1
|
Abstract
Since the initial observation of increased immunoglobulin concentrations in the cerebrospinal fluid of multiple sclerosis (MS) patients in the 1940s, B cells have been considered to participate in the pathology of MS through the production of autoantibodies reactive against central nervous system antigens. However, it is now recognized that B cells contribute to MS relapses via antibody-independent activities, including the presentation of antigens to T cells and the release of pro-inflammatory cytokines. In addition, the recent identification of B cell-rich follicle-like structures in the meninges of progressive MS patients suggests that the pathogenic roles of B cells also exist at the progressive phase of this disease. Recently, large-scale clinical trials have demonstrated the efficacy of B-cell depletion therapy using anti-CD20 antibodies in relapsing as well as primary progressive MS. B-cell depletion therapy has become an essential treatment option for MS based on its unique benefit to risk balance in relapsing MS, and because it is the only drug that has been shown to be effective in primary progressive MS to date.
Collapse
Affiliation(s)
- Yusei Miyazaki
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| |
Collapse
|
2
|
Li Z, Liu Y, Jia A, Cui Y, Feng J. Cerebrospinal fluid cells immune landscape in multiple sclerosis. J Transl Med 2021; 19:125. [PMID: 33766068 PMCID: PMC7995713 DOI: 10.1186/s12967-021-02804-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Multiple Sclerosis (MS) is a potentially devastating autoimmune neurological disorder, which characteristically induces demyelination of white matter in the brain and spinal cord. Methods In this study, three characteristics of the central nervous system (CNS) immune microenvironment occurring during MS onset were explored; immune cell proportion alteration, differential gene expression profile, and related pathways. The raw data of two independent datasets were obtained from the ArrayExpress database; E-MTAB-69, which was used as a derivation cohort, and E-MTAB-2374 which was used as a validation cohort. Differentially expressed genes (DEGs) were identified by the false discovery rate (FDR) value of < 0.05 and |log2 (Fold Change)|> 1, for further analysis. Then, functional enrichment analyses were performed to explore the pathways associated with MS onset. The gene expression profiles were analyzed using CIBERSORT to identify the immune type alterations involved in MS disease. Results After verification, the proportion of five types of immune cells (plasma cells, monocytes, macrophage M2, neutrophils and eosinophils) in cerebrospinal fluid (CSF) were revealed to be significantly altered in MS cases compared to the control group. Thus, the complement and coagulation cascades and the systemic lupus erythematosus (SLE) pathways may play critical roles in MS. We identified NLRP3, LILRB2, C1QB, CD86, C1QA, CSF1R, IL1B and TLR2 as eight core genes correlated with MS. Conclusions Our study identified the change in the CNS immune microenvironment of MS cases by analysis of the in silico data using CIBERSORT. Our data may assist in providing directions for further research as to the molecular mechanisms of MS and provide future potential therapeutic targets in treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02804-7.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Yongchao Liu
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Aili Jia
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
3
|
B cells from patients with multiple sclerosis have a pathogenic phenotype and increased LTα and TGFβ1 response. J Neuroimmunol 2018; 324:157-164. [DOI: 10.1016/j.jneuroim.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
|
4
|
Stein J, Xu Q, Jackson KC, Romm E, Wuest SC, Kosa P, Wu T, Bielekova B. Intrathecal B Cells in MS Have Significantly Greater Lymphangiogenic Potential Compared to B Cells Derived From Non-MS Subjects. Front Neurol 2018; 9:554. [PMID: 30079049 PMCID: PMC6062589 DOI: 10.3389/fneur.2018.00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/20/2018] [Indexed: 12/23/2022] Open
Abstract
Although B cell depletion is an effective therapy of multiple sclerosis (MS), the pathogenic functions of B cells in MS remain incompletely understood. We asked whether cerebrospinal fluid (CSF) B cells in MS secrete different cytokines than control-subject B cells and whether cytokine secretion affects MS phenotype. We blindly studied CSF B cells after their immortalization by Epstein-Barr Virus (EBV) in prospectively-collected MS patients and control subjects with other inflammatory-(OIND) or non-inflammatory neurological diseases (NIND) and healthy volunteers (HV). The pilot cohort (n = 80) was analyzed using intracellular cytokine staining (n = 101 B cell lines [BCL] derived from 35 out of 80 subjects). We validated differences in cytokine production in newly-generated CSF BCL (n = 207 BCL derived from subsequent 112 prospectively-recruited subjects representing validation cohort), using ELISA enhanced by objective, flow-cytometry-based B cell counting. After unblinding the pilot cohort, the immortalization efficiency was almost 5 times higher in MS patients compared to controls (p < 0.001). MS subjects' BCLs produced significantly more vascular endothelial growth factor (VEGF) compared to control BCLs. Progressive MS patients BCLs produced significantly more tumor necrosis factor (TNF)-α and lymphotoxin (LT)-α than BCL from relapsing-remitting MS (RRMS) patients. In the validation cohort, we observed lower secretion of IL-1β in RRMS patients, compared to all other diagnostic categories. The validation cohort validated enhanced VEGF-C production by BCL from RRMS patients and higher TNF-α and LT-α secretion by BCL from progressive MS. No significant differences among diagnostic categories were observed in secretion of IL-6 or GM-CSF. However, B cell secretion of IL-1β, TNF-α, and GM-CSF correlated significantly with the rate of accumulation of disability measured by MS disease severity scale (MS-DSS). Finally, all three cytokines with increased secretion in different stages of MS (i.e., VEGF-C, TNF-α, and LT-α) enhance lymphangiogenesis, suggesting that intrathecal B cells directly facilitate the formation of tertiary lymphoid follicles, thus compartmentalizing inflammation to the central nervous system.
Collapse
Affiliation(s)
- Jason Stein
- Neuroimmunological Diseases Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Quangang Xu
- Neuroimmunological Diseases Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.,Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Kayla C Jackson
- Neuroimmunological Diseases Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Elena Romm
- Neuroimmunological Diseases Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Simone C Wuest
- Neuroimmunological Diseases Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Peter Kosa
- Neuroimmunological Diseases Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Tianxia Wu
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Abdollah Zadeh R, Jalilian N, Sahraian MA, Kasraian Z, Noori-Daloii MR. Polymorphisms of RPS6KB1 and CD86 associates with susceptibility to multiple sclerosis in Iranian population. Neurol Res 2017; 39:217-222. [DOI: 10.1080/01616412.2016.1278108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rasoul Abdollah Zadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Jalilian
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshsh, Iran
| | - Mohammad Ali Sahraian
- Department of Neurology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Kasraian
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Jones AP, Kermode AG, Lucas RM, Carroll WM, Nolan D, Hart PH. Circulating immune cells in multiple sclerosis. Clin Exp Immunol 2016; 187:193-203. [PMID: 27689339 DOI: 10.1111/cei.12878] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/17/2022] Open
Abstract
Circulating T and B lymphocytes contribute to the pathogenesis of the neuroinflammatory autoimmune disease, multiple sclerosis (MS). Further progress in the development of MS treatments is dependent upon a greater understanding of the immunological disturbances that underlie the disease. Analyses of circulating immune cells by flow cytometry have revealed MS-associated alterations in the composition and function of T and B cell subsets, including temporal changes associated with disease activity. Disturbances in circulating immune populations reflect those observed in the central nervous system and include skewing towards proinflammatory CD4+ and CD8+ T cells and B cells, greater proportions of follicular T helper cells and functional defects in the corresponding T and B regulatory subsets. Utilizing the analytical power of modern flow cytometers, researchers are now well positioned to monitor immunological changes associated with disease activity or intervention, describe immunological signatures with predictive value and identify targets for therapeutic drug development. This review discusses the contribution of various T and B lymphocyte subsets to MS pathogenesis, provides current and relevant phenotypical descriptions to assist in experimental design and highlights areas of future research.
Collapse
Affiliation(s)
- A P Jones
- Telethon Kids Institute, The University of Western Australia, Perth, WA
| | - A G Kermode
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, The University of Western Australia, Sir Charles Gairdner Hospital, Perth, WA.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT
| | - W M Carroll
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, The University of Western Australia, Sir Charles Gairdner Hospital, Perth, WA.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA
| | - D Nolan
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA.,Immunology Department, Royal Perth Hospital, Perth, WA, Australia
| | - P H Hart
- Telethon Kids Institute, The University of Western Australia, Perth, WA
| |
Collapse
|
7
|
Moreno Torres I, García-Merino A. Anti-CD20 monoclonal antibodies in multiple sclerosis. Expert Rev Neurother 2016; 17:359-371. [DOI: 10.1080/14737175.2017.1245616] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Irene Moreno Torres
- Neuroimmunology unit, Neurology department, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology unit, Neurology department, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
| |
Collapse
|
8
|
Fraussen J, Claes N, Van Wijmeersch B, van Horssen J, Stinissen P, Hupperts R, Somers V. B cells of multiple sclerosis patients induce autoreactive proinflammatory T cell responses. Clin Immunol 2016; 173:124-132. [PMID: 27717695 DOI: 10.1016/j.clim.2016.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/24/2016] [Accepted: 10/02/2016] [Indexed: 01/10/2023]
Abstract
Antibody-independent B cell functions play an important role in multiple sclerosis (MS) pathogenesis. In this study, B cell antigen presentation and costimulation in MS were studied. Peripheral blood B cells of MS patients showed increased expression of costimulatory CD86 and CD80 molecules compared with healthy controls (HC). In MS cerebrospinal fluid (CSF), 12-fold and 2-fold increases in CD86+ and CD80+ B cells, respectively, were evidenced compared with peripheral blood. Further, B cells from MS patients induced proinflammatory T cells in response to myelin basic protein (MBP). Immunomodulatory treatment restored B cell costimulatory molecule expression and caused significantly reduced B cell induced T cell responses. Together, these results demonstrate the potential of B cells from MS patients to induce autoreactive proinflammatory T cell responses. Immunomodulatory therapy abrogated this effect, emphasizing the importance of B cell antigen presentation and costimulation in MS pathology.
Collapse
Affiliation(s)
- Judith Fraussen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Nele Claes
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Bart Van Wijmeersch
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium; Revalidation & MS Center, Overpelt, Belgium
| | - Jack van Horssen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Raymond Hupperts
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Academic MS Center Limburg, Zuyderland Medisch Centrum, Sittard, The Netherlands
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.
| |
Collapse
|
9
|
Miyazaki Y, Niino M. Molecular targeted therapy against B cells in multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yusei Miyazaki
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
- Department of Neurology; Hokkaido Medical Center; Sapporo Japan
| | - Masaaki Niino
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
| |
Collapse
|
10
|
Menezes SM, Decanine D, Brassat D, Khouri R, Schnitman SV, Kruschewsky R, López G, Alvarez C, Talledo M, Gotuzzo E, Vandamme AM, Galvão-Castro B, Liblau R, Weyenbergh JV. CD80+ and CD86+ B cells as biomarkers and possible therapeutic targets in HTLV-1 associated myelopathy/tropical spastic paraparesis and multiple sclerosis. J Neuroinflammation 2014; 11:18. [PMID: 24472094 PMCID: PMC3922160 DOI: 10.1186/1742-2094-11-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/13/2014] [Indexed: 01/14/2023] Open
Abstract
Background Human T-cell lymphotropic virus (HTLV-1) is the causative agent of the incapacitating, neuroinflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Currently, there are no disease-modifying therapies with long-term clinical benefits or validated biomarkers for clinical follow-up in HAM/TSP. Although CD80 and CD86 costimulatory molecules play prominent roles in immune regulation and reflect disease status in multiple sclerosis (MS), data in HAM/TSP are lacking. Methods Using flow cytometry, we quantified ex vivo and in vitro expression of CD80 and CD86 in PBMCs of healthy controls, HTLV-1-infected individuals with and without HAM/TSP, and MS patients. We hypothesized ex vivo CD80 and CD86 expressions and their in vitro regulation by interferon (IFN)-α/β mirror similarities between HAM/TSP and MS and hence might reveal clinically useful biomarkers in HAM/TSP. Results Ex vivo expression of CD80 and CD86 in T and B cells increased in all HTLV-1 infected individuals, but with a selective defect for B cell CD86 upregulation in HAM/TSP. Despite decreased total B cells with increasing disease duration (p = 0.0003, r = −0.72), CD80+ B cells positively correlated with disease severity (p = 0.0017, r = 0.69) in HAM/TSP. B cell CD80 expression was higher in women with HAM/TSP, underscoring that immune markers can reflect the female predominance observed in most autoimmune diseases. In contrast to MS patients, CD80+ (p = 0.0001) and CD86+ (p = 0.0054) lymphocytes expanded upon in vitro culture in HAM/TSP patients. The expansion of CD80+ and CD86+ T cells but not B cells was associated with increased proliferation in HTLV-1 infection. In vitro treatment with IFN-β but not IFN-α resulted in a pronounced increase of B cell CD86 expression in healthy controls, as well as in patients with neuroinflammatory disease (HAM/TSP and MS), similar to in vivo treatment in MS. Conclusions We propose two novel biomarkers, ex vivo CD80+ B cells positively correlating to disease severity and CD86+ B cells preferentially induced by IFN-β, which restores defective upregulation in HAM/TSP. This study suggests a role for B cells in HAM/TSP pathogenesis and opens avenues to B cell targeting (with proven clinical benefit in MS) in HAM/TSP but also CD80-directed immunotherapy, unprecedented in both HAM/TSP and MS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Romme Christensen J, Börnsen L, Ratzer R, Piehl F, Khademi M, Olsson T, Sørensen PS, Sellebjerg F. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One 2013; 8:e57820. [PMID: 23469245 PMCID: PMC3585852 DOI: 10.1371/journal.pone.0057820] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/26/2013] [Indexed: 02/06/2023] Open
Abstract
Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4+ and CD8+T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS+TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor+CD4+T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN+ and CD83+B-cells in SPMS. ICOS+TFH-cells and DC-SIGN+B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4+T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS.
Collapse
|
12
|
Romme Christensen J, Börnsen L, Hesse D, Krakauer M, Sørensen PS, Søndergaard HB, Sellebjerg F. Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis. J Neuroinflammation 2012; 9:215. [PMID: 22978757 PMCID: PMC3503813 DOI: 10.1186/1742-2094-9-215] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/06/2012] [Indexed: 11/30/2022] Open
Abstract
Background Numerous cytokines are implicated in the immunopathogenesis of multiple sclerosis (MS), but studies are often limited to whole blood (WB) or peripheral blood mononuclear cells (PBMCs), thereby omitting important information about the cellular origin of the cytokines. Knowledge about the relation between blood and cerebrospinal fluid (CSF) cell expression of cytokines and the cellular source of CSF cytokines is even more scarce. Methods We studied gene expression of a broad panel of cytokines in WB from relapsing-remitting multiple sclerosis (RRMS) patients in remission and healthy controls (HCs). Subsequently we determined the gene expression of the dysregulated cytokines in isolated PBMC subsets (CD4+, CD8+T-cells, NK-cells, B-cells, monocytes and dendritic cells) from RRMS patients and HCs and in CSF-cells from RRMS patients in clinical relapse and non-inflammatory neurological controls (NIND). Results RRMS patients had increased expression of IFN-gamma (IFNG), interleukin (IL) 1-beta (IL1B), IL7, IL10, IL12A, IL15, IL23, IL27, lymphotoxin-alpha (LTA) and lymphotoxin-beta (LTB) in WB. In PBMC subsets the main sources of pro-inflammatory cytokines were T- and B-cells, whereas monocytes were the most prominent source of immunoregulatory cytokines. In CSF-cells, RRMS patients had increased expression of IFNG and CD19 and decreased expression of IL10 and CD14 compared to NINDs. CD19 expression correlated with expression of IFNG, IL7, IL12A, IL15 and LTA whereas CD14 expression correlated with IL10 expression. Conclusions Using a systematic approach, we show that expression of pro-inflammatory cytokines in peripheral blood primarily originates from T- and B-cells, with an important exception of IFNG which is most strongly expressed by NK-cells. In CSF-cell studies, B-cells appear to be enriched in RRMS and associated with expression of pro-inflammatory cytokines; contrarily, monocytes are relatively scarce in CSF from RRMS patients and are associated with IL10 expression. Thus, our findings suggest a pathogenetic role of B-cells and an immunoregulatory role of monocytes in RRMS.
Collapse
Affiliation(s)
- Jeppe Romme Christensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 2100, Denmark.
| | | | | | | | | | | | | |
Collapse
|
13
|
Targeting poly(ADP-ribose) polymerase-1 as a promising approach for immunomodulation in multiple sclerosis? Trends Mol Med 2011; 18:92-100. [PMID: 22078487 DOI: 10.1016/j.molmed.2011.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/27/2011] [Accepted: 10/06/2011] [Indexed: 12/23/2022]
Abstract
Despite significant advancement in developing therapies for multiple sclerosis (MS), drugs that cure this devastating disorder are an unmet need. Among the remedies showing efficacy in preclinical MS models, inhibitors of poly(ADP-ribose) polymerase (PARP)-1 have gained great momentum. Emerging evidence demonstrates that PARP-1 inhibitors epigenetically regulate gene expression and finely tune transcriptional activation in immune and neural cells. In this review, we present an appraisal of the effects of PARP-1 and its inhibitors on immune activation, with particular emphasis on the processes taking place during the autoimmune attack directed against the central nervous system. One explanation is that drugs inhibiting PARP-1 activity protect from neuroinflammation in MS models via immunomodulation and direct neuroprotection. PARP-1 inhibitors have already reached the clinical arena as cancer treatments, and observations made in treating these patients could help advance treatments for MS.
Collapse
|
14
|
de Graaf MT, de Jongste AHC, Kraan J, Boonstra JG, Smitt PAES, Gratama JW. Flow cytometric characterization of cerebrospinal fluid cells. CYTOMETRY PART B-CLINICAL CYTOMETRY 2011; 80:271-81. [DOI: 10.1002/cyto.b.20603] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/12/2011] [Accepted: 04/16/2011] [Indexed: 12/12/2022]
|
15
|
A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 2010; 230:1-9. [PMID: 21145597 DOI: 10.1016/j.jneuroim.2010.10.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is considered to be a T cell-mediated autoimmune disease that results in the presence of inflammatory lesions/plaques associated with mononuclear cell infiltrates, demyelination and axonal damage within the central nervous system (CNS). To date, FDA approved therapies in MS are thought to largely function by modulation of the immune response. Since autoimmune responses require many arms of the immune system, the direct cellular mechanisms of action of MS therapeutics are not definitively known. The mouse model of MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in deciphering the mechanism of action of MS drugs. In addition, EAE has been widely used to study the contribution of individual components of the immune system in CNS autoimmunity. In this regard, the role of B cells in EAE has been studied in mice deficient in B cells due to genetic ablation and following depletion with a B cell-targeted monoclonal antibody (mAb) (anti-CD20). Both strategies have indicated that B cells regulate the extent of EAE clinical disease and in their absence disease is exacerbated. Thus a new population of "regulatory B cells" has emerged. One reoccurring component of regulatory B cell function is the production of IL-10, a pleiotropic cytokine with potent anti-inflammatory properties. B cell depletion has also indicated that B cells, in particular antibody production, play a pathogenic role in EAE. B cell depletion in MS using a mAb to CD20 (rituximab) has shown promising results. In this review, we will discuss the current thinking on the role of B cells in MS drawing from knowledge gained in EAE studies and clinical trials using therapeutics that target B cells.
Collapse
|
16
|
Boster A, Ankeny DP, Racke MK. The Potential Role of B Cell-Targeted Therapies in Multiple Sclerosis. Drugs 2010; 70:2343-2356. [DOI: 10.2165/11585230-000000000-00000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
17
|
|
18
|
Hawker K. B cells as a target of immune modulation. Ann Indian Acad Neurol 2009; 12:221-5. [PMID: 20182568 PMCID: PMC2824948 DOI: 10.4103/0972-2327.58275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 03/30/2009] [Accepted: 07/06/2009] [Indexed: 01/03/2023] Open
Abstract
B cells have recently been identified as an integral component of the immune system; they play a part in autoimmunity through antigen presentation, antibody secretion, and complement activation. Animal models of multiple sclerosis (MS) suggest that myelin destruction is partly mediated through B cell activation (and plasmablasts). MS patients with evidence of B cell involvement, as compared to those without, tend to have a worse prognosis. Finally, the significant decrease in new gadolinium-enhancing lesions, new T2 lesions, and relapses in MS patients treated with rituximab (a monoclonal antibody against CD20 on B cells) leads us to the conclusion that B cells play an important role in MS and that immune modulation of these cells may ameliorate the disease. This article will explore the role of B cells in MS and the rationale for the development of B cell-targeted therapeutics. MS is an immune-mediated disease that affects over 2 million people worldwide and is the number one cause of disability in young patients. Most therapeutic targets have focused on T cells; however, recently, the focus has shifted to the role of B cells in the pathogenesis of MS and the potential of B cells as a therapeutic target.
Collapse
Affiliation(s)
- Kathleen Hawker
- The Ohio State University Medical Center, 2050 Kenny Road, Suite 2250, Columbus, Ohio 43221, USA
| |
Collapse
|
19
|
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system with no clear etiology. Until recently, most studies have emphasized the role of T cells in the pathogenesis of multiple sclerosis. Data suggesting that B cells play a role in the pathogenesis of multiple sclerosis have been accumulating for the past five decades, demonstrating that the cerebrospinal fluid and central nervous system tissues of multiple sclerosis patients contain B cells, plasma cells, antibodies, and immunoglobulins. Data suggest that B cells are involved in antigen capture and presentation to T cells, cytokine production, antibody secretion, demyelination, tissue damage, and remyelination in multiple sclerosis. These advances in the understanding of B-cell and antibody roles in the pathophysiology of multiple sclerosis provide a strong rationale for B-cell-targeted therapies.
Collapse
|
20
|
Podojil JR, Kohm AP, Miller SD. CD4+ T Cell Expressed CD80 Regulates Central Nervous System Effector Function and Survival during Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2006; 177:2948-58. [PMID: 16920930 DOI: 10.4049/jimmunol.177.5.2948] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD80 expressed on the surface of APCs provides a positive costimulatory signal to naive CD4+ T cells during activation. Therefore, it was hypothesized that treatment of SJL mice with various forms of anti-CD80 mAb during remission from the acute phase of relapsing experimental autoimmune encephalomyelitis (R-EAE) would ameliorate disease progression. We previously reported that treatment of SJL mice with anti-CD80 Fab during R-EAE remission blocked activation of T cells specific for endogenous myelin epitopes, inhibiting epitope spreading and clinical disease progression; however, treatment with the native form of the same anti-CD80 mAb exacerbated disease progression. The current data show that intact anti-CD80 mAb binds both CNS-infiltrating CD4+ T cells and CD11c+ dendritic cells and that exacerbation of R-EAE directly correlates with increased survival and activity of myelin-specific CD4+ T cells, while the percentage of CD11c+ dendritic cells in the CNS and their APC activity was not altered. In vitro data show that cross-linking CD80 on the surface of CD4+ T cells activated in the presence of Th1-promoting cytokines increases the level of T cell activation, effector function, and survival by directly up-regulating the expression levels of transcripts for T-bet, IFN-gamma, and Bcl-xL. These findings indicate a novel regulatory role for CD80-mediated intracellular signals in CD4+ T cells and have important implications for using anti-costimulatory molecule mAb therapy in established autoimmune disease.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
21
|
Wulff H, Knaus HG, Pennington M, Chandy KG. K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. THE JOURNAL OF IMMUNOLOGY 2004; 173:776-86. [PMID: 15240664 DOI: 10.4049/jimmunol.173.2.776] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using whole-cell patch-clamp, fluorescence microscopy and flow cytometry, we demonstrate a switch in potassium channel expression during differentiation of human B cells from naive to memory cells. Naive and IgD(+)CD27(+) memory B cells express small numbers of the voltage-gated Kv1.3 and the Ca(2+)-activated intermediate-conductance IKCa1 channel when quiescent, and increase IKCa1 expression 45-fold upon activation with no change in Kv1.3 levels. In contrast, quiescent class-switched memory B cells express high levels of Kv1.3 ( approximately 2000 channels/cell) and maintain their Kv1.3(high) expression after activation. Consistent with their channel phenotypes, proliferation of naive and IgD(+)CD27(+) memory B cells is suppressed by the specific IKCa1 inhibitor TRAM-34 but not by the potent Kv1.3 blocker Stichodactyla helianthus toxin, whereas the proliferation of class-switched memory B cells is suppressed by Stichodactyla helianthus toxin but not TRAM-34. These changes parallel those reported for T cells. Therefore, specific Kv1.3 and IKCa1 inhibitors may have use in therapeutic manipulation of selective lymphocyte subsets in immunological disorders.
Collapse
Affiliation(s)
- Heike Wulff
- Department of Medical Pharmacology and Toxicology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
22
|
Teutsch SM, Booth DR, Bennetts BH, Heard RNS, Stewart GJ. Association of common T cell activation gene polymorphisms with multiple sclerosis in Australian patients. J Neuroimmunol 2004; 148:218-30. [PMID: 14975605 DOI: 10.1016/j.jneuroim.2003.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 12/03/2003] [Accepted: 12/03/2003] [Indexed: 12/15/2022]
Abstract
Susceptibility to multiple sclerosis (MS) may be influenced by the interaction of several genes within a biological pathway. T cell activation and costimulation may be potentially important in MS pathogenesis. We have therefore investigated associations between MS and polymorphisms in the CD152 (CTLA-4), CD28, CD80 and CD86 genes in Australian patients. We found no significant MS association with CTLA-4 exon 1 +49 alleles, and meta-analysis showed no significant association across nine comparable datasets (OR=1.04, p=0.54), nor with primary progressive MS across seven datasets (OR=1.19, p=0.21). Haplotype analysis showed a trend towards a decrease of the CTLA-4-1722C, -1577G, +49G haplotype in +49 G positive MS patients compared with controls (p=0.06). Screening of CD28, CD80 and CD86 genes identified novel polymorphisms in the putative promoter regions of CD28 (-372 G/A) and CD86 (exon 2 -359 deletionAAG). There was a significant increase of the CD28 -372 G allele frequency in MS patients vs. controls (p=0.045) and a trend towards a significant interaction between this allele and the CTLA-4 +49 G allele (OR=4.00, p=0.058). Our results suggest that the CTLA-4 +49 alone is not associated with overall susceptibility to MS, but may be important in clinical subsets of patients and/or may interact epistatically with other gene polymorphisms.
Collapse
Affiliation(s)
- Suzy M Teutsch
- Institute for Immunology and Allergy Research (Westmead Millennium Institute), Level 2 ICPMR, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.
| | | | | | | | | |
Collapse
|
23
|
Kleine TO, Zwerenz P, Graser C, Zöfel P. Approach to discriminate subgroups in multiple sclerosis with cerebrospinal fluid (CSF) basic inflammation indices and TNF-alpha, IL-1beta, IL-6, IL-8. Brain Res Bull 2003; 61:327-46. [PMID: 12909303 DOI: 10.1016/s0361-9230(03)00096-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lumbar CSF and serum pairs of untreated multiple sclerosis patients (MS; n=47) were analyzed on admission. On average, higher CSF leukocyte (lymphocyte and monocyte) counts, IgG index, CSF IgG contents, but not of TNF-alpha, IL-1beta, IL-6, IL-8 in CSF and serum, were revealed in all MS or patients with long disease course (LO-MS) compared with controls. In primary progressive MS (PP-MS) cell counts were low, but IgG contents were high, when compared to relapsing-remitting MS (RR-MS). In clinically probable MS (CP-MS) both contents were low, in clinically definite MS (CD-MS) high. Spearman's correlation with the four monokines and the basic indices in CSF revealed activation patterns known for microglia/macrophages in the four MS subgroups, for astrocytes in CP-MS and RR-MS, for CSF lymphocytes in CP-MS and PP-MS, for cells of blood-brain barrier (BBB) in CP-MS, for intrathecal IgG synthesis in PP-MS and for lymphocyte transfer in CD-MS. Correlations between CSF and serum parameters indicated CNS disease processes to be associated with systemic processes of inflammation (acute, chronic) in CD-MS, RR-MS, and PP-MS in different ways. CSF IgG content, IgG index and systemic markers of inflammation correlated with overall disability scores in LO-MS; increasing levels may indicate a bad outcome.
Collapse
Affiliation(s)
- Tilmann O Kleine
- Neurochemistry Department, Centre of Nervous Diseases, Clinicum of the University, D-35033 Marburg, Germany
| | | | | | | |
Collapse
|
24
|
Sellebjerg F, Jensen J, Jensen CV, Wiik A. Expansion of CD5 - B cells in multiple sclerosis correlates with CD80 (B7-1) expression. Scand J Immunol 2002; 56:101-7. [PMID: 12100477 DOI: 10.1046/j.1365-3083.2002.01108.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenetic role of autoantibodies in multiple sclerosis (MS) is uncertain. CD5+ B cells commonly produce autoantibodies, but CD5 expression has also been implicated in B-cell tolerance. We studied B-cell subsets, anti-myelin protein antibody-secreting cells in cerebrospinal fluid (CSF) and a panel of serum autoantibodies in patients with clinically isolated syndromes (CIS), suggestive of MS and patients with clinically definite MS (CDMS). Patients with CDMS had a higher percentage of CD5- B cells in CSF than did control subjects (P = 0.02). CIS patients with immunoglobulin G (IgG) oligoclonal bands in CSF or multiple lesions on magnetic resonance imaging (MRI) had a higher percentage of CD5- B cells in CSF than did the remaining CIS patients (P = 0.03). The percentage of CD5- and CD80+ B cells correlated positively and the percentage of CD5+ B cells correlated negatively with the number of CSF cells secreting anti-myelin basic protein (anti-MBP) antibodies. The prevalence of serum autoantibodies was comparable in the three patient groups. We conclude that intrathecal expansion of CD5- B cells appears to be more characteristic in MS patients, and CD5+ B cells may be associated with a lower prevalence of anti-myelin antibody production.
Collapse
Affiliation(s)
- F Sellebjerg
- Department of Neurology, University of Copenhagen, Glostrup Hospital, Denmark.
| | | | | | | |
Collapse
|
25
|
Sellebjerg F, Jensen J, Madsen HO, Svejgaard A. HLA DRB1*1501 and intrathecal inflammation in multiple sclerosis. TISSUE ANTIGENS 2000; 55:312-8. [PMID: 10852382 DOI: 10.1034/j.1399-0039.2000.550404.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CD4 T cells are considered to be pivotal in the pathogenesis of multiple sclerosis (MS), and the human leukocyte antigen (HLA) haplotype associated with DRB1*1501 confers susceptibility to MS in patients of Northern European descent. Some previous studies have suggested an association of DRB1*1501 with T- and B-cell reactivity to specific myelin protein peptides, other studies suggested an association with enhanced cytokine production or intrathecal immunoglobulin (Ig) synthesis. In order to further assess the role of DRB1*1501 in the pathogenesis of MS, we studied intrathecal inflammation and T-cell phenotypes in patients with possible onset symptoms or clinically definite MS. Presence of DRB1*1501 was associated with higher levels of cerebrospinal fluid (CSF) inflammation as assessed by IgG synthesis levels and higher levels of matrix metalloproteinase-9 activity. DRB1*1501-positive patients also had a lower percentage of T cells in CSF expressing HLA-DR without co-expressing CD25. These findings suggest that enhanced intrathecal inflammation and an altered T-cell activation status may be of importance in conferring the DRB1*1501-associated susceptibility to MS.
Collapse
Affiliation(s)
- F Sellebjerg
- Department of Neurology, University of Copenhagen, Glostrup Hospital, Denmark.
| | | | | | | |
Collapse
|
26
|
Bielekova B, Lincoln A, McFarland H, Martin R. Therapeutic potential of phosphodiesterase-4 and -3 inhibitors in Th1-mediated autoimmune diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1117-24. [PMID: 10623864 DOI: 10.4049/jimmunol.164.2.1117] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphodiesterase-4 (PDE4) inhibitors have the potential to modulate immune responses from the Th1 toward the Th2 phenotype and are considered candidate therapies for Th1-mediated autoimmune disorders. However, depending on the model and cell types employed, studies of atopic individuals have come to the opposite conclusion, i.e., that PDE inhibitors may be beneficial in asthma. Using in vitro immunopharmacologic techniques we analyzed the effects of PDE4 and PDE3 inhibitors on human immune cells to address these discrepancies and broaden our understanding of their mechanism of action. Our results indicate that PDE inhibitors have complex inhibitory effects within in vivo achievable concentration ranges on Th1-mediated immunity, whereas Th2-mediated responses are mostly unaffected or enhanced. The Th2 skewing of the developing immune response is explained by the effects of PDE inhibitors on several factors contributing to T cell priming: the cytokine milieu; the type of costimulatory signal, i.e., up-regulation of CD86 and down-regulation of CD80; and the Ag avidity. The combination of PDE4 and PDE3 inhibitors expresses synergistic effects and may broaden the therapeutic window. Finally, we observed a differential sensitivity to PDE inhibition in autoreactive vs foreign Ag-specific T cells and cells derived from multiple sclerosis patients vs those derived from healthy donors. This suggests that PDE inhibition weakens the strength of the T cell stimulus and corrects the underlying disease-associated cytokine skew in T cell-mediated autoimmune disorders. These new findings broaden the understanding of the immunomodulatory actions of PDE inhibitors and underscore their promising drug profile for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- B Bielekova
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
27
|
Sellebjerg F, Madsen HO, Jensen CV, Jensen J, Garred P. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 2000; 102:98-106. [PMID: 10626673 DOI: 10.1016/s0165-5728(99)00166-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chemokines and matrix metalloproteinases (MMPs) appear to be crucial in leukocyte recruitment to the central nervous system in multiple sclerosis (MS). CCR5 delta32, a truncated allele of the CC chemokine receptor CCR5 gene encoding a non-functional receptor, did not confer protection from MS. CCR5 delta32 was, however, associated with a lower risk of recurrent clinical disease activity. High CSF levels of MMP-9 activity were also associated with recurrent disease activity. These results directly link intrathecal inflammation to disease activity in patients with MS, suggesting that treatments targeting CCR5 or treatment with MMP inhibitors may attenuate disease activity in MS.
Collapse
Affiliation(s)
- F Sellebjerg
- Department of Neurology, University of Copenhagen, Glostrup Hospital, Denmark.
| | | | | | | | | |
Collapse
|
28
|
Windhagen A, Maniak S, Heidenreich F. Analysis of cerebrospinal fluid cells by flow cytometry and immunocytochemistry in inflammatory central nervous system diseases: comparison of low- and high-density cell surface antigen expression. Diagn Cytopathol 1999; 21:313-8. [PMID: 10527476 DOI: 10.1002/(sici)1097-0339(199911)21:5<313::aid-dc3>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The examination of cerebrospinal fluid (CSF) continues to play an important role in the diagnosis of inflammatory diseases of the central nervous system (CNS). Immunocytochemistry and flow cytometry are the most commonly used methods for analysis of surface markers on CSF cells. We here compared these methods in the examination of CSF cells from a total of 68 patients with acute and chronic inflammatory CNS diseases. Expression of costimulatory molecules CD80 (B7-1) and CD86 (B7-2) as activation markers that are present at low density on the cell surface was analyzed in comparison to CD22 (B-cells) and CD4 (T-cell subset), that show high staining intensities. For CD22 and CD4, the results obtained with both methods were similar and reliable. Using flow cytometry, CD80 expression was detected in 6% of CSF cells in patients with chronic inflammatory CNS disease, as compared to 2% using immunocytochemistry, where the reliability of the data was found to be higher. We conclude that for examination of low-density surface markers on CSF cells, particularly with low cell counts, immunocytochemistry may be more reliable.
Collapse
Affiliation(s)
- A Windhagen
- Laboratory of Neuroimmunology, Department of Neurology, Medical School Hannover, Hannover, Germany.
| | | | | |
Collapse
|
29
|
Windhagen A, Maniak S, Gebert A, Ferger I, Heidenreich F. Costimulatory molecules B7-1 and B7-2 on CSF cells in multiple sclerosis and optic neuritis. J Neuroimmunol 1999; 96:112-20. [PMID: 10227430 DOI: 10.1016/s0165-5728(99)00012-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aberrant expression of B7 costimulatory molecules is involved in the pathogenesis of autoimmune diseases and overexpression of B7-1 was found in inflammatory multiple sclerosis (MS) lesions. We here report that costimulatory molecules B7-1 and B7-2 are expressed on cerebrospinal fluid (CSF) monocytes and B-lymphocytes from patients with MS, optic neuritis (ON) and other inflammatory central nervous system (CNS) diseases. In patients with ON but not MS, increased expression of B7-2 was detected as compared to non-inflammatory controls. The expression of B7-1 in MS and ON patients correlates with disease duration but not with relapses in patients with MS indicating a role in early disease but not as a reliable marker of disease activity at later stages of MS.
Collapse
Affiliation(s)
- A Windhagen
- Department of Neurology, Medical School Hannover, Germany.
| | | | | | | | | |
Collapse
|
30
|
Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999; 103:807-15. [PMID: 10079101 PMCID: PMC408141 DOI: 10.1172/jci5150] [Citation(s) in RCA: 771] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether specific chemokines were expressed in the CNS during acute demyelinating events by analyzing cerebrospinal fluid (CSF), whose composition reflects the CNS extracellular space. During MS attacks, we found elevated CSF levels of three chemokines that act toward T cells and mononuclear phagocytes: interferon-gamma-inducible protein of 10 kDa (IP-10); monokine induced by interferon-gamma (Mig); and regulated on activation, normal T-cell expressed and secreted (RANTES). We then investigated whether specific chemokine receptors were expressed by infiltrating cells in demyelinating MS brain lesions and in CSF. CXCR3, an IP-10/Mig receptor, was expressed on lymphocytic cells in virtually every perivascular inflammatory infiltrate in active MS lesions. CCR5, a RANTES receptor, was detected on lymphocytic cells, macrophages, and microglia in actively demyelinating MS brain lesions. Compared with circulating T cells, CSF T cells were significantly enriched for cells expressing CXCR3 or CCR5. Our results imply pathogenic roles for specific chemokine-chemokine receptor interactions in MS and suggest new molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- T L Sørensen
- Department of Neurosciences, The Lerner Research Institute and Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kleine TO, Albrecht J, Zöfel P. Flow cytometry of cerebrospinal fluid (CSF) lymphocytes: alterations of blood/CSF ratios of lymphocyte subsets in inflammation disorders of human central nervous system (CNS). Clin Chem Lab Med 1999; 37:231-41. [PMID: 10353466 DOI: 10.1515/cclm.1999.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Flow cytometry was adapted to measure lymphocytes in human cerebrospinal fluid (CSF). The method was sufficiently precise, reproducible and accurate despite low cell counts. In lumbar CSF of controls with 500 to 3500 (10(3)/l) leukocytes, lymphocyte counts correlated with those in corresponding venous blood: blood/CSF ratios of approximately 2000 : 1 were found for total T cells (CD3+) and CD3+ HLA-DR-, CD3+4+, CD3+8+ subsets, ratios were increased for the lymphocyte subsets CD3+ HLA-DR+ < or = CD3+16+56+ < CD16+56+3- < CD8+3- << CD19+; CD8+4+ ratio was half of CD3+ ratio. Data indicate selective barriers (blood-brain and blood-CSF barriers) to blood lymphocyte subsets which favor the transfer of T subsets. Correlation of the subset ratios to the CD3+ ratio indicates distinct barrier properties which changed differently with acute and subacute inflammations and neuroimmunological diseases of central nervous system (CNS) in lumbar or ventricular CSF, but not with simple protein barrier disturbance. HLA DR+ T ratios were higher than HLA DR- T ratios only with controls and some neuroimmunological diseases. Lymphocyte barrier characteristics were related to protein leakage situated at the same barriers, indicating for the lymphocyte subsets selective transfer routes in control subjects and non-selective routes in patients with CNS inflammation where altered ratios revealed a mixture of both routes.
Collapse
Affiliation(s)
- T O Kleine
- Medizinisches Zentrum für Nervenheilkunde, Funktions-bereich Neurochemie, der Universität, Marburg a.d. Lahn, Germany
| | | | | |
Collapse
|