1
|
A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med 2022; 12:jpm12091430. [PMID: 36143216 PMCID: PMC9501898 DOI: 10.3390/jpm12091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system, presenting with different clinical forms, including clinically isolated syndrome (CIS), which is a first clinical episode suggestive of demyelination. Several molecules have been proposed as prognostic biomarkers in MS. We aimed to perform a scoping review of the potential use of prognostic biomarkers in MS clinical practice. We searched MEDLINE up to 25 November 2021 for review articles assessing body fluid biomarkers for prognostic purposes, including any type of biomarkers, cell types and tissues. Original articles were obtained to confirm and detail the data reported by the review authors. We evaluated the reliability of the biomarkers based on the sample size used by various studies. Fifty-two review articles were included. We identified 110 molecules proposed as prognostic biomarkers. Only six studies had an adequate sample size to explore the risk of conversion from CIS to MS. These confirm the role of oligoclonal bands, immunoglobulin free light chain and chitinase CHI3L1 in CSF and of serum vitamin D in the prediction of conversion from CIS to clinically definite MS. Other prognostic markers are not yet explored in adequately powered samples. Serum and CSF levels of neurofilaments represent a promising biomarker.
Collapse
|
2
|
Vlaicu SI, Tatomir A, Anselmo F, Boodhoo D, Chira R, Rus V, Rus H. RGC-32 and diseases: the first 20 years. Immunol Res 2019; 67:267-279. [DOI: 10.1007/s12026-019-09080-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunol Res 2018; 65:1103-1109. [PMID: 29116612 DOI: 10.1007/s12026-017-8961-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The complement system has an established role in the pathogenesis of MS, and evidence suggests that its components can be used as biomarkers of disease-state activity and response to treatment in MS. Plasma C4a levels have been found to be significantly elevated in patients with active relapsing-remitting MS (RRMS), as compared to both controls and patients with stable RRMS. C3 levels are also significantly elevated in the cerebrospinal fluid (CSF) of patients with RRMS, and C3 levels are correlated with clinical disability. Furthermore, increased levels of factor H can predict the transition from relapsing to progressive disease, since factor H levels have been found to increase progressively with disease progression over a 2-year period in patients transitioning from RRMS to secondary progressive (SP) MS. In addition, elevations in C3 are seen in primary progressive (PP) MS. Complement components can also differentiate RRMS from neuromyelitis optica. Response gene to complement (RGC)-32, a novel molecule induced by complement activation, is a possible biomarker of relapse and response to glatiramer acetate (GA) therapy, since RGC-32 mRNA expression is significantly decreased during relapse and increased in responders to GA treatment. The predictive accuracy of RGC-32 as a potential biomarker (by ROC analysis) is 90% for detecting relapses and 85% for detecting a response to GA treatment. Thus, complement components can serve as biomarkers of disease activity to differentiate MS subtypes and to measure response to therapy.
Collapse
|
4
|
Kruszewski AM, Rao G, Tatomir A, Hewes D, Tegla CA, Cudrici CD, Nguyen V, Royal W, Bever CT, Rus V, Rus H. RGC-32 as a potential biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol 2015; 99:498-505. [PMID: 26407760 DOI: 10.1016/j.yexmp.2015.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023]
Abstract
Currently there is critical need for the identification of reliable biomarkers to help guide clinical management of multiple sclerosis (MS) patients. We investigated the combined roles of Response Gene to Complement 32 (RGC-32), FasL, CDC2, AKT, and IL-21 as possible biomarkers of relapse and response to glatiramer acetate (GA) treatment in relapsing-remitting MS (RRMS) patients. Over the course of 2 years, a cohort of 15 GA-treated RRMS patients was clinically monitored and peripheral blood mononuclear cells (PBMCs) were collected at 0, 3, 6, and 12 months. Target gene mRNA expression was measured in patients' isolated PBMCs by real-time qRT-PCR. Compared to stable MS patients, those with acute relapses exhibited decreased expression of RGC-32 (p<0.0001) and FasL (p<0.0001), increased expression of IL-21 (p=0.04), but no change in CDC2 or AKT. Compared to non-responders, responders to GA treatment showed increased expression of RGC-32 (p<0.0001) and FasL (p<0.0001), and decreased expression of IL-21 (p=0.02). Receiver operating characteristic (ROC) analysis was used to assess the predictive accuracy of each putative biomarker. The probability of accurately detecting relapse was 90% for RGC-32, 88% for FasL, and 75% for IL-21. The probability of accurately detecting response to GA was 85% for RGC-32, 90% for FasL, and 85% for IL-21. Our data suggest that RGC-32, FasL, and IL-21 could serve as potential biomarkers for the detection of MS relapse and response to GA therapy.
Collapse
Affiliation(s)
- Adam M Kruszewski
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Gautam Rao
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Daniel Hewes
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Cosmin A Tegla
- Department of Neurology, University of Maryland, School of Medicine, United States; Research Service, Veterans Administration Maryland Health Care System, United States
| | - Cornelia D Cudrici
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Vingh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, United States
| | - Walter Royal
- Department of Neurology, University of Maryland, School of Medicine, United States; Veterans Administration Multiple Sclerosis Center of Excellence East, Baltimore, MD, USA
| | - Christopher T Bever
- Department of Neurology, University of Maryland, School of Medicine, United States; Research Service, Veterans Administration Maryland Health Care System, United States; Veterans Administration Multiple Sclerosis Center of Excellence East, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, United States; Research Service, Veterans Administration Maryland Health Care System, United States; Veterans Administration Multiple Sclerosis Center of Excellence East, Baltimore, MD, USA.
| |
Collapse
|
5
|
D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14:1097-110. [PMID: 26226413 DOI: 10.1016/j.autrev.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heterogeneity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpredictable response to therapies. The major focus of the research on MS is the identification of biomarkers in biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the difficulties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced, the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However, currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention strategies that may prevent evolution to long-term neurological disability. This article provides an overview of this research field and focuses on recent advances in blood-based biomarker research.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pontecorvo
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Tania Colasanti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ada Francia
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Paola Margutti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
6
|
Tietz SM, Hofmann R, Thomas T, Tackenberg B, Gaestel M, Berghoff M. MK2 and Fas receptor contribute to the severity of CNS demyelination. PLoS One 2014; 9:e100363. [PMID: 24964076 PMCID: PMC4070940 DOI: 10.1371/journal.pone.0100363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
Models of inflammatory or degenerative diseases demonstrated that the protein-kinase MK2 is a key player in inflammation. In this study we examined the role of MK2 in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In MK2-deficient (MK2-/-) mice we found a delayed onset of the disease and MK2-/- mice did not recover until day 24 after EAE induction. At this day a higher number of leukocytes in the CNS of MK2-/- mice was found. TNFα was not detectable in serum of MK2-/- mice in any stage of EAE, while high TNFα levels were found at day 16 in wild-type mice. Further investigation revealed an increased expression of FasR mRNA in leukocytes isolated from CNS of wild-type mice but not in MK2-/- mice, however in vitro stimulation of MK2-/- splenocytes with rmTNFα induced the expression of FasR. In addition, immunocomplexes between the apoptosis inhibitor cFlip and the FasR adapter molecule FADD were only detected in splenocytes of MK2-/- mice at day 24 after EAE induction. Moreover, the investigation of blood samples from relapsing-remitting multiple sclerosis patients revealed reduced FasR mRNA expression compared to healthy controls. Taken together, our data suggest that MK2 is a key regulatory inflammatory cytokines in EAE and multiple sclerosis. MK2-/- mice showed a lack of TNFα and thus might not undergo TNFα-induced up-regulation of FasR. This may prevent autoreactive leukocytes from apoptosis and may led to prolonged disease activity. The findings indicate a key role of MK2 and FasR in the regulation and limitation of the immune response in the CNS.
Collapse
Affiliation(s)
- Silvia M. Tietz
- Department of Neurology, Justus-Liebig-University Giessen, Giessen, Germany
- Theodor-Kocher-Institute, Universtiy of Bern, Bern, Switzerland
| | - Regina Hofmann
- Department of Child Neurology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tobias Thomas
- Department of Neurology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Björn Tackenberg
- Department of Neurology, Clinical Neuroimmunology Group, Philipps-University, Marburg, Germany
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Martin Berghoff
- Department of Neurology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Tegla CA, Azimzadeh P, Andrian-Albescu M, Martin A, Cudrici CD, Trippe R, Sugarman A, Chen H, Boodhoo D, Vlaicu SI, Royal W, Bever C, Rus V, Rus H. SIRT1 is decreased during relapses in patients with multiple sclerosis. Exp Mol Pathol 2014; 96:139-48. [DOI: 10.1016/j.yexmp.2013.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022]
|
8
|
Tegla CA, Cudrici CD, Azimzadeh P, Singh AK, Trippe R, Khan A, Chen H, Andrian-Albescu M, Royal W, Bever C, Rus V, Rus H. Dual role of Response gene to complement-32 in multiple sclerosis. Exp Mol Pathol 2012; 94:17-28. [PMID: 23000427 DOI: 10.1016/j.yexmp.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/10/2012] [Indexed: 01/17/2023]
Abstract
Response gene to complement (RGC)-32 is a novel molecule that plays an important role in cell proliferation. We investigated the expression of RGC-32 in multiple sclerosis (MS) brain and in peripheral blood mononuclear cells (PBMCs) obtained from patients with relapsing-remitting multiple sclerosis. We found that CD3(+), CD68(+), and glial fibrillar acidic protein (GFAP)(+) cells in MS plaques co-localized with RGC-32. Our results show a statistically significant decrease in RGC-32 mRNA expression in PBMCs during relapses when compared to the levels in stable MS patients. This decrease might be useful in predicting disease activity in patients with relapsing-remitting MS. RGC-32 expression was also correlated with that of FasL mRNA during relapses. FasL mRNA expression was significantly reduced after RGC-32 silencing, indicating a role for RGC-32 in the regulation of FasL expression. In addition, the expression of Akt1, cyclin D1, and IL-21 mRNA was significantly increased during MS relapses when compared to levels in healthy controls. Furthermore, we investigated the role of RGC-32 in TGF-β-induced extracellular matrix expression in astrocytes. Blockage of RGC-32 using small interfering RNA significantly inhibits TGF-β induction of procollagen I, fibronectin and of the reactive astrocyte marker α-smooth muscle actin (α-SMA). Our data suggest that RGC-32 plays a dual role in MS, both as a regulator of T-cells mediated apoptosis and as a promoter of TGF-β-mediated profibrotic effects in astrocytes.
Collapse
Affiliation(s)
- Cosmin A Tegla
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Comi C, Fleetwood T, Dianzani U. The role of T cell apoptosis in nervous system autoimmunity. Autoimmun Rev 2012; 12:150-6. [PMID: 22504460 DOI: 10.1016/j.autrev.2011.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 12/20/2022]
Abstract
Fas is a transmembrane receptor involved in the death program of several cell lines, including T lymphocytes. Deleterious mutations hitting genes involved in the Fas pathway cause the autoimmune lymphoprolipherative syndrome (ALPS). Moreover, defective Fas function is involved in the development of common autoimmune diseases, including autoimmune syndromes hitting the nervous system, such as multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we first explore some peculiar aspects of Fas mediated apoptosis in the central versus peripheral nervous system (CNS, PNS); thereafter, we analyze what is currently known on the role of T cell apoptosis in both MS and CIDP, which, in this regard, may be seen as two faces of the same coin. In fact, we show that, in both diseases, defective Fas mediated apoptosis plays a crucial role favoring disease development and its chronic evolution.
Collapse
Affiliation(s)
- C Comi
- Department of Clinical and Experimental Medicine, Section of Neurology, Amedeo Avogadro University, Novara, Italy.
| | | | | |
Collapse
|
10
|
Graber JJ, Dhib-Jalbut S. Biomarkers of disease activity in multiple sclerosis. J Neurol Sci 2011; 305:1-10. [DOI: 10.1016/j.jns.2011.03.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/15/2022]
|
11
|
Rinta S, Airas L, Elovaara I. Is the modulatory effect of pregnancy in multiple sclerosis associated with changes in blood apoptotic molecules? Acta Neurol Scand 2010; 122:168-74. [PMID: 20695850 DOI: 10.1111/j.1600-0404.2009.01301.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We examined whether the modulatory effect of pregnancy on multiple sclerosis (MS) is associated with changes in the apoptotic molecules in sera. SUBJECTS AND METHODS The serum levels of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL), sFas, Fas ligand (sFasL) and macrophage migration inhibitory factor were analyzed from 19 MS patients and 14 controls during late pregnancy and post-partum. The obtained results were related to disease activity and the progression of MS. RESULTS Disease activity decreased during pregnancy. The levels of sTRAIL and sFasL increased from late pregnancy to post-partum situation in both MS patients and controls, but in MS patients the changes in the levels of sTRAIL from late pregnancy to post-partum were smaller than in controls. CONCLUSIONS Post-partum upregulation of TRAIL and FasL seems to be caused by physiologic reactivation of the mother's immune system after pregnancy. An increased risk of relapses in MS post-partum may be associated with changes in the immunomodulatory potential of these apoptotic molecules.
Collapse
Affiliation(s)
- S Rinta
- Neuroimmunology Unit, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | |
Collapse
|
12
|
Rinta S, Kuusisto H, Raunio M, Paalavuo R, Levula M, Lehtimäki T, Elovaara I. Apoptosis-related molecules in blood in multiple sclerosis. J Neuroimmunol 2008; 205:135-41. [PMID: 18963025 DOI: 10.1016/j.jneuroim.2008.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 09/02/2008] [Accepted: 09/05/2008] [Indexed: 12/23/2022]
Abstract
A failure in apoptosis of lymphocytes may lead to harmful immunoreactivity in MS. We analyzed apoptosis-related molecules including TRAIL, sFas, sFasL and MIF in the blood of 117 MS patients and controls to answer whether these molecules may be used in the evaluation of disease activity and immunomodulatory effect of IFN-beta. Increased levels of sTRAIL, sFasL and MIF were found in sera of untreated patients with MS relapse indicating their association with MS disease activity. IFN-beta treated patients in remission had increased TRAIL mRNA, sTRAIL, sFaL and MIF that most likely reflect bioactivity of IFN-beta.
Collapse
Affiliation(s)
- Sanna Rinta
- Neuroimmunology Unit, Department of Neurology, Finn-Medi 3, Biokatu 10, 33014 University of Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
13
|
Achiron A, Feldman A, Mandel M, Gurevich M. Impaired Expression of Peripheral Blood Apoptotic-Related Gene Transcripts in Acute Multiple Sclerosis Relapse. Ann N Y Acad Sci 2007; 1107:155-67. [PMID: 17804543 DOI: 10.1196/annals.1381.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Differential expression of apoptotic genes may influence the susceptibility of activated lymphocytes to expand and induce acute relapse and persistent inflammation in patients with relapsing-remitting multiple sclerosis (RRMS). The exact relationship between alterations in apoptotic-related gene expression and clinical disease activity has not been broadly evaluated. In this study we studied peripheral blood mononuclear cells (PBMCs) expression of pro- and antiapoptotic genes in RRMS patients during acute relapse in comparison to patients in remission. Using cDNA Affymetrix microarrays platform (U133A2 microarrays) we analyzed the gene expression profile of PBMC derived from 22 RRMS patients in acute relapse (15 females, mean age 34.6 +/- 1.8 years, disease duration 5.6 +/- 0.8 years) in comparison to 20 sex- and age-matched RRMS patients in remission. One thousand five hundred seventy-eight gene transcripts significantly differentiated acute multiple sclerosis (MS) relapse from remission. This characteristic gene expression signature was enriched by an apoptotic-related pathway. The 1578 gene transcripts that significantly differentiated acute relapse from remission were enriched by 55 apoptotic-related genes in that reflected different operating pathways during the acute phase of the disease. These genes mainly involved the caspase-dependent pathway and included overexpression of the negative regulator of FAS-induced apoptosis (TOSO) and the BCL2 antiapoptotic family members (BCL2, BCL2 AA) as well as downexpression of proapoptotic genes like BAX, apoptotic protease-activating factor 1 (APAF1) and caspases 1, 2, 8, 9. and 10. An additional group of antiapoptotic genes related to T cell receptor-mediated apoptosis was also found to be overexpressed in acute relapse and included TCR-binding CD3E antigen, antiapoptotic serine threonin kinase (AKT), and NF kappa B-associated genes like reticuloendotheliosis viral oncogene homolog A (RELA) and human T cell leukemia virus type I-binding protein (Tax1BP) known to inhibit tumor necrosis factor (TNF)-induced apoptosis. Our findings demonstrate impaired apoptotic mechanisms in peripheral lymphocytes from RRMS patients during acute relapse. This suggests that the inflammatory process in active disease is targeted by inhibition of proapoptotic and repression of antiapoptotic genes that allow prolonged abnormal immune responses.
Collapse
Affiliation(s)
- Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | | | | | | |
Collapse
|
14
|
Lopatinskaya L, Zwemmer J, Uitdehaag B, Lucas K, Polman C, Nagelkerken L. Mediators of apoptosis Fas and FasL predict disability progression in multiple sclerosis over a period of 10 years. Mult Scler 2007; 12:704-9. [PMID: 17262997 DOI: 10.1177/1352458506070826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TNF-alpha, IL-12p35, IL-12p40, IL-4, IL-10, TGF-beta1, CCR3, CXCR3, CCR5, Fas and FasL mRNA levels in PBMC of 25 multiple sclerosis (MS) patients were quantified at baseline by real-time PCR according to a post-hoc study design. The baseline values of the different markers were analysed with respect to their correlation with the increase in disability over a period of 10 years. High levels of Fas mRNA were associated with a favourable disease course in relapsing-remitting (RR) MS (R2 = 0.74, P = 0.0001, n = 13), as measured by the Expanded Disability Status Scale (EDSS); high levels of FasL mRNA were associated with relatively mild disease progression (R2 = 0.86, P = 0.0001, n =12) in secondary progressive (SP) MS. These findings suggest that Fas-mediated apoptosis plays a major role in the mechanism underlying long-term disease progression in MS.:
Collapse
Affiliation(s)
- L Lopatinskaya
- Division of Biomedical Research, TNO Quality of Life, P.O. Box 2215, 2301 CE, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Sofo V, Salmeri FM, Di Bella P, Sessa E, D'Aleo G, Trimarchi G, Bramanti P. Short communication: impairment of membrane markers on peripheral blood mononuclear cells and imbalance of cytokine secretion in the pathogenesis of multiple sclerosis active phases. J Interferon Cytokine Res 2006; 25:661-5. [PMID: 16318579 DOI: 10.1089/jir.2005.25.661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). In active disease, a transmigration of autoreactive T cells to myelin antigens recruited from the peripheral blood (PBMC) to the CNS occurs, and there these cells prolong their survival and contribute to the perpetuation of the inflammation. In the active local lesions of MS patients, these cells display activation and apoptosis surface markers and secrete a range of cytokines. The aim of this research is to study on PBMCs and in the serum of stable and active MS subjects (1) the behavior of the CD40/CD40L system and the consequent balance of Th1 and Th2 cytokines and (2) the apoptosis marker system CD95/CD95L and tumor necrosis factor (TNF)- binding receptors, TNFRI and TNFRII. A possible excess of activation marker expression affecting and driving Th1 cytokine production or a parallel impairment of apoptosis may contribute to MS relapses. Our results may indicate that a dysregulation of early activation and apoptosis receptor systems and a profound and complex imbalance of cytokine production occurred in the peripheral blood of MS patients. This impairment could account for active phases of the disease.
Collapse
Affiliation(s)
- Vincenza Sofo
- Department of Environmental Protection, Section of General Pathology, School of Medicine, University of Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Okuda Y, Apatoff BR, Posnett DN. Apoptosis of T cells in peripheral blood and cerebrospinal fluid is associated with disease activity of multiple sclerosis. J Neuroimmunol 2006; 171:163-70. [PMID: 16290072 DOI: 10.1016/j.jneuroim.2005.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Accepted: 09/30/2005] [Indexed: 12/20/2022]
Abstract
Apoptotic elimination of pathogenic T cells is considered to be one of regulatory mechanisms in multiple sclerosis (MS). To explore the potential relationship between Fas-mediated apoptosis and the disease course of MS, we examined apoptosis, defined by annexin V (AV) binding, and Fas (CD95) expression in CD4+ and in CD8+ T cells in MS patients by using five-color flow cytometry. The percentage of AV+CD4+CD3+ cells and CD95+AV+CD4+CD3+ cells in peripheral blood and cerebrospinal fluid (CSF) were significantly decreased in active MS patients compared with inactive MS patients. A significantly lower proportion of CD95+AV+CD8+CD3+ cells in CSF was observed in active MS patients compared with inactive MS patients, but not in peripheral blood. These results indicate that the resistance of T cells to Fas-mediated apoptosis is involved in exacerbation of MS and/or that Fas-mediated apoptosis of T cells is associated with remission of MS.
Collapse
Affiliation(s)
- Yoshinobu Okuda
- Department of Medicine, Division of Hematology-Oncology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|