1
|
Coxon AT, Desai R, Patel PR, Vellimana AK, Willie JT, Dowling JL, Leuthardt EC, Kim AH, Johanns TM, Siegel BA, Dunn GP. A pilot study of lymphoscintigraphy with tracer injection into the human brain. J Cereb Blood Flow Metab 2023; 43:1382-1389. [PMID: 36994857 PMCID: PMC10369147 DOI: 10.1177/0271678x231160891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 03/31/2023]
Abstract
Many groups have reported lymphatic and glymphatic structures in animal and human brains, but tracer injection into the human brain to demonstrate real-time lymphatic drainage and mapping has not been described. We enrolled patients undergoing standard-of-care resection or stereotactic biopsy for suspected intracranial tumors. Patients received peritumoral injections of 99mTc-tilmanocept followed by planar or tomographic imaging. Fourteen patients with suspected brain tumors were enrolled. One was excluded from analysis because of tracer leakage during injection. There was no drainage of 99mTc-tilmanocept to regional lymph nodes in any of the patients. On average, after correcting for radioactive decay, 70.7% (95% CI: 59.9%, 81.6%) of the tracer in the injection site and 78.1% (95% CI: 71.1%, 85.1%) in the whole-head on the day of surgery remained the morning after, with variable radioactivity in the subarachnoid space. The retained fraction was much greater than expected based on the clearance rate from non-brain injection sites. In this pilot study, the lymphatic tracer 99mTc-tilmanocept was injected into the brain parenchyma, and there was no drainage outside the brain to the cervical lymph nodes. Our work demonstrates an inefficiency of drainage from peritumoral brain parenchyma and highlights a therapeutic opportunity to improve immunosurveillance of the brain.
Collapse
Affiliation(s)
- Andrew T Coxon
- Washington University School of Medicine, St. Louis, MO, USA
| | - Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Pujan R Patel
- Washington University School of Medicine, St. Louis, MO, USA
| | - Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon T Willie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua L Dowling
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tanner M Johanns
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barry A Siegel
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Current address: Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Kovacs MA, Cowan MN, Babcock IW, Sibley LA, Still K, Batista SJ, Labuzan SA, Sethi I, Harris TH. Meningeal lymphatic drainage promotes T cell responses against Toxoplasma gondii but is dispensable for parasite control in the brain. eLife 2022; 11:80775. [PMID: 36541708 PMCID: PMC9812409 DOI: 10.7554/elife.80775] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The discovery of meningeal lymphatic vessels that drain the CNS has prompted new insights into how immune responses develop in the brain. In this study, we examined how T cell responses against CNS-derived antigen develop in the context of infection. We found that meningeal lymphatic drainage promotes CD4+ and CD8+ T cell responses against the neurotropic parasite Toxoplasma gondii in mice, and we observed changes in the dendritic cell compartment of the dural meninges that may support this process. Indeed, we found that mice chronically, but not acutely, infected with T. gondii exhibited a significant expansion and activation of type 1 and type 2 conventional dendritic cells (cDC) in the dural meninges. cDC1s and cDC2s were both capable of sampling cerebrospinal fluid (CSF)-derived protein and were found to harbor processed CSF-derived protein in the draining deep cervical lymph nodes. Disrupting meningeal lymphatic drainage via ligation surgery led to a reduction in CD103+ cDC1 and cDC2 number in the deep cervical lymph nodes and caused an impairment in cDC1 and cDC2 maturation. Concomitantly, lymphatic vessel ligation impaired CD4+ and CD8+ T cell activation, proliferation, and IFN-γ production at this site. Surprisingly, however, parasite-specific T cell responses in the brain remained intact following ligation, which may be due to concurrent activation of T cells at non-CNS-draining sites during chronic infection. Collectively, our work reveals that CNS lymphatic drainage supports the development of peripheral T cell responses against T. gondii but remains dispensable for immune protection of the brain.
Collapse
Affiliation(s)
- Michael A Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Maureen N Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Isaac W Babcock
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Lydia A Sibley
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Katherine Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Samantha J Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Sydney A Labuzan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
3
|
Profiling of the immune landscape in murine glioblastoma following blood brain/tumor barrier disruption with MR image-guided focused ultrasound. J Neurooncol 2022; 156:109-122. [PMID: 34734364 PMCID: PMC8714701 DOI: 10.1007/s11060-021-03887-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Glioblastoma (GB) poses formidable challenges to systemic immunotherapy approaches owing to the paucity of immune infiltration and presence of the blood brain/tumor barriers (BBB/BTB). We hypothesize that BBB/BTB disruption (BBB/BTB-D) with focused ultrasound (FUS) and microbubbles (MB) increases immune infiltration in GB. As a prelude to rational combination of FUS with ITx, we herein investigate the impact of localized BBB/BTB-D on innate and adaptive immune responses in an orthotopic murine GB model. METHODS Mice with GL261 gliomas received i.v. MB and underwent FUS BBB/BTB-D (1.1 MHz, 0.5 Hz pulse repetition frequency, 10 ms bursts, 0.4-0.6 MPa). Brains, meninges, and peripheral lymphoid organs were excised and examined by flow cytometry 1-2 weeks following FUS. RESULTS The number of dendritic cells (DC) was significantly elevated in GL261 tumors and draining cervical LN in response to sonication. CD86 + DC frequency was also upregulated with 0.6 MPa FUS, suggesting increased maturity. While FUS did not significantly alter CD8 + T cell frequency across evaluated organs, these cells upregulated checkpoint molecules at 1 week post-FUS, suggesting increased activation. By 2 weeks post-FUS, we noted emergence of adaptive resistance mechanisms, including upregulation of TIGIT on CD4 + T cells and CD155 on non-immune tumor and stromal cells. CONCLUSIONS FUS BBB/BTB-D exerts mild, transient inflammatory effects in gliomas-suggesting that its combination with adjunct therapeutic strategies targeting adaptive resistance may improve outcomes. The potential for FUS-mediated BBB/BTB-D to modify immunological signatures is a timely and important consideration for ongoing clinical trials investigating this regimen in GB.
Collapse
|
4
|
Current concepts on communication between the central nervous system and peripheral immunity via lymphatics: what roles do lymphatics play in brain and spinal cord disease pathogenesis? Biol Futur 2021; 72:45-60. [PMID: 34554497 DOI: 10.1007/s42977-021-00066-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) lacks conventional lymphatics within the CNS parenchyma, yet still maintains fluid homeostasis and immunosurveillance. How the CNS communicates with systemic immunity has thus been a topic of interest for scientists in the past century, which has led to several theories of CNS drainage routes. In addition to perineural routes, rediscoveries of lymphatics surrounding the CNS in the meninges revealed an extensive network of lymphatics, which we now know play a significant role in fluid homeostasis and immunosurveillance. These meningeal lymphatic networks exist along the superior sagittal sinus and transverse sinus dorsal to the brain, near the cribriform plate below the olfactory bulbs, at the base of the brain, and surrounding the spinal cord. Inhibition of one or all of these lymphatic networks can reduce CNS autoimmunity in a mouse model of multiple sclerosis (MS), while augmenting these lymphatic networks can improve immunosurveillance, immunotherapy, and clearance in glioblastoma, Alzheimer's disease, traumatic brain injury, and cerebrovascular injury. In this review, we will provide historical context of how CNS drainage contributes to immune surveillance, how more recently published studies fit meningeal lymphatics into the context of CNS homeostasis and neuroinflammation, identify the complex dualities of lymphatic function during neuroinflammation and how therapeutics targeting lymphatic function may be more complicated than currently appreciated, and conclude by identifying some unresolved questions and controversies that may guide future research.
Collapse
|
5
|
Hsu M, Laaker C, Sandor M, Fabry Z. Neuroinflammation-Driven Lymphangiogenesis in CNS Diseases. Front Cell Neurosci 2021; 15:683676. [PMID: 34248503 PMCID: PMC8261156 DOI: 10.3389/fncel.2021.683676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
6
|
De Laere M, Berneman ZN, Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol 2019; 77:178-192. [PMID: 29342287 PMCID: PMC5901086 DOI: 10.1093/jnen/nlx114] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS. Targeting trafficking of immune cells, including DC, to the CNS has demonstrated to be a successful strategy to treat MS. However, this approach is known to compromise protective immune surveillance of the brain. Unravelling the migratory paths of regulatory and pathogenic DC within the CNS may ultimately lead to the design of new therapeutic strategies able to selectively interfere with the recruitment of pathogenic DC to the CNS, while leaving host protective mechanisms intact.
Collapse
Affiliation(s)
- Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| |
Collapse
|
7
|
Hoornaert CJ, Le Blon D, Quarta A, Daans J, Goossens H, Berneman Z, Ponsaerts P. Concise Review: Innate and Adaptive Immune Recognition of Allogeneic and Xenogeneic Cell Transplants in the Central Nervous System. Stem Cells Transl Med 2017; 6:1434-1441. [PMID: 28244236 PMCID: PMC5442707 DOI: 10.1002/sctm.16-0434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
Over the last 30 years, numerous allogeneic and xenogeneic cell grafts have been transplanted into the central nervous system (CNS) of mice and men in an attempt to cure neurological diseases. In the early studies, human or porcine embryonic neural cells were grafted in the striatum of animals or patients in an attempt to replace lost neurons. Although the immune-privileged status of the brain as a recipient organ was widely accepted, it rapidly became evident that CNS-grafted allogeneic and xenogeneic cells could be recognized and rejected by the immune system, resulting in poor neural graft survival and limited functional recovery. Since then, the CNS transplantation field has witnessed a sharp rise in the number of studies in which allogeneic and xenogeneic neural or mesenchymal stem cells (NSCs or MSCs, respectively) are transplanted, predominantly aiming at providing trophic stimulation and promoting endogenous repair of the brain. Interestingly, in many recent NSC and MSC-based publications functional improvement was used as the principal measure to evaluate the success of cell transplantation, while the fate of transplanted cells remained largely unreported. In this review, we first attempt to understand why primary neural cell isolates were largely substituted for NSCs and MSCs in cell grafting studies. Next, we review the current knowledge on the immune mechanisms involved in the recognition and rejection of allogeneic and xenogeneic cellular grafts in the CNS. Finally, we propose strategies to reduce graft immunogenicity and to improve graft survival in order to design improved cell-based CNS therapies. Stem Cells Translational Medicine 2017;6:1434-1441.
Collapse
Affiliation(s)
- Chloé J Hoornaert
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
CCR7 deficient inflammatory Dendritic Cells are retained in the Central Nervous System. Sci Rep 2017; 7:42856. [PMID: 28216674 PMCID: PMC5316931 DOI: 10.1038/srep42856] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DC) accumulate in the CNS during neuroinflammation, yet, how these cells contribute to CNS antigen drainage is still unknown. We have previously shown that after intracerebral injection, antigen-loaded bone marrow DC migrate to deep cervical lymph nodes where they prime antigen-specific T cells and exacerbate experimental autoimmune encephalomyelitis (EAE) in mice. Here, we report that DC migration from brain parenchyma is dependent upon the chemokine receptor CCR7. During EAE, both wild type and CCR7−/− CD11c-eYFP cells infiltrated into the CNS but cells that lacked CCR7 were retained in brain and spinal cord while wild type DC migrated to cervical lymph nodes. Retention of CCR7-deficient CD11c-eYFP cells in the CNS exacerbated EAE. These data are the first to show that CD11chigh DC use CCR7 for migration out of the CNS, and in the absence of this receptor they remain in the CNS in situ and exacerbate EAE.
Collapse
|
9
|
Ritzel RM, Crapser J, Patel AR, Verma R, Grenier JM, Chauhan A, Jellison ER, McCullough LD. Age-Associated Resident Memory CD8 T Cells in the Central Nervous System Are Primed To Potentiate Inflammation after Ischemic Brain Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3318-30. [PMID: 26962232 PMCID: PMC4868658 DOI: 10.4049/jimmunol.1502021] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/05/2016] [Indexed: 01/17/2023]
Abstract
Aging is associated with an increase in basal inflammation in the CNS and an overall decline in cognitive function and poorer recovery following injury. Growing evidence suggests that leukocyte recruitment to the CNS is also increased with normal aging, but, to date, no systematic evaluation of these age-associated leukocytes has been performed. In this work, the effect of aging on CNS leukocyte recruitment was examined. Aging was associated with more CD45(high) leukocytes, primarily composed of conventional CD8(+) T cells. These results were strain independent and seen in both sexes. Intravascular labeling and immunohistology revealed the presence of parenchymal CD8(+) T cells in several regions of the brain, including the choroid plexus and meninges. These cells had effector memory (CD44(+)CD62L(-)) and tissue-resident phenotypes and expressed markers associated with TCR activation. Analysis of TCRvβ repertoire usage suggested that entry into the CNS is most likely stochastic rather than Ag driven. Correlational analyses revealed a positive association between CD8 T cell numbers and decreased proinflammatory function of microglia. However, the effects of cerebral ischemia and ex vivo stimulation of these cells dramatically increased production of TNF, IFN-γ, and MCP-1/CCL2. Taken together, we identified a novel population of resident memory, immunosurveillant CD8 T cells that represent a hallmark of CNS aging and appear to modify microglia homeostasis under normal conditions, but are primed to potentiate inflammation and leukocyte recruitment following ischemic injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Joshua Crapser
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Anita R Patel
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Rajkumer Verma
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Jeremy M Grenier
- Immunology Department, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Anjali Chauhan
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Evan R Jellison
- Immunology Department, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Louise D McCullough
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030; Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77370
| |
Collapse
|
10
|
Abstract
Leakage of the blood-brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
11
|
Huang L, Sherchan P, Wang Y, Reis C, Applegate RL, Tang J, Zhang JH. Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury. J Neurosci 2015; 35:10390-401. [PMID: 26203135 PMCID: PMC4510283 DOI: 10.1523/jneurosci.0546-15.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation plays an important role in the pathophysiology of surgical brain injury (SBI). Phosphoinositide 3-kinase gamma (PI3Kγ), predominately expressed in immune and endothelial cells, activates multiple inflammatory responses. In the present study, we investigated the role of PI3Kγ and PI3Kγ-activated phosphodiesterase 3B (PDE3B) in neuroinflammation in a rat model of SBI. One hundred and fifty-two male Sprague Dawley rats (weight 280-350 g) were subjected to a partial right frontal lobe corticotomy model of SBI. A PI3Kγ pharmacological inhibitor (AS252424 or AS605240) was administered intraperitoneally. PI3Kγ siRNA, human recombinant active-PI3Kγ protein, or human recombinant active-PDE3B protein were administered intracerebroventricularly. Post-SBI assessments included neurobehavioral tests, brain water content, Western blot, and immunohistochemistry. Endogenous PI3Kγ levels were increased within peri-resection brain tissues after SBI, accompanied by increased brain water content and neurological functional deficits. There was a trend toward increased endogenous PDE3B phosphorylation after SBI. The selective PI3Kγ inhibitors AS252424 and AS605240 reduced brain water content surrounding corticotomy and improved neurological function after SBI. SBI increased and PI3Kγ inhibitor decreased levels of myeloperoxidase, cluster of differentiation 3, mast cell degranulation, E-selectin, and IL-1 in peri-resection brain tissues. Direct administration of human recombinant active-PI3Kγ protein and active-PDE3B protein countered the protective effect of AS252424. PI3Kγ siRNA reduced PI3Kγ levels, decreased brain water content within peri-resection brain tissues, and improved neurological function after SBI. Collectively, our findings suggest that PI3Kγ contributed to neuroinflammation after SBI. The use of selective PI3Kγ inhibitors may be a novel approach to ameliorating SBI via their anti-inflammation effects. Significance statement: Life-saving or elective neurosurgeries often involve unavoidable damages to neighboring, nondiseased brain tissues. Such surgical brain injury (SBI) is attributable exclusively to the neurosurgical procedure itself and may cause postoperative complications that exacerbate neurological function. Although the importance of this medical problem is fully acknowledged, intraoperative administration of adjunctive treatment such as steroids and mannitol to patients undergoing neurosurgery appear not to be efficient remedies for SBI. To date, the issue of perioperative neuroprotection specifically against SBI has not been well studied. Using a clinically relevant rat model of SBI, we are exploring a new neuroprotective strategy targeting phosphoinositide 3-kinase gamma (PI3Kγ). PI3Kγ activates multiple inflammatory responses. By attenuating neuroinflammation, selective PI3Kγ inhibition would limit postoperative complications and benefit neurological outcomes.
Collapse
Affiliation(s)
- Lei Huang
- Departments of Anesthesiology, Physiology and Pharmacology, and
| | | | - Yuechun Wang
- Physiology and Pharmacology, and Department of Physiology, School of Medicine, University of Jinan, Guangzhou 510632, China
| | | | | | | | - John H Zhang
- Departments of Anesthesiology, Physiology and Pharmacology, and Neurosurgery, Loma Linda University, Loma Linda, California 92354, and
| |
Collapse
|
12
|
Edri-Brami M, Sharoni H, Hayoun D, Skutelsky L, Nemirovsky A, Porgador A, Lichtenstein RG. Development of stage-dependent glycans on the Fc domains of IgG antibodies of ALS animals. Exp Neurol 2015; 267:95-106. [PMID: 25725350 DOI: 10.1016/j.expneurol.2015.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 01/13/2023]
Abstract
We recently revealed a unique glycan on the Fc domain of IgG antibodies in ALS patients that mediates antibody-dependent cell cytotoxicity (ADCC). This glycan has a bi-antennary structure that lacks the core fucose and sialic acid residues but contains a bisecting GlcNAc (A2BG2). Little is known, however, about the incidence of A2BG2 expression and IgG cytotoxicity under ALS conditions within well-defined clinical stages. Here, we characterize the IgG antibodies produced in ALS Tg mice by detecting intra- and extra-cellular antigens of motor neurons that express different glycan patterns during the disease. The increased number of innate immune cells found at the disease onset was insufficient to induce an optimal systemic T-cell response. Nevertheless, IgG antibodies were produced against intracellular antigens at the pre-symptomatic stage in the secondary lymphoid organs under the conditions of a poor systemic immune response. Moreover, while the glycosyltransferases of plasma B-cells that synthesize the Fc-glycans were regulated by IL-2 or IL-4, the observed glycosyltransferase pattern did not match that found in ALS Tg mice. We further found that A2BG2 glycan is specific for ALS, its quantity increased with disease progression and that the IgG antibodies identifying extracellular motor neuron antigens were developed at the final stage of the disease. Therefore, the most effective ADCC of motor neurons was observed at the end stage of the disease. We conclude that in ALS, IgG antibodies are produced despite the poor systemic immune response and that the frequency and quantity of A2BG2 glycan expression on the Fc domain depends on the clinical stage. Therefore, A2BG2 is a potential prognostic biomarker for ALS.
Collapse
Affiliation(s)
- Meital Edri-Brami
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering, University of the Negev, Beer-Sheva 84105, Israel
| | - Hila Sharoni
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering, University of the Negev, Beer-Sheva 84105, Israel
| | - Dana Hayoun
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering, University of the Negev, Beer-Sheva 84105, Israel
| | - Linor Skutelsky
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering, University of the Negev, Beer-Sheva 84105, Israel
| | - Ana Nemirovsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and The National Institute of Biotechnology (NIBN), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and The National Institute of Biotechnology (NIBN), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Rachel G Lichtenstein
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering, University of the Negev, Beer-Sheva 84105, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
13
|
Bowes AL, Yip PK. Modulating inflammatory cell responses to spinal cord injury: all in good time. J Neurotrauma 2014; 31:1753-66. [PMID: 24934600 DOI: 10.1089/neu.2014.3429] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury can have a range of debilitating effects, permanently impacting a patient's quality of life. Initially thought to be an immune privileged site, the spinal cord is able to mount a timely and well organized inflammatory response to injury. Intricate immune cell interactions are triggered, typically consisting of a staggered multiphasic immune cell response, which can become deregulated if left unchecked. Although several immunomodulatory compounds have yielded success in experimental rodent spinal cord injury models, their translation to human clinical studies needs further consideration. Because temporal differences between rodent and human inflammatory responses to spinal cord injury do exist, drug delivery timing will be a crucial component in recovery from spinal cord injury. Given too early, immunomodulatory therapies may impede beneficial inflammatory reactions to the injured spinal cord or even miss the opportunity to dampen delayed harmful autoimmune processes. Therefore, this review aims to summarize the temporal inflammatory response to spinal cord injury, as well as detailing specific immune cell functions. By clearly defining the chronological order of inflammatory events after trauma, immunomodulatory drug delivery timing can be better optimized. Further, we compare spinal cord injury-induced inflammatory responses in rodent and human studies, enabling clinicians to consider these differences when initiating clinical trials. Improved understanding of the cellular immune response after spinal cord injury would enhance the efficacy of immunomodulatory agents, enabling combined therapies to be considered.
Collapse
Affiliation(s)
- Amy L Bowes
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London, United Kingdom
| | | |
Collapse
|
14
|
Activated CD8+ T lymphocytes inhibit neural stem/progenitor cell proliferation: role of interferon-gamma. PLoS One 2014; 9:e105219. [PMID: 25133679 PMCID: PMC4136865 DOI: 10.1371/journal.pone.0105219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 07/21/2014] [Indexed: 12/03/2022] Open
Abstract
The ability of neural stem/progenitor cells (NSCs) to self-renew, migrate to damaged sites, and differentiate into neurons has renewed interest in using them in therapies for neurodegenerative disorders. Neurological diseases, including viral infections of the brain, are often accompanied by chronic inflammation, whose impact on NSC function remains unexplored. We have previously shown that chronic neuroinflammation, a hallmark of experimental herpes simplex encephalitis (HSE) in mice, is dominated by brain-infiltrating activated CD8 T-cells. In the present study, activated CD8 lymphocytes were found to suppress NSC proliferation profoundly. Luciferase positive (luc+) NSCs co-cultured with activated, MHC-matched, CD8+ lymphocytes (luc−) showed two- to five-fold lower luminescence than co-cultures with un-stimulated lymphocytes. On the other hand, similarly activated CD4+ lymphocytes did not suppress NSC growth. This differential lymphocyte effect on proliferation was confirmed by decreased BrdU uptake by NSC cultured with activated CD8 T-cells. Interestingly, neutralizing antibodies to interferon-gamma (IFN-γ) reversed the impact of CD8 lymphocytes on NSCs. Antibodies specific to the IFN-γ receptor-1 subunit complex abrogated the inhibitory effects of both CD8 lymphocytes and IFN-γ, indicating that the inhibitory effect of these cells was mediated by IFN-γ in a receptor-specific manner. In addition, activated CD8 lymphocytes decreased levels of nestin and Sox2 expression in NSCs while increasing GFAP expression, suggesting possible induction of an altered differentiation state. Furthermore, NSCs obtained from IFN-γ receptor-1 knock-out embryos were refractory to the inhibitory effects of activated CD8+ T lymphocytes on cell proliferation and Sox2 expression. Taken together, the studies presented here demonstrate a role for activated CD8 T-cells in regulating NSC function mediated through the production of IFN-γ. This cytokine may influence neuro-restorative processes and ultimately contribute to the long-term sequelae commonly seen following herpes encephalitis.
Collapse
|
15
|
Harris MG, Hulseberg P, Ling C, Karman J, Clarkson BD, Harding JS, Zhang M, Sandor A, Christensen K, Nagy A, Sandor M, Fabry Z. Immune privilege of the CNS is not the consequence of limited antigen sampling. Sci Rep 2014; 4:4422. [PMID: 24651727 PMCID: PMC3961746 DOI: 10.1038/srep04422] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/21/2014] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.
Collapse
Affiliation(s)
- Melissa G Harris
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI
| | - Paul Hulseberg
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Changying Ling
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Jozsef Karman
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Genzyme Corporation, Cambridge, MA
| | - Benjamin D Clarkson
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Jeffrey S Harding
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Mengxue Zhang
- Department of Pathology, Peking University, Beijing, China
| | - Adam Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kelsey Christensen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
16
|
Mohammad MG, Tsai VW, Ruitenberg MJ, Hassanpour M, Li H, Hart PH, Breit SN, Sawchenko PE, Brown DA. Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Invest 2014; 124:1228-41. [PMID: 24569378 PMCID: PMC3934177 DOI: 10.1172/jci71544] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023] Open
Abstract
In the CNS, no pathway dedicated to immune surveillance has been characterized for preventing the anti-CNS immune responses that develop in autoimmune neuroinflammatory disease. Here, we identified a pathway for immune cells to traffic from the brain that is associated with the rostral migratory stream (RMS), which is a forebrain source of newly generated neurons. Evaluation of fluorescently labeled leukocyte migration in mice revealed that DCs travel via the RMS from the CNS to the cervical LNs (CxLNs), where they present antigen to T cells. Pharmacologic interruption of immune cell traffic with the mononuclear cell-sequestering drug fingolimod influenced anti-CNS T cell responses in the CxLNs and modulated experimental autoimmune encephalomyelitis (EAE) severity in a mouse model of multiple sclerosis (MS). Fingolimod treatment also induced EAE in a disease-resistant transgenic mouse strain by altering DC-mediated Treg functions in CxLNs and disrupting CNS immune tolerance. These data describe an immune cell pathway that originates in the CNS and is capable of dampening anti-CNS immune responses in the periphery. Furthermore, these data provide insight into how fingolimod treatment might exacerbate CNS neuroinflammation in some cases and suggest that focal therapeutic interventions, outside the CNS have the potential to selectively modify anti-CNS immunity.
Collapse
MESH Headings
- Animals
- CD11 Antigens/metabolism
- Cell Movement
- Cells, Cultured
- Dendritic Cells/physiology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Fingolimod Hydrochloride
- Immune Tolerance
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neck
- Propylene Glycols
- Prosencephalon/immunology
- Prosencephalon/pathology
- Sphingosine/analogs & derivatives
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Mohammad G. Mohammad
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Vicky W.W. Tsai
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Marc J. Ruitenberg
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Masoud Hassanpour
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hui Li
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Prue H. Hart
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Samuel N. Breit
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Paul E. Sawchenko
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| | - David A. Brown
- Laboratory of Neuroinflammation, St. Vincent’s Centre for Applied Medical Research and University of New South Wales, Sydney, New South Wales, Australia.
School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
17
|
Shin JH, Sakoda Y, Kim JH, Tanaka T, Kida H, Kimura T, Ochiai K, Umemura T. Efficacy of Intracerebral Immunization against Pseudorabies Virus in Mice. Microbiol Immunol 2013; 50:823-30. [PMID: 17053319 DOI: 10.1111/j.1348-0421.2006.tb03849.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To evaluate the efficacy of intracerebral (IC) immunization, mice were immunized with formalin-inactivated pseudorabies virus (PRV) by either subcutaneous (SC) or IC injection, and then 10(6) plaque-forming units of PRV were introduced into the hindleg of the immunized or non-immunized mice by intramuscular injection. The antibody titer in serum was elevated and boosted by additional immunization via both the SC and IC routes, but was higher after IC immunization. Intracerebrally immunized mice were completely protected from mortality and neurological signs, whereas all the non-immunized and 80% of the subcutaneously immunized mice died after developing neurological signs. In mouse models, IC immunization is more effective at inducing a protective immune response against the transneural spread of PRV than SC immunization.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9 Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol 2013; 8:840-56. [PMID: 23695293 PMCID: PMC7088878 DOI: 10.1007/s11481-013-9470-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/28/2013] [Indexed: 12/25/2022]
Abstract
Despite the absence of conventional lymphatics, there is efficient drainage of both cerebrospinal fluid (CSF) and interstitial fluid (ISF) from the CNS to regional lymph nodes. CSF drains from the subarachnoid space by channels that pass through the cribriform plate of the ethmoid bone to the nasal mucosa and cervical lymph nodes in animals and in humans; antigen presenting cells (APC) migrate along this pathway to lymph nodes. ISF and solutes drain from the brain parenchyma to cervical lymph nodes by a separate route along 100–150 nm wide basement membranes in the walls of cerebral capillaries and arteries. This pathway is too narrow for the migration of APC so it is unlikely that APC traffic directly from brain parenchyma to lymph nodes by this route. We present a model for the pivotal involvement of regional lymph nodes in immunological reactions of the CNS. The role of regional lymph nodes in immune reactions of the CNS in virus infections, the remote influence of the gut microbiota, multiple sclerosis and stroke are discussed. Evidence is presented for the role of cervical lymph nodes in the induction of tolerance and its influence on neuroimmunological reactions. We look to the future by examining how nanoparticle technology will enhance our understanding of CNS-lymph node connections and by reviewing the implications of lymphatic drainage of the brain for diagnosis and therapy of diseases of the CNS ranging from neuroimmunological disorders to dementias. Finally, we review the challenges and opportunities for progress in CNS-lymph node interactions and their involvement in disease processes.
Collapse
Affiliation(s)
- Jon D. Laman
- Department of Immunology, room NB-1148a Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Roy O. Weller
- Clinical Neurosciences, Faculty of Medicine, Southampton University, Mailpoint 813, Southampton General Hospital, Southampton, SO16 6YD UK
| |
Collapse
|
19
|
Dendritic cells and multiple sclerosis: disease, tolerance and therapy. Int J Mol Sci 2012; 14:547-62. [PMID: 23271370 PMCID: PMC3565281 DOI: 10.3390/ijms14010547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/06/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs), the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.
Collapse
|
20
|
D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain dendritic cells: biology and pathology. Acta Neuropathol 2012; 124:599-614. [PMID: 22825593 PMCID: PMC3700359 DOI: 10.1007/s00401-012-1018-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DC) are the professional antigen-presenting cells of the immune system. In their quiescent and mature form, the presentation of self-antigens by DC leads to tolerance; whereas, antigen presentation by mature DC, after stimulation by pathogen-associated molecular patterns, leads to the onset of antigen-specific immunity. DC have been found in many of the major organs in mammals (e.g. skin, heart, lungs, intestines and spleen); while the brain has long been considered devoid of DC in the absence of neuroinflammation. Consequently, microglia, the resident immune cell of the brain, have been charged with many functional attributes commonly ascribed to DC. Recent evidence has challenged the notion that DC are either absent or minimal players in brain immune surveillance. This review will discuss the recent literature examining DC involvement within both the young and aged steady-state brain. We will also examine DC contributions during various forms of neuroinflammation resulting from neurodegenerative autoimmune disease, injury, and CNS infections. This review also touches upon DC trafficking between the central nervous system and peripheral immune compartments during viral infections, the new molecular technologies that could be employed to enhance our current understanding of brain DC ontogeny, and some potential therapeutic uses of DC within the CNS.
Collapse
Affiliation(s)
- Paul M. D’Agostino
- The Laboratories of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | | | - Niroshana Anandasabapathy
- The Laboratories of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Bulloch
- The Laboratories of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA. The Laboratories of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA. The Laboratories of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Neuroimmunology and Inflammation Program, The Rockefeller University, 1230 York Avenue, Box 165, New York, NY 10065, USA
| |
Collapse
|
21
|
Kaminski M, Bechmann I, Pohland M, Kiwit J, Nitsch R, Glumm J. Migration of monocytes after intracerebral injection at entorhinal cortex lesion site. J Leukoc Biol 2012; 92:31-9. [PMID: 22291210 DOI: 10.1189/jlb.0511241] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The lack of classical lymph vessels within brain tissue complicates immune surveillance of the CNS, and therefore, cellular emigration out of the CNS parenchyma requires alternate pathways. Whereas invasion of blood-derived mononuclear cells and their transformation into ramified, microglia-like cells in areas of axonal degeneration across an intact BBB have been demonstrated, it still remained unclear whether these cells reside permanently, undergo apoptosis, or leave the brain to present antigen in lymphoid organs. With the use of ECL of mice and injection of GFP-expressing monocytes, we followed the appearance of injected cells in spleen and LNs and the migratory pathways in whole-head histological sections. Monocytes migrated from the lesion site to deep CLNs, peaking in number at Day 7, but they were virtually absent in spleen and in superficial CLNs and inguinal LNs until Day 21 after lesion/injection. In whole-head sections, GFP monocytes were found attached to the olfactory nerves and located within the nasal mucosa at 48 hpi. Thus, monocytes are capable of migrating from lesioned brain areas to deep CLNs and use the cribriform plate as an exit route.
Collapse
Affiliation(s)
- Miriam Kaminski
- Institute of Cell Biology and Neurobiology, Charité–University of Medicine Berlin, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Harris MG, Fabry Z. Initiation and Regulation of CNS Autoimmunity: Balancing Immune Surveillance and Inflammation in the CNS. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.33026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Clarkson BD, Héninger E, Harris MG, Lee J, Sandor M, Fabry Z. Innate-adaptive crosstalk: how dendritic cells shape immune responses in the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:309-33. [PMID: 21948376 DOI: 10.1007/978-1-4614-0106-3_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous group of professional antigen presenting cells that lie in a nexus between innate and adaptive immunity because they recognize and respond to danger signals and subsequently initiate and regulate effector T-cell responses. Initially thought to be absent from the CNS, both plasmacytoid and conventional DCs as well as DC precursors have recently been detected in several CNS compartments where they are seemingly poised for responding to injury and pathogens. Additionally, monocyte-derived DCs rapidly accumulate in the inflamed CNS where they, along with other DC subsets, may function to locally regulate effector T-cells and/or carry antigens to CNS-draining cervical lymph nodes. In this review we highlight recent research showing that (a) distinct inflammatory stimuli differentially recruit DC subsets to the CNS; (b) DC recruitment across the blood-brain barrier (BBB) is regulated by adhesion molecules, growth factors, and chemokines; and (c) DCs positively or negatively regulate immune responses in the CNS.
Collapse
Affiliation(s)
- Benjamin D Clarkson
- Department of Pathology and Laboratory Medicine, 6130 MSC University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Sosa RA, Forsthuber TG. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 2011; 31:753-68. [PMID: 21919736 PMCID: PMC3189551 DOI: 10.1089/jir.2011.0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4(+) T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process.
Collapse
Affiliation(s)
- Rebecca A Sosa
- Department of Biology, University of Texas at San Antonio, Texas 78249, USA
| | | |
Collapse
|
25
|
Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest 2010; 120:1368-79. [PMID: 20440079 DOI: 10.1172/jci41911] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CNS is an immune-privileged environment, yet the local control of multiple pathogens is dependent on the ability of immune cells to access and operate within this site. However, inflammation of the distinct anatomical sites (i.e., meninges, cerebrospinal fluid, and parenchyma) associated with the CNS can also be deleterious. Therefore, control of lymphocyte entry and migration within the brain is vital to regulate protective and pathological responses. In this review, several recent advances are highlighted that provide new insights into the processes that regulate leukocyte access to, and movement within, the brain.
Collapse
Affiliation(s)
- Emma H Wilson
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
26
|
Shin JH, Sakoda Y, Yano S, Ochiai K, Kida H, Umemura T. Effective prevention against rabies by intracerebral immunization in mice. J Vet Med Sci 2009; 71:1331-6. [PMID: 19887739 DOI: 10.1292/jvms.001331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate the efficacy of intracerebral (IC) immunization, mice were immunized with a rabies vaccine by the subcutaneous (SC), intramuscular (IM) or IC route, and 10-fold the 50% lethal dose of rabies virus was inoculated into the hindleg of the immunized or non-immunized mice. The antibody titer in serum was elevated and boosted by additional immunization via all routes, but highest after the IC immunization followed by the IM and SC routes, in this order. Intracerebrally immunized mice were completely protected from death and the neurological signs of infection, whereas the IM or SC immunization only partly protected the mice. In mouse models, IC immunization is more effective at inducing a protective immune response against the transneural spread of rabies virus than IM or SC immunization.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Grauer OM, Wesseling P, Adema GJ. Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol 2009; 19:674-93. [PMID: 19744040 DOI: 10.1111/j.1750-3639.2009.00315.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite aggressive multimodal treatment approaches, the prognosis for patients with diffuse gliomas remains disappointing. Glioma cells often extensively infiltrate in the surrounding brain parenchyma, a phenomenon that helps them to escape surgical removal, radiation exposure and chemotherapy. Moreover, conventional therapy is often associated with considerable local and systemic side effects. Therefore, the development of novel therapeutic approaches is essential to improve the outcome of these patients. Immunotherapy offers the opportunity to specifically target residual radio-and chemoresistant tumor cells without damaging healthy neighboring brain tissue. Significant progress has been made in recent years both in understanding the mechanisms of immune regulation in the central nervous system (CNS) as well as tumor-induced and host-mediated immunosuppression elicited by gliomas. In this review, after discussing the special requirements needed for the initiation and control of immune responses in the CNS, we focus on immunological phenomena observed in glioma patients, discuss different immunological approaches to attack glioma-associated target structures and touch on further strategies to improve the efficacy of immunotherapy of gliomas.
Collapse
Affiliation(s)
- Oliver M Grauer
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | |
Collapse
|
28
|
Meningeal inflammation is not associated with cortical demyelination in chronic multiple sclerosis. J Neuropathol Exp Neurol 2009; 68:1021-8. [PMID: 19680141 DOI: 10.1097/nen.0b013e3181b4bf8f] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cortical demyelination can be extensive in chronic multiple sclerosis (MS) patients. Cortical lesions are not associated with lymphocyte infiltration, blood-brain barrier disruption, or complement deposition; therefore, their pathogenesis is unclear. We analyzed the extent and cellular composition of leptomeningeal inflammatory infiltrates and their relationship with cortical demyelinated lesions in brain autopsy samples from 28 chronic MS patients; samples from 6 nonneurological disease control patients were also studied. Immunohistochemistry was used to detect meningeal T cells, B cells, macrophages, mature and immature dendritic cells, T-helper cells, (activated) cytotoxic T cells, and plasma cells. Quantitative analysis revealed significant meningeal inflammation in chronic MS patients; T cells were the predominant inflammatory cells. Morphometric analysis was performed on coronal hemisphere sections of the MS cases to assess subpial demyelination; no correlation between the extent of subpial demyelination and extent of meningeal inflammation was identified. Moreover, no differences were observed in the degree or cellular composition of meningeal infiltrates in areas directly adjacent to subpial lesions compared with areas adjacent to normal-appearing gray matter in the MS cases. In addition, no follicle-like structures were found in the MS samples. Our data suggest that the occurrence of cortical lesions is not related to the presence of meningeal inflammation in a large number of chronic MS patients.
Collapse
|
29
|
Inflammation on the mind: visualizing immunity in the central nervous system. Curr Top Microbiol Immunol 2009; 334:227-63. [PMID: 19521688 DOI: 10.1007/978-3-540-93864-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) is a remarkably complex structure that utilizes electrochemical signaling to coordinate activities throughout the entire body. Because the nervous system contains nonreplicative cells, it is postulated that, through evolutionary pressures, this compartment has acquired specialized mechanisms to limit damage. One potential source of damage comes from our immune system, which has the capacity to survey the CNS and periphery for the presence of foreign material. The immune system is equipped with numerous effector mechanisms and can greatly alter the homeostasis and function of the CNS. Degeneration, autoimmunity, and pathogen infection can all result in acute, and sometimes chronic, inflammation within the CNS. Understanding the specialized functionality of innate and adaptive immune cells within the CNS is critical to the design of more efficacious treatments to mitigate CNS inflammatory conditions. Much of our knowledge of CNS-immune interactions stems from seminal studies that have used static and dynamic imaging approaches to visualize inflammatory cells responding to different CNS conditions. This review will focus on how imaging techniques have elevated our understanding of CNS inflammation as well as the exciting prospects that lie ahead as we begin to pursue investigation of the inflamed CNS in real time.
Collapse
|
30
|
Deb C, Howe CL. Functional characterization of mouse spinal cord infiltrating CD8+ lymphocytes. J Neuroimmunol 2009; 214:33-42. [PMID: 19596449 DOI: 10.1016/j.jneuroim.2009.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 01/08/2023]
Abstract
Understanding the immunopathogenesis of neuroimmunological diseases of the CNS requires a robust method for isolating and characterizing the immune effector cells that infiltrate the spinal cord in animal models. We have developed a simple and rapid isolation method that produces high yields of spinal cord infiltrating leukocytes from a single demyelinated spinal cord and which maintains high surface expression of key immunophenotyping antigens. Using this method and the Theiler's virus model of chronic demyelination, we report the presence of spinal cord infiltrating acute effector CD8(+) lymphocytes that are CD45(hi)CD44(lo)CD62L(-) and a population of spinal cord infiltrating target effector memory CD8(+) lymphocytes that are CD45(hi)CD44(hi)CD62L(-). These cells respond robustly to ex vivo stimulation by producing interferon gamma but do not exhibit specificity for Theiler's virus in a cytotoxicity assay. We conclude that target-derived lymphocytes in a mouse model of chronic spinal cord demyelination may have unique functional specificities.
Collapse
Affiliation(s)
- Chandra Deb
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
31
|
Zozulya AL, Ortler S, Fabry Z, Sandor M, Wiendl H. The level of B7 homologue 1 expression on brain DC is decisive for CD8 Treg cell recruitment into the CNS during EAE. Eur J Immunol 2009; 39:1536-43. [PMID: 19424967 DOI: 10.1002/eji.200839165] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DC in the CNS have emerged as the major rate-limiting factor for immune invasion and subsequent neuroinflammation during EAE. The mechanism of how this is regulated by brain-localized DC remains unknown. Here, we describe the ability of brain-localized DC expressing B7-H1 molecules to recruit CD8(+) T cells to the site of inflammation. Using intracerebral microinjections of B7-homologue 1-deficient DC, we demonstrate a substantial brain infiltration of CD8(+) T cells displaying a regulatory phenotype (CD122(+)) and function, resulting in a decrease of EAE peak clinical values. The recruitment of regulatory-type CD8(+) T cells into the CNS and the role of brain DC expressing B7-homologue 1 molecules in this process open up the possibility of DC-targeted therapeutic manipulation of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Alla L Zozulya
- University of Wuerzburg, Department of Neurology, Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS. J Neuroimmunol 2009; 213:112-22. [PMID: 19535154 DOI: 10.1016/j.jneuroim.2009.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 12/17/2022]
Abstract
To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-gamma(+)CD4(+) T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-gammaIL-17 double-positive CD4(+) T cells is unique to the CNS. The major CNS source of TNF-alpha is microglia, with modest production by CD4(+) T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3(+)CD4(+) T cells and PD-L2(+) dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection.
Collapse
|
33
|
Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS. J Neurosci 2009; 29:140-52. [PMID: 19129392 DOI: 10.1523/jneurosci.2199-08.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DCs) appear in higher numbers within the CNS as a consequence of inflammation associated with autoimmune disorders, such as multiple sclerosis, but the contribution of these cells to the outcome of disease is not yet clear. Here, we show that stimulatory or tolerogenic functional states of intracerebral DCs regulate the systemic activation of neuroantigen-specific T cells, the recruitment of these cells into the CNS and the onset and progression of experimental autoimmune encephalomyelitis (EAE). Intracerebral microinjection of stimulatory DCs exacerbated the onset and clinical course of EAE, accompanied with an early T-cell infiltration and a decreased proportion of regulatory FoxP3-expressing cells in the brain. In contrast, the intracerebral microinjection of DCs modified by tumor necrosis factor alpha induced their tolerogenic functional state and delayed or prevented EAE onset. This triggered the generation of interleukin 10 (IL-10)-producing neuroantigen-specific lymphocytes in the periphery and restricted IL-17 production in the CNS. Our findings suggest that DCs are a rate-limiting factor for neuroinflammation.
Collapse
|
34
|
Maña P, Fordham SA, Staykova MA, Correcha M, Silva D, Willenborg DO, Liñares D. Demyelination caused by the copper chelator cuprizone halts T cell mediated autoimmune neuroinflammation. J Neuroimmunol 2009; 210:13-21. [PMID: 19344958 DOI: 10.1016/j.jneuroim.2009.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/02/2009] [Accepted: 02/17/2009] [Indexed: 11/12/2022]
Abstract
Myelin reactive T cells are central in the development of the autoimmune response leading to CNS destruction in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis (EAE). Investigations on the mechanisms underlying the activation and expansion of myelin reactive T have stressed the importance of non-autoimmune conditions impinging the autoimmune repertoire potentially involved in the disease. Here, we show that CNS injury caused by the toxic cuprizone results in the generation of immunoreactivity towards several myelin components. Paradoxically, exposure to CNS injury does not increase the susceptibility to develop EAE, but render mice protected to the pathogenic autoimmune response against myelin antigens.
Collapse
Affiliation(s)
- Paula Maña
- Australian National University Medical School, Canberra Hospital, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Lee J, Reinke EK, Zozulya AL, Sandor M, Fabry Z. Mycobacterium bovis bacille Calmette-Guérin infection in the CNS suppresses experimental autoimmune encephalomyelitis and Th17 responses in an IFN-gamma-independent manner. THE JOURNAL OF IMMUNOLOGY 2009; 181:6201-12. [PMID: 18941210 DOI: 10.4049/jimmunol.181.9.6201] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-gamma-producing CD4(+) T cells in the CNS. IL-17(+)CD4(+) T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3(+)CD4(+) T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17(+)CD4(+) T cell responses were similar in both wild-type and IFN-gamma-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-gamma-mediated mechanisms.
Collapse
Affiliation(s)
- JangEun Lee
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
36
|
Zhang H, Podojil JR, Luo X, Miller SD. Intrinsic and induced regulation of the age-associated onset of spontaneous experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2008; 181:4638-47. [PMID: 18802066 DOI: 10.4049/jimmunol.181.7.4638] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple sclerosis is characterized by perivascular CNS infiltration of myelin-specific CD4(+) T cells and activated mononuclear cells. TCR transgenic mice on the SJL background specific for proteolipid protein (PLP)(139-151) develop a high incidence of spontaneous experimental autoimmune encephalomyelitis (sEAE). We examined the intrinsic mechanisms regulating onset and severity of sEAE. CD4(+) T cells isolated from the cervical lymph nodes, but not spleens, of diseased 5B6 transgenic mice are hyperactivated when compared with age-matched healthy mice and produce both IFN-gamma and IL-17, indicating that the cervical lymph node is the initial peripheral activation site. The age-associated development of sEAE correlates with a decline in both the functional capacity of natural regulatory T cells (nTregs) and in PLP(139-151)-induced IL-10 production and a concomitant increase in IL-17 production. Anti-CD25-induced inactivation of nTregs increased the incidence and severity of sEAE. Conversely, induction of peripheral tolerance via the i.v. injection of PLP(139-151)-pulsed, ethylcarbodiimide-fixed APCs (PLP(139-151)-SP) inhibited the development of clinical disease concomitant with increased production of IL-10 and conversion of Foxp3(+) Tregs from CD4(+)CD25(-) progenitors. These data indicate that heterogeneous populations of Tregs regulate onset of sEAE, and that induction of peripheral tolerance can be exploited to prevent/treat spontaneous autoimmune disease.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Microbiology-Immunology and the Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
37
|
Grauer OM, Molling JW, Bennink E, Toonen LWJ, Sutmuller RPM, Nierkens S, Adema GJ. TLR ligands in the local treatment of established intracerebral murine gliomas. THE JOURNAL OF IMMUNOLOGY 2008; 181:6720-9. [PMID: 18981089 DOI: 10.4049/jimmunol.181.10.6720] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Local TLR stimulation is an attractive approach to induce antitumor immunity. In this study, we compared various TLR ligands for their ability to affect murine GL261 cells in vitro and to eradicate established intracerebral murine gliomas in vivo. Our data show that GL261 cells express TLR2, TLR3, and TLR4 and respond to the corresponding TLR ligands with increasing MHC class I expression and inducing IL-6 secretion in vitro, while TLR5, TLR7, and TLR9 are essentially absent. Remarkably, CpG-oligonucleotides (CpG-ODN, TLR9) appeared to inhibit GL261 cell proliferation in a cell-type specific, but CpG-motif and TLR9-independent manner. A single intratumoral injection of CpG-ODN most effectively inhibited glioma growth in vivo and cured 80% of glioma-bearing C57BL/6 mice. Intratumoral injection of Pam3Cys-SK4 (TLR1/2) or R848 (TLR7) also produced a significant survival benefit, whereas poly(I:C) (TLR3) or purified LPS (TLR4) stimulation alone was not effective. Additional studies using TLR9(+/+) wild-type and TLR9(-/-) knockout mice revealed that the efficacy of local CpG-ODN treatment in vivo required TLR9 expression on nontumor cells. Additional experiments demonstrated increased frequencies of tumor-infiltrating IFN-gamma producing CD4(+) and CD8(+) effector T cells and a marked increase in the ratio of CD4(+) effector T cells to CD4(+)FoxP3(+) regulatory T cells upon CpG-ODN treatment. Surviving CpG-ODN treated mice were also protected from a subsequent tumor challenge without further addition of CpG-ODN. In summary, this study underlines the potency of local TLR treatment in antiglioma therapy and demonstrates that local CpG-ODN treatment most effectively restores antitumor immunity in a therapeutic murine glioma model.
Collapse
Affiliation(s)
- Oliver M Grauer
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Hochmeister S, Zeitelhofer M, Bauer J, Nicolussi EM, Fischer MT, Heinke B, Selzer E, Lassmann H, Bradl M. After injection into the striatum, in vitro-differentiated microglia- and bone marrow-derived dendritic cells can leave the central nervous system via the blood stream. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1669-81. [PMID: 18974305 DOI: 10.2353/ajpath.2008.080234] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prototypic migratory trail of tissue-resident dendritic cells (DCs) is via lymphatic drainage. Since the central nervous system (CNS) lacks classical lymphatic vessels, and antigens and cells injected into both the CNS and cerebrospinal fluid have been found in deep cervical lymph nodes, it was thought that CNS-derived DCs exclusively used the cerebrospinal fluid pathway to exit from tissues. It has become evident, however, that DCs found in peripheral organs can also leave tissues via the blood stream. To study whether DCs derived from microglia and bone marrow can also use this route of emigration from the CNS, we performed a series of experiments in which we injected genetically labeled DCs into the striata of rats. We show here that these cells migrated from the injection site to the perivascular space, integrated into the endothelial lining of the CNS vasculature, and were then present in the lumen of CNS blood vessels days after the injection. Moreover, we also found these cells in both mesenteric lymph nodes and spleens. Hence, microglia- and bone marrow-derived DCs can leave the CNS via the blood stream.
Collapse
Affiliation(s)
- Sonja Hochmeister
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kooi EJ, van Horssen J, Witte ME, Amor S, Bø L, Dijkstra CD, van der Valk P, Geurts JJG. Abundant extracellular myelin in the meninges of patients with multiple sclerosis. Neuropathol Appl Neurobiol 2008; 35:283-95. [PMID: 19473295 DOI: 10.1111/j.1365-2990.2008.00986.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In multiple sclerosis (MS) myelin debris has been observed within MS lesions, in cerebrospinal fluid and cervical lymph nodes, but the route of myelin transport out of the brain is unknown. Drainage of interstitial fluid from the brain parenchyma involves the perivascular spaces and leptomeninges, but the presence of myelin debris in these compartments has not been described. AIMS To determine whether myelin products are present in the meninges and perivascular spaces of MS patients. METHODS Formalin-fixed brain tissue containing meninges from 29 MS patients, 9 non-neurological controls, 6 Alzheimer's disease, 5 stroke, 5 meningitis and 7 leucodystrophy patients was investigated, and immunohistochemically stained for several myelin proteins [proteolipid protein (PLP), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)]. On brain material from MS patients and (non)neurological controls, PLP immunostaining was used to systematically investigate the presence of myelin debris in the meninges, using a semiquantitative scale. RESULTS Extensive extracellular presence of myelin particles, positive for PLP, MBP, MOG and CNPase in the leptomeninges of MS patients, was observed. Myelin particles were also observed in perivascular spaces of MS patients. Immunohistochemical double-labelling for macrophage and dendritic cell markers and PLP confirmed that the vast majority of myelin particles were located extracellularly. Extracellular myelin particles were virtually absent in meningeal tissue of non-neurological controls, Alzheimer's disease, stroke, meningitis and leucodystrophy cases. CONCLUSIONS In MS leptomeninges and perivascular spaces, abundant extracellular myelin can be found, whereas this is not the case for controls and other neurological disease. This may be relevant for understanding sustained immunogenicity or, alternatively, tolerogenicity in MS.
Collapse
Affiliation(s)
- E-J Kooi
- Department of Pathology, VU University Medical Centre, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ling C, Verbny YI, Banks MI, Sandor M, Fabry Z. In situ activation of antigen-specific CD8+ T cells in the presence of antigen in organotypic brain slices. THE JOURNAL OF IMMUNOLOGY 2008; 180:8393-9. [PMID: 18523307 DOI: 10.4049/jimmunol.180.12.8393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8(+) T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c(+) cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c(+) cells stimulate Ag-specific naive CD8(+) T cells locally in the CNS and may contribute to immune responses in the brain.
Collapse
Affiliation(s)
- Changying Ling
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
41
|
Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 2008; 158:1112-21. [PMID: 18674593 DOI: 10.1016/j.neuroscience.2008.07.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 12/12/2022]
Abstract
Traumatic spinal cord injury (SCI) in mammals causes widespread glial activation and recruitment to the CNS of innate (e.g. neutrophils, monocytes) and adaptive (e.g. T and B lymphocytes) immune cells. To date, most studies have sought to understand or manipulate the post-traumatic functions of astrocytes, microglia, neutrophils or monocytes. Significantly less is known about the consequences of SCI-induced lymphocyte activation. Yet, emerging data suggest that T and B cells are activated by SCI and play significant roles in shaping post-traumatic inflammation and downstream cascades of neurodegeneration and repair. Here, we provide neurobiologists with a timely review of the mechanisms and implications of SCI-induced lymphocyte activation, including a discussion of different experimental strategies that have been designed to manipulate lymphocyte function for therapeutic gain.
Collapse
|
42
|
Priming of CD8+ T cells during central nervous system infection with a murine coronavirus is strain dependent. J Virol 2008; 82:6150-60. [PMID: 18417581 DOI: 10.1128/jvi.00106-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-specific CD8(+) T cells are critical for protection against neurotropic coronaviruses; however, central nervous system (CNS) infection with the recombinant JHM (RJHM) strain of mouse hepatitis virus (MHV) elicits a weak CD8(+) T-cell response in the brain and causes lethal encephalomyelitis. An adoptive transfer model was used to elucidate the kinetics of CD8(+) T-cell priming during CNS infection with RJHM as well as with two MHV strains that induce a robust CD8(+) T-cell response (RA59 and SJHM/RA59, a recombinant A59 virus expressing the JHM spike). While RA59 and SJHM/RA59 infections resulted in CD8(+) T-cell priming within the first 2 days postinfection, RJHM infection did not lead to proliferation of naïve CD8(+) T cells. While all three viruses replicated efficiently in the brain, only RA59 and SJHM/RA59 replicated to appreciable levels in the cervical lymph nodes (CLN), the site of T-cell priming during acute CNS infection. RJHM was unable to suppress the CD8(+) T-cell response elicited by RA59 in mice simultaneously infected with both strains, suggesting that RJHM does not cause generalized immunosuppression. RJHM was also unable to elicit a secondary CD8(+) T-cell response in the brain following peripheral immunization against a viral epitope. Notably, the weak CD8(+) T-cell response elicited by RJHM was unique to CNS infection, since peripheral inoculation induced a robust CD8(+) T-cell response in the spleen. These findings suggest that the failure of RJHM to prime a robust CD8(+) T-cell response during CNS infection is likely due to its failure to replicate in the CLN.
Collapse
|
43
|
Shin JH, Sakoda Y, Kim JH, Ochiai K, Umemura T. Comparison of antibody titers in rabbits following immunization with inactivated influenza virus via subarachnoidal or subcutaneous route. J Vet Med Sci 2008; 69:1167-9. [PMID: 18057832 DOI: 10.1292/jvms.69.1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rabbits were immunized with inactivated influenza virus via the subarachnoidal (SA) or subcutaneous (SC) route, and the antibody titers in cerebrospinal fluid (CSF) and serum were assayed. There were no nervous signs or morphological lesions related to SA immunization. In the SC group, the antibody titer was elevated in serum, but not elevated in CSF. In the SA group, the antibody titer was significantly elevated in serum and even in CSF, and their antibody titers were much greater than in the SC group. The present results suggest that intrathecal immunization is more effective than SC immunization at inducing a protective immune response against the transneural spread of viruses.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
44
|
Dijkstra IM, de Haas AH, Brouwer N, Boddeke HWGM, Biber K. Challenge with innate and protein antigens induces CCR7 expression by microglia in vitro and in vivo. Glia 2007; 54:861-72. [PMID: 16977602 DOI: 10.1002/glia.20426] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since activated microglia are able to phagocytose damaged cells and subsequently express major histocompatibility complex class II (MHC-II) and co-stimulatory proteins, they are considered to function as antigen presenting cells (APCs) in the central nervous system. The maturation and migratory potential of professional APCs is associated with the expression of chemokine receptor CCR7. We therefore investigated whether the immunological activation of microglia induces CCR7 expression. We here present that activation of cultured microglia by both the innate antigen lipopolysaccharide and protein antigen ovalbumin rapidly induces CCR7 expression, accompanied by increased MHC-II expression. Moreover, it is shown that CCR7 expression in IBA-1 positive cells is induced during the symptom onset and progression of experimental autoimmune encephalomyelitis, a rodent model for multiple sclerosis. These results suggest that microglia express CCR7 under specific inflammatory conditions, corroborating the idea that microglia develop into APCs with migratory potential toward lymphoid chemokines.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigen Presentation/immunology
- Antigen-Presenting Cells/immunology
- Antigens/immunology
- Chemotaxis/immunology
- Disease Models, Animal
- Encephalitis/immunology
- Encephalitis/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Gliosis/immunology
- Histocompatibility Antigens Class II/immunology
- Lipopolysaccharides/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/immunology
- Ovalbumin/immunology
- Phagocytosis/immunology
- Receptors, CCR7
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
Collapse
Affiliation(s)
- I M Dijkstra
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Byram SC, Serpe CJ, DeBoy CA, Sanders VM, Jones KJ. Motoneurons and CD4+ effector T cell subsets: Neuroprotection and repair. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Walter BA, Valera VA, Takahashi S, Matsuno K, Ushiki T. Evidence of antibody production in the rat cervical lymph nodes after antigen administration into the cerebrospinal fluid. ACTA ACUST UNITED AC 2006; 69:37-47. [PMID: 16609268 DOI: 10.1679/aohc.69.37] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously showed histologically that, in the rat, the cerebrospinal fluid drains from the subarachnoid space along the olfactory nerves to the nasal lymphatics and empties into the superficial and deep cervical lymph nodes. The present study was performed to investigate whether these lymph nodes play a role in the immune response of the central nervous system. For this purpose, keyhole limpet hemocyanin conjugated with fluorescein isothiocyanate (KLH-FITC) was administered into the subarachnoid space of the rat brain, and the time-kinetics and location of FITC and anti-FITC antibody forming cells in the cervical lymph nodes were studied histologically and immunohistochemically. FITC fluorescence was detected in superficial and deep cervical lymph nodes as well as the subarachnoid space and the nasal mucosa 2 h after FITC-KLH injection into the subarachnoid space. The specific antibody-forming cells first appeared in both the superficial and deep cervical lymph nodes on the 4th day after antigen administration although the reaction was more intense in the deep than in the superficial cervical lymph nodes. These cells were located in the medullary cords of the cervical lymph nodes. The number of antibody forming cells increased thereafter, reached a peak around the day 6, and then declined on day 10. These findings indicate that antigens introduced in the cerebrospinal fluid are drained into the cervical lymph nodes through the nasal lymphatics and initiate the antigen-specific immune response there. Thus, the cervical lymph nodes probably act as a monitoring site for cerebrospinal fluid and play a major role in the central nervous system immune response.
Collapse
Affiliation(s)
- Beatriz A Walter
- Department of Microscopic Anatomy and Bio-Imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | |
Collapse
|
47
|
Ling C, Sandor M, Suresh M, Fabry Z. Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J Neurosci 2006; 26:731-41. [PMID: 16421293 PMCID: PMC6675378 DOI: 10.1523/jneurosci.3502-05.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
T-cell recruitment into the brain is critical in inflammatory and autoimmune diseases of the CNS. We use intracerebral antigen microinjection and tetramer technology to track antigen-specific CD8+ T-cells in the CNS and to clarify the contribution of antigen deposition or traumatic injury to the accumulation of T-cells in the brain. We demonstrate that, after intracerebral microinjection of ovalbumin, ovalbumin-specific CD8+ T-cells expand systemically and then migrate into the brain where they complete additional proliferation cycles. T-cells in the brain are activated and respond to in vitro secondary antigen challenge. CD8+ T-cells accumulate and persist in sites of antigen in the brain without replenishment from the periphery. Persistent survival of CD8+ T-cells at sites of cognate antigen is significantly reduced by blocking CD154 molecules. A small traumatic injury itself does not lead to recruitment of CD8+ T-cells into the brain but attracts activated antigen-specific CD8+ T-cells from cognate antigen injection sites. This process is presumably antigen independent and cannot be inhibited by blocking CD154 molecules. These data show that activated antigen-specific CD8+ T-cells accumulate in the CNS at both cognate antigen-containing and traumatic injury sites after intracerebral antigen delivery. The accumulation of activated antigen-specific T-cells at traumatic injury sites, in addition to antigen-containing areas, could amplify local inflammatory processes in the CNS. Combination therapies in neuroinflammatory diseases to block both of these processes should be considered.
Collapse
Affiliation(s)
- Changying Ling
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
48
|
|
49
|
Reinke E, Fabry Z. Breaking or making immunological privilege in the central nervous system: the regulation of immunity by neuropeptides. Immunol Lett 2005; 104:102-9. [PMID: 16375975 DOI: 10.1016/j.imlet.2005.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 11/09/2005] [Accepted: 11/09/2005] [Indexed: 11/13/2022]
Abstract
Immune privilege in the central nervous system (CNS) is not maintained by immune ignorance of the CNS, but by CNS control over inflammatory processes. In this review we examine the role neuropeptides play in maintenance of immune privilege in the CNS. Vasoactive intestinal peptide, alpha-melanocyte-stimulating-hormone, neuropeptide Y, and somatostatin are members of an anti-inflammatory repertoire of immune modulators, while substance P acts to break immune privilege and promote inflammation in the CNS. Here we focus both on cellular responses to these neuropeptides and the role these peptides play in immune privilege as it relates to CNS autoimmunity.
Collapse
Affiliation(s)
- Emily Reinke
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
50
|
Abstract
Microglia participate in all phases of the multiple sclerosis (MS) disease process. As members of the innate immune system, these cells have evolved to respond to stranger/danger signals; such a response within the central nervous system (CNS) environment has the potential to induce an acute inflammatory response. Engagement of Toll-like receptors (TLRs), a major family of pattern-recognition receptors (PRRs), provides an important mechanism whereby microglia can interact with both exogenous and endogenous ligands within the CNS. Such interactions modulate the capacity of microglia to present antigens to cells of the adaptive immune system and thus contribute to the initiation and propagation of the more sophisticated antigen-directed responses. This inflammatory response introduces the potential for bidirectional feedback between CNS resident and infiltrating systemic cells. Such interactions acquire particular relevance in the era of therapeutics for MS because the infiltrating cells can be subjected to systemic immunomodulatory therapies known to change their functional properties. Phagocytosis by microglia/macrophages is a hallmark of the MS lesion; however, the extent of tissue damage and the type of cell death will dictate subsequent innate responses. Microglia/macrophages are armed with a battery of effector molecules, such as reactive nitrogen species, that may contribute to CNS tissue injury, specifically to the injury of oligodendrocytes that is associated with MS. A therapeutic challenge is to modulate the dynamic properties of microglia/macrophages so as to limit potentially damaging innate responses, to protect the CNS from injury, and to promote local recovery.
Collapse
Affiliation(s)
- Carolyn Jack
- Neuroimmunology Unit, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|