/2022]
Abstract
Infection rate among intravenous drug users (IDU) is higher than the general public, and is the major cause of morbidity and hospitalization in the IDU population. Epidemiologic studies provide data on increased prevalence of opportunistic bacterial infections such as TB and pneumonia, and viral infections such as HIV-1 and hepatitis in the IDU population. An important component in the intravenous drug abuse population and in patients receiving medically indicated chronic opioid treatment is opioid withdrawal. Data on bacterial virulence in the context of opioid withdrawal suggest that mice undergoing withdrawal had shortened survival and increased bacterial load in response to Salmonella infection. As the body of evidence in support of opioid dependency and its immunosuppressive effects is growing, it is imperative to understand the mechanisms by which opioids exert these effects and identify the populations at risk that would benefit the most from the interventions to counteract opioid immunosuppressive effects. Thus, it is important to refine the existing animal model to closely match human conditions and to cross-validate these findings through carefully controlled human studies. Better understanding of the mechanisms will facilitate the search for new therapeutic modalities to counteract adverse effects including increased infection rates. This review will summarize the effects of morphine on innate and adaptive immunity, identify the role of the mu opioid receptor in these functions and the signal transduction activated in the process. The role of opioid withdrawal in immunosuppression and the clinical relevance of these findings will also be discussed.
Collapse
Affiliation(s)
- Sabita Roy
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Das S, Kelschenbach J, Charboneau R, Barke RA, Roy S. Morphine withdrawal stress modulates lipopolysaccharide-induced interleukin 12 p40 (IL-12p40) expression by activating extracellular signal-regulated kinase 1/2, which is further potentiated by glucocorticoids. J Biol Chem 2011; 286:29806-17. [PMID: 21730055 DOI: 10.1074/jbc.m111.271460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Withdrawal stress is a common occurrence in opioid users, yet very few studies have examined the effects of morphine withdrawal (MW) on immune functioning or the role of glucocorticoids in MW-induced immunomodulation. This study investigated for the first time the role of glucocorticoids in MW modulation of LPS-induced IL-12p40, a key cytokine playing a pivotal role in immunoprotection. Using WT and μ-opioid receptor knock-out mice, we show that MW in vivo significantly attenuated LPS-induced IL-12p40 mRNA and protein expression. The role of glucocorticoids in MW modulation of IL-12p40 was investigated using a murine macrophage cell line, CRL2019, in an in vitro MW model. Interestingly, MW alone in the absence of glucocorticoids resulted in a significant reduction in IL-12p40 promoter activity and mRNA and protein expression. EMSA revealed a concurrent decrease in consensus binding to transcription factors NFκB, Activator Protein-1, and CCAAT/enhancer-binding protein and Western blot analysis demonstrated a significant activation of LPS-induced ERK1/2 phosphorylation. Interestingly, although glucocorticoid treatment alone also modulated these transcription factors and ERK1/2 activation, the addition of glucocorticoids to MW samples resulted in a greater than additive reduction in the transcription factors and significant hyperactivation of LPS-induced ERK1/2 phosphorylation. ERK inhibitors reversed MW and MW plus corticosterone inhibition of LPS-induced IL-12p40. The potentiating effects of glucocorticoids were non-genomic because nuclear translocation of glucocorticoid receptor was not significantly different between MW and corticosterone treatment. This study demonstrates for the first time that MW and glucocorticoids independently modulate IL-12p40 production through a mechanism involving ERK1/2 hyperactivation and that glucocorticoids can significantly augment MW-induced inhibition of IL-12p40.
Collapse
Affiliation(s)
- Subhas Das
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
8
|
Armario A. Activation of the hypothalamic-pituitary-adrenal axis by addictive drugs: different pathways, common outcome. Trends Pharmacol Sci 2010; 31:318-25. [PMID: 20537734 DOI: 10.1016/j.tips.2010.04.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/22/2010] [Accepted: 04/22/2010] [Indexed: 01/20/2023]
Abstract
Addictive drugs (opiates, ethanol, cannabinoids (CBs), nicotine, cocaine, amphetamines) induce activation of the hypothalamic-pituitary-adrenal (HPA) axis, with the subsequent release of adrenocorticotropic hormone and glucocorticoids. The sequence of events leading to HPA activation appears to start within the brain, suggesting that activation is not secondary to peripheral homeostatic alterations. The precise neurochemical mechanisms and brain pathways involved are markedly dependent on the particular drug, although it is assumed that information eventually converges into the hypothalamic paraventricular nucleus (PVN). Whereas some drugs may act on the hypothalamus or directly within PVN neurons (i.e. ethanol), others exert their primary action outside the PVN (i.e. CBs, nicotine, cocaine). Corticotropin-releasing hormone (CRH) has a critical role in most cases, but the changes in c-fos and CRH gene expression in the PVN also reveal differences among drugs. More studies are needed to understand how addictive drugs act on this important neuroendocrine system and their functional consequences.
Collapse
Affiliation(s)
- Antonio Armario
- Institute of Neurosciences and Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
9
|
Ide S, Sora I, Ikeda K, Minami M, Uhl GR, Ishihara K. Reduced emotional and corticosterone responses to stress in mu-opioid receptor knockout mice. Neuropharmacology 2009; 58:241-7. [PMID: 19596019 DOI: 10.1016/j.neuropharm.2009.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/25/2009] [Accepted: 07/03/2009] [Indexed: 11/29/2022]
Abstract
The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female mu-opioid receptor knockout (MOP-KO) mice to reveal the involvement of mu-opioid receptors in stress-induced emotional responses. MOP-KO mice entered more and spent more time in the open arms of the elevated plus maze compared with wild-type mice. MOP-KO mice also displayed significantly decreased immobility in a 15 min tail-suspension test compared with wild-type mice. Similarly, MOP-KO mice exhibited significantly decreased immobility on days 2, 3, and 4 in a 6 min forced swim test conducted for 5 consecutive days. The increase in plasma corticosterone concentration induced by tail-suspension, repeated forced swim, or restraint stress was reduced in MOP-KO mice compared with wild-type mice. Corticosterone levels were not different between wild-type and MOP-KO mice before stress exposure. In contrast, although female mice tended to exhibit fewer anxiety-like responses in the tail-suspension test in both genotypes, no significant gender differences were observed in stress-induced emotional responses. These results suggest that MOPs play an important facilitatory role in emotional responses to stress, including anxiety- and depression-like behavior and corticosterone levels.
Collapse
Affiliation(s)
- Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The management of critically ill patients necessitates the use of sedatives and analgesics to provide patient comfort and cooperation. These drugs exert profound effects on all organ systems, not only the central nervous system, and this article describes the immunologic effects of the commonly used critical care sedatives: propofol, the benzodiazepines, opioids, and alpha(2)-adrenoceptor agonists. Benzodiazepines, opioids, and possibly even propofol worsen outcome in animal models of infection, whereas preliminary evidence suggests that the alpha(2)-adrenoceptor agonist, dexmedetomidine, may improve outcomes in the setting of infection. Given the burden of sepsis and secondary infections in critical care, choice of sedation may need to be carefully considered to preserve immune responses in critically ill patients.
Collapse
Affiliation(s)
- Robert D Sanders
- Magill Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, SW10 9NH, London, UK.
| | | | | |
Collapse
|
11
|
A role for corticosterone in impaired intestinal immunity and barrier function in a rodent model of acute alcohol intoxication and burn injury. J Neuroimmune Pharmacol 2008; 1:428-34. [PMID: 18040815 DOI: 10.1007/s11481-006-9031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcohol (EtOH) intoxication and burn injury independently activate hypothalamic-pituitary-adrenal (HPA) axis, and glucocorticoids, the end product of the HPA axis, play a role in shaping the immune response under those conditions. By utilizing a rat model of acute EtOH intoxication and burn injury, studies in our laboratory have investigated the role of corticosterone (i.e., glucocorticoids in rodents) in altered intestinal immunity and barrier function following a combined insult of EtOH and burn injury. Results from these studies suggest that EtOH intoxication prior to burn injury augments corticosterone release, which in turn suppresses intestinal T cell function by inhibiting mitogen-activated protein kinase (i.e., p38 and ERK) pathway. Furthermore, we found that corticosterone does not directly alter the intestinal barrier function; rather, it up-regulates interleukin-18, which then directly or indirectly contributes to impaired intestinal barrier function. The loss of intestinal immunity/barrier function may result in increased bacterial translocation and thereby contribute to postinjury pathogenesis, leading to sepsis and organ dysfunction in burn patients as well as in patients with a history of EtOH intoxication.
Collapse
|
12
|
Modulation of immune function by morphine: implications for susceptibility to infection. J Neuroimmune Pharmacol 2007; 1:77-89. [PMID: 18040793 DOI: 10.1007/s11481-005-9009-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Chang SL, Beltran JA, Swarup S. Expression of the mu opioid receptor in the human immunodeficiency virus type 1 transgenic rat model. J Virol 2007; 81:8406-11. [PMID: 17553897 PMCID: PMC1951376 DOI: 10.1128/jvi.00155-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Opioids, via the mu opioid receptor (MOR), can exacerbate bacterial infections and the immunopathogenesis of human immunodeficiency virus type 1 (HIV-1) infection. Recently, an HIV-1 transgenic (HIV-1Tg) rat model containing circulating HIV-1 gp120 was created. Using real-time reverse transcription-PCR, we found that MOR mRNA levels were significantly higher in the peritoneal macrophages of the HIV-1Tg rat than those in control animals. Lipopolysaccharide, a bacterial endotoxin, induced secretion of the inflammatory cytokines tumor necrosis factor alpha (TNF-alpha), interleukin-beta (IL-beta), and IL-10 in the HIV-1Tg rat and further increased MOR expression. Ex vivo studies showed that MOR expression was up-regulated in the peritoneal macrophages of F344 control rats by exposure to serum from HIV-1Tg rats and that MOR up-regulation was abolished by addition of gp120 antibody to the serum. In human TPA-differentiated HL-60 cells, which are macrophage-like cells, LPS-induced MOR mRNA up-regulation was greater in gp120-pretreated cells than in vehicle-pretreated cells. Our data suggest that in individuals infected with HIV-1, the MOR is up-regulated, possibly by circulating HIV-1 proteins such as gp120, and HIV-1 proteins may play a significant role in modulating the response to bacterial infection in opioid-using HIV-infected individuals. Furthermore, our results demonstrate that the new HIV-1Tg rat model can be a valuable tool with which to study MOR gene expression and its effects in the continuous presence of HIV viral proteins.
Collapse
Affiliation(s)
- Sulie L Chang
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA.
| | | | | |
Collapse
|
14
|
Contet C, Gavériaux-Ruff C, Matifas A, Caradec C, Champy MF, Kieffer BL. Dissociation of analgesic and hormonal responses to forced swim stress using opioid receptor knockout mice. Neuropsychopharmacology 2006; 31:1733-44. [PMID: 16237385 DOI: 10.1038/sj.npp.1300934] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exposure to stress triggers hormonal and behavioral responses. It has been shown that the endogenous opioid system plays a role in some physiological reactions to stress. The opioid system was described to mediate analgesia induced by mild stressors and to modulate the activation of the hypothalamic-pituitary-adrenal axis. Our study assessed the contribution of opioid receptors in stress-induced analgesia and adrenocorticotropic hormone (ACTH) and corticosterone release by a genetic approach. We performed a parallel analysis of mice deficient in mu, delta, or kappa opioid receptors, as well as of triple opioid receptor knockout mice, following exposure to a mild stress (3-min swim at 32 degrees C). In wild-type mice, stress elicited an increase in jumping latency on the hot plate, which was influenced by gender and genetic background. This analgesic response was reversed both by naloxone and by the triple mutation, and decreased in mu and delta opioid receptor knockout females. In wild-type females, stress also delayed front- and hindpaw behaviors in the hot plate test and increased tail-flick latency in the tail immersion test. Opioid receptor deletion however did not affect these stress responses. In addition, stress produced an increase in ACTH and corticosterone plasma levels. This endocrine response remained unchanged in all mutant strains. Therefore our data indicate that, under our stress conditions, the endogenous opioid system is recruited to produce some analgesia whereas it does not influence hypothalamic-pituitary-adrenal axis activity. This implies that brain circuits mediating analgesic and hormonal responses to stress can be dissociated.
Collapse
Affiliation(s)
- Candice Contet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | | | | | | | |
Collapse
|
15
|
Cabral GA. Drugs of abuse, immune modulation, and AIDS. J Neuroimmune Pharmacol 2006; 1:280-95. [PMID: 18040805 DOI: 10.1007/s11481-006-9023-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 05/16/2006] [Indexed: 11/29/2022]
Abstract
Illicit drugs such as amphetamines, cocaine, marijuana, and opiates alter immune function and decrease host resistance to microbes in vitro and in experimental animal models. Effects on the immune system may be mediated indirectly as a result of drug interactions in the central nervous system (CNS) or directly through activation of cognate receptors on various immune cell types. For marijuana and opioids, seven-transmembranal G protein-coupled receptors have been identified in the CNS and in the immune system that may play a functionally relevant role in immune modulation. There is accumulating evidence that sigma(1) receptors play a comparable role in cocaine-mediated alteration of immune responses. A mode by which these exogenously introduced substances affects immunity and host resistance may be by perturbing the balance of Th(1) proinflammatory versus Th(2) anti-inflammatory cytokines and lipid bioeffectors. However, while illicit drugs have been documented to alter immune functions in vitro and in animal models, there is a paucity of controlled longitudinal epidemiological studies that definitively correlate immunosuppressive effects with increased incidence of infections or immune disorders in humans, including infection with the human immunodeficiency virus (HIV) or disease progression to AIDS.
Collapse
Affiliation(s)
- Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298-0678, USA.
| |
Collapse
|
16
|
Kelschenbach J, Barke RA, Roy S. Morphine withdrawal contributes to Th cell differentiation by biasing cells toward the Th2 lineage. THE JOURNAL OF IMMUNOLOGY 2005; 175:2655-65. [PMID: 16081842 DOI: 10.4049/jimmunol.175.4.2655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The consequences that drug withdrawal has on immune functioning has only recently been appreciated; however, given the wide variety of use and abuse of opiate analgesics, understanding the decrements to immune function that withdrawal from these drugs causes is of crucial importance. In previous work, we have demonstrated that morphine treatment contributes to immunosuppression by polarizing Th cells toward the Th2 lineage. In the current study, it was hypothesized that morphine withdrawal would result in Th2 differentiation and subsequent immune dysfunction. To address this hypothesis, mice were chronically treated with morphine for 72 h followed by a 24-h withdrawal period. It was determined that 24-h morphine withdrawal resulted in a decrease in IFN-gamma, the Th1 signature cytokine, whereas the Th2 cytokine, IL-4, was increased. In addition, Western blot and EMSA experiments revealed that morphine withdrawal-induced Th2 differentiation was mediated through the classical Th2 transcription factors Stat-6 and GATA-3. In addition, the consequence of morphine withdrawal in the presence of an immune stimulation was also examined by treating mice in vivo with LPS before morphine withdrawal. Following withdrawal, it was found that the Th1-polarizing cytokine IL-12 was significantly decreased, providing further support for the observation that withdrawal results in Th2 differentiation by possibly impacting the generation of an appropriate innate immune response which directs subsequent adaptive Th1/Th2 responses.
Collapse
|
17
|
Pastor R, Sanchis-Segura C, Aragon CMG. Brain catalase activity inhibition as well as opioid receptor antagonism increases ethanol-induced HPA axis activation. Alcohol Clin Exp Res 2005; 28:1898-906. [PMID: 15608607 DOI: 10.1097/01.alc.0000148107.64739.76] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Growing evidence indicates that brain catalase activity is involved in the psychopharmacological actions of ethanol. Recent data suggest that participation of this enzymatic system in some ethanol effects could be mediated by the endogenous opioid system. The present study assessed whether brain catalase has a role in ethanol-induced activation of the HPA axis, a neuroendocrine system modulated by the endogenous opioid neurotransmission. METHODS Swiss male mice received an intraperitoneal injection of the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg), and 0 to 20 hr after this administration, animals received an ethanol (0-4 g/kg; intraperitoneally) challenge. Thirty, 60, or 120 min after ethanol administration, plasma corticosterone levels were determined immunoenzymatically. In addition, we tested the effects of 45 mg/kg of cyanamide (another catalase inhibitor) and 0 to 2 mg/kg of naltrexone (nonselective opioid receptor antagonist) on ethanol-induced enhancement in plasma corticosterone values. RESULTS The present study revealed that AT boosts ethanol-induced increase in plasma corticosterone levels in a dose- and time-dependent manner. However, it did not affect corticosterone values when measured after administration of saline, cocaine (4 mg/kg, intraperitoneally), or morphine (30 mg/kg, intraperitoneally). The catalase inhibitor cyanamide (45 mg/kg, intraperitoneally) also increased ethanol-related plasma corticosterone levels. These effects of AT and cyanamide on ethanol-induced corticosterone values were observed under treatment conditions that decreased significantly brain catalase activity. Indeed, a significant correlation between effects of catalase manipulations on both variables was found. Finally, we found that the administration of naltrexone enhanced the levels of plasma corticosterone after the administration of saline or ethanol. CONCLUSIONS This study shows that the inhibition of brain catalase increases ethanol-induced plasma corticosterone levels. Results are discussed together with previous findings suggesting a putative linkage between brain ethanol metabolism and the endogenous opioid system to explain some of the neuroendocrine effects of ethanol.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | | | | |
Collapse
|
18
|
Kraus J, Börner C, Giannini E, Höllt V. The Role of Nuclear Factor κB in Tumor Necrosis Factor-Regulated Transcription of the Human μ-Opioid Receptor Gene. Mol Pharmacol 2003; 64:876-84. [PMID: 14500744 DOI: 10.1124/mol.64.4.876] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids and their receptors are key players in a cross-talk between the nervous and immune systems. For example, the endogenous opioid system is activated during inflammation as a physiological feedback mechanism to attenuate inflammatory pain. Herein, we report that in primary human T lymphocytes, Raji B cells, U937 monocytes, primary human polymorphonuclear leukocytes, and mature dendritic cells, the proinflammatory cytokine tumor necrosis factor induced mu-opioid receptor gene transcription. Transcriptional induction of the gene in immune cells was mediated via tumor necrosis factor receptor type 2. Using selective in vivo disruption of possibly involved transcription factors with decoy oligonucleotides, nuclear factor-kappaB was identified as the factor responsible for induction of the gene in immune cells, whereas activator protein-1 was found to be uninvolved. Nuclear factor-kappaB also mediates up-regulation of mu-opioid receptors in neuronal cells stimulated with tumor necrosis factor. Among six putative nuclear factor-kappaB binding sites on the mu-opioid receptor gene promoter, three cis-active elements at nt -2174, -557, and -207 were identified using transfection experiments of reporter gene constructs, electrophoretic mobility shift assays, and in vivo binding studies with decoy oligonucleotides. An allelic variation within the -557 element significantly reduced its trans-activating potency, which may affect regulation of the mu-opioid receptor gene in persons carrying this mutation. This study suggests a regulatory function of tumor necrosis factor in opioid-mediated processes in neuronal and immune cells, with possible impact on the complex of inflammation-induced analgesia.
Collapse
MESH Headings
- Antigens, CD/physiology
- Binding Sites
- Humans
- NF-kappa B/physiology
- Promoter Regions, Genetic/physiology
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type II
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Jürgen Kraus
- Department of Pharmacology and Toxicology, University of Magdeburg, 44 Leipziger Strasse, 39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
19
|
Abstract
This review covers beta-phenylethylamines and isoquinoline alkaloids and compounds derived from them, including further products of oxidation, condensation with formaldehyde and rearrangement, some of which do not contain an isoquinoline system, together with naphthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids, with the structures of new bases, together with their reactions, syntheses and biological activities are reported. The literature from July 2001 to June 2002 is reviewed, with 581 references cited.
Collapse
|
20
|
Abstract
Stressors can positively or adversely affect immune and inflammatory responses. However, the current understanding of these effects at the cellular and molecular levels is not sufficient to allow prediction of the effects of a particular stressor on a particular immune or inflammatory function. Three complementary conceptual frameworks are presented that may prove useful in developing such an understanding. In addition, specific examples of the action of particular stress mediators on particular immune or inflammatory end points are discussed, and the relationship of these observations to the conceptual frameworks is indicated. Several of the effects discussed are relevant clinically, and the prospects for pharmacological intervention to prevent adverse effects of stressors on the immune system are discussed. Finally, some of the factors that can (sometimes unexpectedly) influence the outcome of stress-immunology studies and some of the pitfalls that continue to make this area of research controversial in some circles are discussed.
Collapse
Affiliation(s)
- Stephen B. Pruett
- Department of Cellular Biology and Anatomy, Louisiana Health Sciences Center-Shreveport, 1501 Kings Hwy, 71130, Shreveport, LA, USA
| |
Collapse
|
21
|
Hall FS, Li XF, Goeb M, Roff S, Hoggatt H, Sora I, Uhl GR. Congenic C57BL/6 mu opiate receptor (MOR) knockout mice: baseline and opiate effects. GENES, BRAIN, AND BEHAVIOR 2003; 2:114-21. [PMID: 12884968 DOI: 10.1034/j.1601-183x.2003.00016.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Homozygous mu-opioid receptor (MOR) knockout (KO) mice developed on a chimeric C57B6/129SV background lack morphine-induced antinociception, locomotion and reward. Therefore it appears that MOR largely mediates these morphine actions. However, one factor that could affect the extent of knockout deficits in morphine-induced behavior is the genetic background against which the gene deletion is expressed. To examine the effect of genetic background chimeric C57B6/129SV MOR knockout mice from the 15th generation of those developed in our laboratory were backcrossed for 10 successive generations with C57BL/6 mice, a strain which is more sensitive to many of the properties of morphine, to produce congenic MOR (con-MOR) KO mice. Heterozygote conMOR KO mice display attenuated morphine locomotion and reduced morphine analgesia compared to wild-type mice. Homozygote con-MOR KO mice display baseline hyperalgesia, no morphine place preference, no morphine analgesia and no morphine locomotion. These results are not qualitatively different from those observed in the MOR KO strain with a chimeric C57B6/129SV background, and suggest that although the strain has separate influences on these functions, it does not substantially interact with deletion of the mu opiate receptor gene.
Collapse
MESH Headings
- Analgesia
- Analgesics, Opioid/pharmacology
- Animals
- Animals, Congenic/genetics
- Animals, Congenic/physiology
- Chimera
- Choice Behavior/drug effects
- Choice Behavior/physiology
- Conditioning, Psychological/physiology
- Mice
- Mice, Inbred C57BL/genetics
- Mice, Inbred C57BL/physiology
- Mice, Knockout/genetics
- Mice, Knockout/physiology
- Morphine/pharmacology
- Motor Activity/drug effects
- Motor Activity/physiology
- Receptors, Opioid, mu/genetics
- Space Perception/drug effects
- Space Perception/physiology
- Species Specificity
Collapse
Affiliation(s)
- F S Hall
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, NIH/DHHS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Shi Y, Devadas S, Greeneltch KM, Yin D, Allan Mufson R, Zhou JN. Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology. Brain Behav Immun 2003; 17 Suppl 1:S18-26. [PMID: 12615182 DOI: 10.1016/s0889-1591(02)00062-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Psychological and physical stressors best exemplify the intercommunication of the immune and the nervous systems. It has been shown that stress significantly impacts leukocyte cellularity and immune responses and alters susceptibility to various diseases. While acute stress has been shown to enhance immune responses, chronic stress often leads to immunosuppression. Among many criteria examined upon exposure to chronic stress, the reduction in lymphocyte mitogenic response and lymphocyte cellularity are commonly assessed. We have reported that chronic restraint stress could induce lymphocyte reduction, an effect dependent on endogenous opioids. Interestingly, the effect of endogenous opioids was found to be exerted through increasing the expression of a cell death receptor, Fas, and an increased sensitivity of lymphocytes to apoptosis. Stress-induced lymphocyte reduction was not affected by adrenalectomy. In this review, based on available literature and our recent data, we will discuss the role of the hypothalamic-pituitary-adrenal axis and endogenous opioids and examine the mechanisms by which chronic stress modulates lymphocyte apoptosis.
Collapse
Affiliation(s)
- Yufang Shi
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 661 Hoes Lane, Piscataway 08854, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Neudeck BL, Loeb JM. Endomorphin-1 alters interleukin-8 secretion in Caco-2 cells via a receptor mediated process. Immunol Lett 2002; 84:217-21. [PMID: 12413740 DOI: 10.1016/s0165-2478(02)00198-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Administration of opioids that bind to the classical mu opioid receptor has been shown to lead to unintended alterations in immune function. Traditionally, altered immune function has been investigated with circulating immune cells. Effects of mu agonists on intestinal epithelial immune function have not been described. Since the oral route of administration is frequently employed with opiates, we determined if the mu receptor specific agonist endomorphin-1 altered interleukin-8 (IL-8) production by Caco-2 cells. Using RT-PCR and immunocytochemistry, Caco-2 cells were found to constitutively express (mu) mu opioid receptors. Activation of the mu receptor by endomorphin-1 (1 and 10 microM) resulted in significant increases in IL-8 when Caco-2 cells were stimulated with IL-1beta. Increased IL-8 secretion due to endomorphin-1 could be blocked by pre-incubating cells with the mu receptor antagonist, beta-funaltrexamine. These results indicate that the intestinal epithelial IL-8 response can be altered by a muopioid receptor mediated mechanism.
Collapse
Affiliation(s)
- Brien L Neudeck
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
24
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
25
|
Wang J, Charboneau R, Barke RA, Loh HH, Roy S. Mu-opioid receptor mediates chronic restraint stress-induced lymphocyte apoptosis. THE JOURNAL OF IMMUNOLOGY 2002; 169:3630-6. [PMID: 12244154 DOI: 10.4049/jimmunol.169.7.3630] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Psychological stress is associated with immunosuppression in both humans and animals. Although it was well established that psychological stressors stimulate the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, resulting in the release of various hormones and neurotransmitters, the mechanisms underlying these phenomena are poorly understood. In this study, mu-opioid receptor knockout (MORKO) mice were used to investigate whether the mu-opioid receptor mediates the immunosuppression induced by restraint stress. Our results showed that wild-type (WT) mice subjected to chronic 12-h daily restraint stress for 2 days exhibited a significant decrease in splenocyte number with a substantial increase in apoptosis and CD95 (Fas/APO-1) expression of splenocytes. The effects are essentially abolished in MORKO mice. Furthermore, inhibition of splenic lymphocyte proliferation, IL-2, and IFN-gamma production induced by restraint stress in WT mice was also significantly abolished in MORKO mice. Interestingly, both stressed WT and MORKO mice showed a significant elevation in plasma corticosterone and pituitary proopiomelanocortin mRNA expression, although the increase was significantly lower in MORKO mice. Adrenalectomy did not reverse restraint stress-induced immunosuppression in WT mice. These data clearly established that the mu-opioid receptor is involved in restraint stress-induced immune alterations via a mechanism of apoptotic cell death, and that the effect is not mediated exclusively through the glucocorticoid pathway.
Collapse
MESH Headings
- Adrenalectomy
- Animals
- Apoptosis/immunology
- Corticosterone/blood
- Female
- Hypothalamo-Hypophyseal System/immunology
- Immunosuppression Therapy
- Interferon-gamma/biosynthesis
- Interleukin-2/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Count
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Pituitary-Adrenal System/immunology
- Pro-Opiomelanocortin/biosynthesis
- Pro-Opiomelanocortin/genetics
- RNA, Messenger/biosynthesis
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Restraint, Physical
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Up-Regulation/genetics
- Up-Regulation/immunology
- fas Receptor/biosynthesis
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
26
|
Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S. The immunosuppressive effects of chronic morphine treatment are partially dependent on corticosterone and mediated by the μ‐opioid receptor. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jinghua Wang
- Department of Pharmacology, University of Minnesota, Minneapolis; and
| | - Richard Charboneau
- Department of Surgery, Veterans Affairs Medical Center, Minneapolis, Minnesota, and North Memorial Medical Center, Robbinsdale, Minnesota
| | | | - Roderick A. Barke
- Department of Surgery, Veterans Affairs Medical Center, Minneapolis, Minnesota, and North Memorial Medical Center, Robbinsdale, Minnesota
| | - Horace H. Loh
- Department of Pharmacology, University of Minnesota, Minneapolis; and
| | - Sabita Roy
- Department of Pharmacology, University of Minnesota, Minneapolis; and
- Department of Surgery, Veterans Affairs Medical Center, Minneapolis, Minnesota, and North Memorial Medical Center, Robbinsdale, Minnesota
| |
Collapse
|
27
|
Abstract
The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.
Collapse
Affiliation(s)
- Brigitte L Kieffer
- IGBMC UMR 7104, Parc d'innovation 1, rue Laurent Fries, B.P.163, 67404 Illkirch Cedex, France.
| | | |
Collapse
|