1
|
Fresno M, Gironès N. Myeloid-Derived Suppressor Cells in Trypanosoma cruzi Infection. Front Cell Infect Microbiol 2021; 11:737364. [PMID: 34513737 PMCID: PMC8430253 DOI: 10.3389/fcimb.2021.737364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous myeloid cells that expand in pathologic conditions as cancer, trauma, and infection. Although characterization of MDSCs is continuously revisited, the best feature is their suppressor activity. There are many markers for MDSC identification, it is distinctive that they express inducible nitric oxide synthase (iNOS) and arginase 1, which can mediate immune suppression. MDSCs can have a medullary origin as a result of emergency myelopoiesis, but also can have an extramedullary origin. Early studies on Trypanosoma cruzi infection showed severe immunosuppression, and several mechanisms involving parasite antigens and host cell mediators were described as inhibition of IL-2 and IL-2R. Another mechanism of immunosuppression involving tumor necrosis factor/interferon γ-dependent nitric oxide production by inducible nitric oxide synthase was also described. Moreover, other studies showed that nitric oxide was produced by CD11b+ Gr-1+ MDSCs in the spleen, and later iNOS and arginase 1 expressed in CD11b+Ly6C+Ly6Glo monocytic MDSC were found in spleen and heart of T. cruzi infected mice that suppressed T cell proliferation. Uncontrolled expansion of monocytic MDSCs leads to L-arginine depletion which hinders nitric oxide production leading to death. Supplement of L-arginine partially reverts L-arginine depletion and survival, suggesting that L-arginine could be administered along with anti-parasitical drugs. On the other hand, pharmacological inhibition of MDSCs leads to death in mice, suggesting that some expansion of MDSCs is needed for an efficient immune response. The role of signaling molecules mediating immune suppression as reactive oxygen species, reactive nitrogen species, as well as prostaglandin E2, characteristics of MDSCs, in T. cruzi infection is not fully understood. We review and discuss the role of these reactive species mediators produced by MDSCs. Finally, we discuss the latest results that link the SLAMF1 immune receptor with reactive oxygen species. Interaction of the parasite with the SLAMF1 modulates parasite virulence through myeloid cell infectivity and reactive oxygen species production. We discuss the possible strategies for targeting MDSCs and SLAMF1 receptor in acute Trypanosoma cruzi infection in mice, to evaluate a possible translational application in human acute infections.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Group 12, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Group 12, Madrid, Spain
| |
Collapse
|
2
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
3
|
Abstract
Megacolon, the irreversible dilation of a colonic segment, is a structural sign associated with various gastrointestinal disorders. In its hereditary, secondary form (e.g. in Hirschsprung's disease), dilation occurs in an originally healthy colonic segment due to an anally located, aganglionic zone. In contrast, in chronic Chagas' disease, the dilated segment itself displays pathohistological changes, and the earliest and most prominent being found was massive loss of myenteric neurons. This neuron loss was partial and selective, i.e. some neurons containing neuronal nitric oxide synthase and/or vasoactive intestinal peptide (VIP) were spared from neuron death. This disproportionate survival of inhibitory neurons, however, did not completely correlate with the calibre change along the surgically removed, megacolonic segments. A better correlation was observed as to potentially contractile muscle tissue elements and the interstitial cells of Cajal. Therefore, the decreased densities of α-smooth muscle actin- and c-kit-immunoreactive profiles were estimated along resected megacolonic segments. Their lowest values were observed in the megacolonic zones itself, whereas less pronounced decreases were found in the non-dilated, transitional zones (oral and anal to dilation). In contrast to the myenteric plexus, the submucosal plexus displayed only a moderate neuron loss. Neurons co-immunoreactive for VIP and calretinin survived disproportionately. As a consequence, these neurons may have contributed to maintain the epithelial barrier and allowed the chagasic patients to survive for decades, despite their severe disturbance of colonic motility. Due to its neuroprotective and neuroeffectory functions, VIP may play a key role in the development and duration of chagasic megacolon.
Collapse
|
4
|
Jabari S, da Silveira ABM, de Oliveira EC, Neto SG, Quint K, Neuhuber W, Brehmer A. Partial, selective survival of nitrergic neurons in chagasic megacolon. Histochem Cell Biol 2010; 135:47-57. [PMID: 21184236 PMCID: PMC3019355 DOI: 10.1007/s00418-010-0774-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2010] [Indexed: 02/06/2023]
Abstract
One frequent chronic syndrome of Chagas’ disease is megacolon, an irreversible dilation of a colonic segment. Extensive enteric neuron loss in the affected segment is regarded as key factor for deficient motility. Here, we assessed the quantitative balance between cholinergic and nitrergic neurons representing the main limbs of excitatory and inhibitory colonic motor innervation, respectively. From surgically removed megacolonic segments of four patients, each three myenteric wholemounts (from non-dilated oral, megacolonic and non-dilated anal parts) was immunohistochemically triple-stained for choline acetyltransferase, neuronal nitric oxide synthase (NOS) and the panneuronal human neuronal protein Hu C/D. Degenerative changes were most pronounced in the megacolonic and anal regions, e.g. bulked, honeycomb-like ganglia with few neurons which were partly enlarged or atrophic or vacuolated. Neuron counts from each 15 ganglia of 12 megacolonic wholemounts were compared with those of 12 age- and region-matched controls. Extensive neuron loss, mainly in megacolonic and anal wholemounts, was obvious. In all three regions derived from megacolonic samples, the proportion of NOS-positive neurons (control: 55%) was significantly increased: in non-dilated oral parts to 61% (p = 0.003), in megacolonic regions to 72% (p < 0.001) and in non-dilated anal regions to 78% (p < 0.001). We suggest the chronic dilation of megacolonic specimens to be due to the preponderance of the nitrergic, inhibitory input to the intestinal muscle. However, the observed neuronal imbalance was not restricted to the dilated regions: the non-dilated anal parts may be innervated by ascending, cholinergic axons emerging from less affected, more anally located regions.
Collapse
Affiliation(s)
- Samir Jabari
- Institute of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, 91054, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Animal models of human diseases are increasingly available and are invaluable for studies of organ pathophysiology. Megacolon, abnormal dilatation of the colon not caused by mechanical obstruction, involves the destruction of the autonomic nervous system innervating the colon. Animal models of megacolon include mouse models of Chagas disease and Hirschprung's disease. Small animal imaging has become an important research tool and recent advances in preclinical imaging modalities have enhanced the information content available from longitudinal studies of animal models of human diseases. While numerous applications of imaging technologies have been reported to study the brain and heart of mouse models, fewer studies of the gastrointestinal system have been undertaken due to technical limitations caused by peristaltic and respiratory motion. Various imaging modalities relevant to study of the gastrointestinal tract of intact live animals are reviewed herein.
Collapse
Affiliation(s)
- Linda A Jelicks
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Almeida-Leite CMD, Galvão LMDC, Afonso LCC, Cunha FDQ, Arantes RME. Interferon-γ induced nitric oxide mediates in vitro neuronal damage by Trypanosoma cruzi-infected macrophages. Neurobiol Dis 2007; 25:170-8. [PMID: 17056264 DOI: 10.1016/j.nbd.2006.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/21/2022] Open
Abstract
Neuronal lesions and peripheral denervation in Chagas' disease are related to local inflammation; however, the pathogenic mechanisms of neuronal lesions in the heart and megavisceras are still unclear. We investigated the involvement of nitric oxide (NO) on neuronal lesion in co-cultures of neurons and macrophages. Trypanosoma cruzi-infected and interferon-gamma (IFN-gamma)-activated co-cultures of neurons and wild-type (WT) macrophages showed significant reduction of both neuronal survival and neurite density. These findings correlated with the levels of NO and the expression of inducible nitric oxide synthase (iNOS). Accordingly, neuronal survival rate in the co-cultures was recovered to control levels by treatment of the cultures with the iNOS inhibitor, aminoguanidine. Moreover, neither neuronal survival nor the neurite density was affected in the co-cultures when the macrophages were harvested from iNOS-deficient mice. These results demonstrate that iNOS-derived NO is the major molecule involved in neuronal damage mechanism in our in vitro model of Chagas' disease neuropathology.
Collapse
Affiliation(s)
- Camila Megale de Almeida-Leite
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
7
|
Yamaguchi T, Kamada K, Dayton C, Gaskin FS, Yusof M, Yoshikawa T, Carter P, Korthuis RJ. Role of eNOS-derived NO in the postischemic anti-inflammatory effects of antecedent ethanol ingestion in murine small intestine. Am J Physiol Heart Circ Physiol 2006; 292:H1435-42. [PMID: 17098834 DOI: 10.1152/ajpheart.00282.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ingestion of low levels of ethanol 24 h before [ethanol preconditioning (EPC)] ischemia and reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and adhesion (LA), effects that were abolished by adenosine A(2) receptor (ADO-A(2)R) antagonists or nitric oxide (NO) synthase (NOS) inhibitors. The aims of this study were to determine whether NO derived from endothelial NOS (eNOS) during the period of ethanol exposure triggered entrance into this preconditioned state and whether these events were initiated by an ADO-A(2)R-dependent mechanism. Ethanol or distilled water vehicle was administered to C57BL/6J [wild type (WT)] or eNOS-deficient (eNOS-/-) mice by gavage. Twenty-four hours later, the superior mesenteric artery was occluded for 45 min. LR and LA were quantified by intravital microscopy after 30 and 60 min of reperfusion. I/R increased LR and LA in WT mice, effects that were abolished by EPC or NO donor preconditioning (NO-PC). NO-PC was not attenuated by coincident administration of an ADO-A(2)R antagonist. I/R increased LR and LA in eNOS-/- mice to levels comparable with those noted in WT animals. However, EPC only slightly attenuated postischemic LR and LA, whereas NO-PC remained effective as a preconditioning stimulus in eNOS-/- mice. Preconditioning with an ADO-A(2)R agonist (which we previously demonstrated prevents I/R-induced LR and LA in WT animals) failed to attenuate these postischemic adhesive responses in eNOS-/- mice. Our results indicate that EPC is triggered by NO formed secondary to ADO-A(2)R-dependent eNOS activation during the period of ethanol exposure 24 h before I/R.
Collapse
Affiliation(s)
- Taiji Yamaguchi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, School of Medicine, Shreveport, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yerushalmi HF, Besselsen DG, Ignatenko NA, Blohm-Mangone KA, Padilla-Torres JL, Stringer DE, Cui H, Holubec H, Payne CM, Gerner EW. The role of NO synthases in arginine-dependent small intestinal and colonic carcinogenesis. Mol Carcinog 2006; 45:93-105. [PMID: 16329147 DOI: 10.1002/mc.20168] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arginine is catabolized by NOS2 and other nitric oxide synthases to form nitric oxide. We evaluated the roles of dietary arginine and Nos2 in Apc-dependent intestinal tumorigenesis in Min mice with and without a functional Nos2 gene. NOS2 protein was expressed only in intestinal tissues of Apc(Min/+) Nos2+/+ mice. NOS3 expression was higher in intestinal tissues of mice lacking Nos2, mainly in the small intestine. When diet was supplemented with arginine (0.2% and 2% in drinking water), lack of Nos2 results in decreased tumorigenesis in both small intestine and colon. In Nos2 knockout mice, supplemental arginine (up to 2%) caused a decrease in small intestinal tumor number and size. The arginine-dependent decrease was associated with an increase in nitrotyrosine formation and apoptosis in the region of intestinal stem cells. Mice expressing Nos2 did not show these changes. These mice did, however, show an arginine-dependent increase in colon tumor number and incidence, while no effect on apoptosis was seen. These changes were associated with increased nitrotyrosine formation in epithelial cells. Mice lacking Nos2 did not show changes in tumorigenesis or nitrotyrosine formation, while demonstrating an arginine-dependent increase in apoptosis. These data suggest that Nos2 and dietary arginine have significant effects on intestinal and colonic tumorigenesis in Min mice. In both tissues, loss of Nos2 is associated with decreased tumorigenesis when mice are supplemented with dietary arginine. In the small intestine, Nos2 prevents the arginine-induced decrease in tumor number and size, which is associated with NOS3 expression and increased apoptosis. In the colon, Nos2 is required for the arginine-induced increase in tumor number and incidence.
Collapse
Affiliation(s)
- Hagit F Yerushalmi
- Gastrointestinal Cancer Program, Arizona Cancer Center, The University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Toda N, Ayajiki K. Phylogenesis of constitutively formed nitric oxide in non-mammals. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 157:31-80. [PMID: 17236649 DOI: 10.1007/112_0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is widely recognized that nitric oxide (NO) in mammalian tissues is produced from L-arginine via catalysis by NO synthase (NOS) isoforms such as neuronal NOS (nNOS) and endothelial NOS (eNOS) that are constitutively expressed mainly in the central and peripheral nervous system and vascular endothelial cells, respectively. This review concentrates only on these constitutive NOS (cNOS) isoforms while excluding information about iNOS, which is induced mainly in macrophages upon stimulation by cytokines and polysaccharides. The NO signaling pathway plays a crucial role in the functional regulation of mammalian tissues and organs. Evidence has also been accumulated for the role of NO in invertebrates and non-mammalian vertebrates. Expression of nNOS in the brain and peripheral nervous system is widely determined by staining with NADPH (reduced nicotinamide adenine dinucleotide phosphate) diaphorase or NOS immunoreactivity, and functional roles of NO formed by nNOS are evidenced in the early phylogenetic stages (invertebrates and fishes). On the other hand, the endothelium mainly produces vasodilating prostanoids rather than NO or does not liberate endothelium-derived relaxing factor (EDRF) (fishes), and the ability of endothelial cells to liberate NO is observed later in phylogenetic stages (amphibians). This review article summarizes various types of interesting information obtained from lower organisms (invertebrates, fishes, amphibians, reptiles, and birds) about the properties and distribution of nNOS and eNOS and also the roles of NO produced by the cNOS as an important intercellular signaling molecule.
Collapse
Affiliation(s)
- N Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
10
|
Arantes RME, Marche HHF, Bahia MT, Cunha FQ, Rossi MA, Silva JS. Interferon-gamma-induced nitric oxide causes intrinsic intestinal denervation in Trypanosoma cruzi-infected mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1361-8. [PMID: 15039223 PMCID: PMC1615344 DOI: 10.1016/s0002-9440(10)63222-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 11/30/2022]
Abstract
In this study, the role of nitric oxide (NO) in neuronal destruction during acute-phase Trypanosoma cruzi infection was evaluated in male C57BL/6 (WT, wild-type) mice and knockout mice [inducible nitric oxide synthase (iNOS)(-/-) and interferon (IFN)(-/-)]. Selected animals were infected by intraperitoneal injection of 100 trypomastigote forms of the Y strain of T. cruzi. Others were injected intraperitoneally with an equal volume of saline solution and served as controls. Our findings support those of previous studies regarding myenteric denervation in acute-phase T. cruzi infection. In addition, we clearly demonstrate that, despite the fact that parasite nests and similar inflammatory infiltrate in the intestinal wall were more pronounced in infected iNOS(-/-) mice than in infected WT mice, the former presented no reduction in myenteric plexus neuron numbers. Neuronal nerve profile expression, as revealed by the general nerve marker PGP 9.5, was preserved in all knockout animals. Infected IFN(-/-) mice suffered no significant neuronal loss and there was no inflammatory infiltrate in the intestinal wall. On days 5 and 10 after infection, iNOS activity was greater in infected WT mice than in controls, whereas iNOS activity in infected knockout mice remained unchanged. These findings clearly demonstrate that neuronal damage does not occur in NO-impaired infected knockout mice, regardless of whether inflammatory infiltrate is present (iNOS(-/-)) or absent (IFN(-/-)). In conclusion, our observations strongly indicate that myenteric denervation in acute-phase T. cruzi infection is because of IFN-gamma-elicited NO production resulting from iNOS activation in the inflammatory foci along the intestinal wall.
Collapse
Affiliation(s)
- Rosa M E Arantes
- Department of Pathology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Garcia SB, Aranha AL, Garcia FRB, Basile FV, Pinto APM, de Oliveira EC, Zucoloto S. A retrospective study of histopathological findings in 894 cases of megacolon: what is the relationship between megacolon and colonic cancer? Rev Inst Med Trop Sao Paulo 2003; 45:91-3. [PMID: 12754574 DOI: 10.1590/s0036-46652003000200007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with megaesophagus (ME) have increased prevalence of cancer of the esophagus. In contrast, a higher incidence of colorectal cancer is not observed in patients with megacolon (MC). MC is very common in some regions of Brazil, where it is mainly associated with Chagas disease. We reviewed the pathology records of surgical specimens of all patients submitted for surgical resection of MC in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto (HC-FMRP), from the University of São Paulo. We found that 894 patients were operated from 1952 until 2001 for MC resection. Mucosal ulcers, hyperplasia and chronic inflammation were frequently found, while polyps were uncommon. No patients with MC presented any type of colonic neoplasm. This observation reinforces the hypothesis that MC has a negative association with cancer of the colon. This seems to contradict the traditional concept of carcinogenesis in the colon, since patients with MC presents important chronic constipation that is thought to cause an increase in risk for colon cancer. MC is also associated with other risk factors for cancer of colon, such as hyperplasia, mucosal ulcers and chronic inflammation. In ME these factors lead to a remarkable increase in cancer risk. The study of mucosal cell proliferation in MC may provide new insights and useful information about the role of constipation in colonic carcinogenesis.
Collapse
|
12
|
Adad SJ, Etchebehere RM, Araujo JRD, Madureira AB, Lima VGF, Silva AAD, Eduardo C. Association of chagasic megacolon and cancer of the colon: case report and review of the literature. Rev Soc Bras Med Trop 2002; 35:63-8. [PMID: 11873264 DOI: 10.1590/s0037-86822002000100012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There are few descriptions of association between chagasic megacolon and colon cancer. We report a case of obstructive abdomen caused by adenocarcinoma of the left colon in chagasic megacolon. A review of the literature revealed 8 cases of this association and, analyzing together the series of findings of cancer in chagasic organomegalies, we found a frequency of 4.8% in megaesophagus and 0.1% in megacolon.
Collapse
Affiliation(s)
- Sheila Jorge Adad
- Disciplina de Patologia Especial, Faculdade de Medicina do Triângulo Mineiro, Uberaba, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The primary function of the small bowel is the absorption of nutrients, and the motor patterns of the healthy bowel are intended to promote that function. The motor patterns of the small bowel are the result of close interaction between the enteric nervous system, extrinsic nerves, regulatory peptides, and the intestinal smooth muscle. The basic electrical rhythm governing intestinal contractions is determined by specialized pacemaker cells called the interstitial cells of Cajal. Diseases affecting any of these components may result in intestinal dysmotility and its associated symptoms. Although transit studies and intestinal manometry are helpful in the diagnosis of dysmotility, our understanding of pathophysiology is hampered by the difficulties involved in obtaining and analyzing intestinal tissue. Treatment of intestinal dysmotility relies on dietary manipulations and nutritional support (enteral or parenteral) because there is no drug therapy that can effectively enhance the propulsive function of the small bowel. Small bowel transplantation remains a life-saving intervention for patients who fail to respond to other therapies.
Collapse
Affiliation(s)
- E E Soffer
- Department of Gastroenterology, The Cleveland Clinic Foundation, S40, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|