1
|
A novel rhamnoside derivative PL402 up-regulates matrix metalloproteinase 3/9 to promote Aβ degradation and alleviates Alzheimer's-like pathology. Aging (Albany NY) 2020; 12:481-501. [PMID: 31901901 PMCID: PMC6977668 DOI: 10.18632/aging.102637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
The accumulation of amyloid-β (Aβ), considered as the major cause of Alzheimer’s disease (AD) pathogenesis, relays on the rate of its biosynthesis and degradation. Aβ degradation is a common overture to late-onset AD and targeting the impairment of Aβ degradation has gained attention in the recent years. In this study, we demonstrated a rhamnoside derivative PL402 suppressed Aβ level in cell models without changing the expression or activity of Aβ generation-related secretases. However, the levels of matrix metalloproteinase (MMP) 3 and 9, belonging to amyloid-degrading enzymes (ADEs), were up-regulated by PL402. The inhibition or the knockdown of these two enzymes abolished the effect of PL402, indicating that PL402 may reduce Aβ via MMP3/9-mediated Aβ degradation. Notably, administration of PL402 significantly attenuated Aβ pathology and cognitive defects in APP/PS1 transgenic mice with the consistent promotion of ADEs expression. Thus, our study suggests that targeting Aβ degradation could be an effective strategy against AD and the rhamnoside derivatives may have therapeutic effects.
Collapse
|
2
|
Biophysical Aspects of Alzheimer's Disease: Implications for Pharmaceutical Sciences : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2628-2636. [PMID: 28963701 DOI: 10.1007/s11095-017-2266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
An increasing amount of findings suggests that the aggregation of soluble peptides and proteins into amyloid fibrils is a relevant upstream process in the complex cascade of events leading to the pathology of Alzheimer's disease and several other neurodegenerative disorders. Nevertheless, several aspects of the correlation between the aggregation process and the onset and development of the pathology remain largely elusive. In this context, biophysical and biochemical studies in test tubes have proven extremely powerful in providing quantitative information about the structure and the reactivity of amyloids at the molecular level. In this review we use selected recent examples to illustrate the importance of such biophysical research to complement phenomenological studies based on cellular and molecular biology, and we discuss the implications for pharmaceutical applications associated with Alzheimer's disease and other neurodegenerative disorders in both academic and industrial contexts.
Collapse
|
3
|
Puzzo D, Privitera L, Palmeri A. Hormetic effect of amyloid-β peptide in synaptic plasticity and memory. Neurobiol Aging 2012; 33:1484.e15-24. [PMID: 22284988 DOI: 10.1016/j.neurobiolaging.2011.12.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/23/2011] [Accepted: 12/19/2011] [Indexed: 02/09/2023]
Abstract
One of the hot topics in Alzheimer's disease research field is the "amyloid hypothesis" postulating that the increase and deposition of beta-amyloid peptides (Aβ) is the main pathogenetic factor. However, antiamyloid-based therapies have so far been a failure and, most importantly, growing evidences suggest that Aβ has important physiologic functions. Based on our previous findings demonstrating that low concentrations of Aβ enhanced both synaptic plasticity and memory, whereas high concentrations induced the well-known impairment of cognition, here we show that Aβ acts on hippocampal long-term potentiation and reference memory drawing biphasic dose-response curves. This phenomenon, characterized by low-dose stimulation and high-dose inhibition and represented by a U-shaped or inverted-U-shaped curve, resembles the characteristics of hormesis. The Aβ double role raises important issues on the use of Aβ level reducing agents in Alzheimer's disease.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Catania, Italy.
| | | | | |
Collapse
|
4
|
Traditional chinese medicine for senile dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:692621. [PMID: 21808655 PMCID: PMC3144670 DOI: 10.1155/2012/692621] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/09/2011] [Indexed: 12/30/2022]
Abstract
Traditional Chinese Medicine (TCM) has a 3000 years' history of human use. A literature survey addressing traditional evidence from human studies was done, with key result that top 10 TCM herb ingredients including Poria cocos, Radix polygalae, Radix glycyrrhizae, Radix angelica sinensis, and Radix rehmanniae were prioritized for highest potential benefit to dementia intervention, related to the highest frequency of use in 236 formulae collected from 29 ancient Pharmacopoeias, ancient formula books, or historical archives on ancient renowned TCM doctors, over the past 10 centuries. Based on the history of use, there was strong clinical support that Radix polygalae is memory improving. Pharmacological investigation also indicated that all the five ingredients mentioned above can elicit memory-improving effects in vivo and in vitro via multiple mechanisms of action, covering estrogen-like, cholinergic, antioxidant, anti-inflammatory, antiapoptotic, neurogenetic, and anti-Aβ activities. Furthermore, 11 active principles were identified, including sinapic acid, tenuifolin, isoliquiritigenin, liquiritigenin, glabridin, ferulic acid, Z-ligustilide, N-methyl-beta-carboline-3-carboxamide, coniferyl ferulate and 11-angeloylsenkyunolide F, and catalpol. It can be concluded that TCM has a potential for complementary and alternative role in treating senile dementia. The scientific evidence is being continuously mined to back up the traditional medical wisdom.
Collapse
|
5
|
Albert JS. Progress in the development of beta-secretase inhibitors for Alzheimer's disease. PROGRESS IN MEDICINAL CHEMISTRY 2011; 48:133-61. [PMID: 21544959 DOI: 10.1016/s0079-6468(09)04804-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Since the original identification of BACE in 1999 and until quite recently, BACE was often regarded as a "difficult" drug target, much as renin has proven to be. The reasons for this include the following. First, the long and shallow nature of the substrate binding pocket suggested that it would not be possible to identify small molecule drugs that could have adequate binding affinity. Second, functional groups that typically interact with the active site aspartates are usually highly polarized and, therefore, contribute to reduced CNS localization. Early BACE inhibitors were all designed using knowledge of the peptide substrates and usually contained some variation of a few well-known transition-state isosteres. While these had great impact on fundamental understanding of the enzyme structure and key interaction regions, they were very large, very polar, and had essentially no CNS availability. Continued progress by reducing the peptidic nature of these compounds resulted in incremental advances and has provided compounds that meet, or nearly meet, typical CNS drug-like criteria. The challenges associated with peptidic starting points inspired innovative new approaches to search for different starting points. Several groups employed high concentration screening (ligand concentration 100 microM and higher) to find weak hits after conventional screening (typically at 10 microM) failed to find more potent ones. Fragment-based methods have also been developed to identify even weaker hits (IC50 1 mM and greater). This was accomplished through the evolution and refinement of several detection methodologies including calorimetry, surface plasmon resonance, NMR, and crystallography. Coupled with detailed structural understanding of ligand-enzyme interactions and focus on maintaining ligand efficiency, these developments have resulted in several examples where potency was improved by 10,000-fold to afford compounds with IC50 values < 10 nM and promising drug-like characteristics. Together, all these efforts have afforded a diverse array of chemotypes as BACE inhibitors. Early work focused on improving BACE potency in isolated enzyme assays. However, most of these compounds showed potency reductions in cellular assays. Continued improvements in drug properties and in understanding of the physiologically relevant conditions have resulted in many compounds that show strong potency in both isolated and cellular assays. Several compounds have shown reduction of Abeta using rodent in-vivo models both peripherally and in the brain. Recently, one compound has demonstrated reduction of brain Abeta levels in a non-human primate. Phase I clinical trials were initiated on BACE inhibitor CTS-21166 from CoMentis in July of 2007. This compound derives from the earliest described peptidic inhibitors such as OM99-2 [58] but no details have been reported. In addition to strategies involving small molecule inhibitors of BACE and gamma-secretase to reduce Abeta levels, the application of biological agents has been under investigation since the identification of Abeta. The earliest efforts in this area failed. Despite encouraging results in preclinical models, immunization against Abeta by administration of AN-1792 from Elan led to development of aseptic meningoencephalitis in 6% of the patients receiving the drug. Nevertheless, continued efforts with other biological approaches appear encouraging. Most advanced in clinical trials is bapineuzumab from Elan, which is in Phase III clinical trials. This is a humanized monoclonal antibody against Abeta plaques. A recent monograph is devoted to progress in these areas. Taken together, considerable progress has been made in developing CNS-penetrant agents that reduce AP levels and in providing validation that such agents will be therapeutically beneficial for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jeffrey S Albert
- CNS Discovery Research, AstraZeneca Pharmaceuticals, 1800 Concord Pike, P O Box 15437, Wilmington, DE 19850-5437, USA
| |
Collapse
|
6
|
Bakshi P, Jin C, Broutin P, Berhane B, Reed J, Mullan M. Structural optimization of a CXCR2-directed antagonist that indirectly inhibits γ-secretase and reduces Aβ. Bioorg Med Chem 2009; 17:8102-12. [DOI: 10.1016/j.bmc.2009.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/17/2009] [Accepted: 09/30/2009] [Indexed: 01/13/2023]
|
7
|
Sasaki NA, Garcia-Alvarez MC, Wang Q, Ermolenko L, Franck G, Nhiri N, Martin MT, Audic N, Potier P. N-Terminal 2,3-diaminopropionic acid (Dap) peptides as efficient methylglyoxal scavengers to inhibit advanced glycation endproduct (AGE) formation. Bioorg Med Chem 2009; 17:2310-20. [DOI: 10.1016/j.bmc.2009.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 11/29/2022]
|
8
|
Wakabayashi T, De Strooper B. Presenilins: members of the gamma-secretase quartets, but part-time soloists too. Physiology (Bethesda) 2008; 23:194-204. [PMID: 18697993 DOI: 10.1152/physiol.00009.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presenilins in combination with other proteins generate different gamma-secretases, which are involved in the regulated intramembrane proteolysis of a variety of proteins. Understanding the specificity and regulation of these proteases will potentially lead to novel therapeutics for Alzheimer's disease and cancer. Presenilins appear also to exert additional functions outside of the gamma-secretase quartets, which needs further investigation.
Collapse
|
9
|
Assembly of α-synuclein fibrils in nanoscale studied by peptide truncation and AFM. Biochem Biophys Res Commun 2008; 368:388-94. [DOI: 10.1016/j.bbrc.2008.01.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 11/30/2022]
|
10
|
Byeon SR, Jin YJ, Lim SJ, Lee JH, Yoo KH, Shin KJ, Oh SJ, Kim DJ. Ferulic acid and benzothiazole dimer derivatives with high binding affinity to β-amyloid fibrils. Bioorg Med Chem Lett 2007; 17:4022-5. [PMID: 17544669 DOI: 10.1016/j.bmcl.2007.04.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/20/2007] [Accepted: 04/25/2007] [Indexed: 11/26/2022]
Abstract
New ferulic acid and benzothiazole dimer derivatives were synthesized and evaluated by in vitro competition assay using [(125)I]TZDM for their specific binding affinities to Abeta fibrils. In particular, 4a showed the most excellent binding affinity (K(i)=0.53 nM), compared to PIB (K(i)=0.77 nM), for benzothiazole binding sites of Abeta(1-42) fibrils. This result suggests a possibility of a potential AD diagnostic probe for detection of Abeta fibrils.
Collapse
Affiliation(s)
- Seong Rim Byeon
- Center for Chemoinformatics Research, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 2007; 6:521-32. [PMID: 17599084 DOI: 10.1038/nrd2094] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disorders of the central nervous system (CNS) are some of the most prevalent, devastating and yet poorly treated illnesses. The development of new therapies for CNS disorders such as Alzheimer's disease has the potential to provide patients with significant improvements in quality of life, as well as reduce the future economic burden on health-care systems. However, few truly innovative CNS drugs have been approved in recent years, suggesting that there is a considerable need for strategies to enhance the productivity of research and development in this field. In this article, using illustrative examples from neurological and psychiatric disorders, we describe various approaches that are being taken to discover CNS drugs, discuss their relative merits and consider how risk can be balanced and attrition reduced.
Collapse
Affiliation(s)
- Menelas N Pangalos
- Wyeth Research, Neuroscience Discovery, CN800, Princeton, New Jersey 08543, USA.
| | | | | |
Collapse
|
12
|
Yang MG, Shi JL, Modi DP, Wells J, Cochran BM, Wolf MA, Thompson LA, Ramanjulu MM, Roach AH, Zaczek R, Robertson DW, Wexler RR, Olson RE. Design and synthesis of benzoazepinone-derived cyclic malonamides and aminoamides as potent γ-secretase inhibitors. Bioorg Med Chem Lett 2007; 17:3910-5. [PMID: 17502143 DOI: 10.1016/j.bmcl.2007.04.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/25/2007] [Accepted: 04/30/2007] [Indexed: 01/22/2023]
Abstract
We report the synthesis of benzoazepine-derived cyclic malonamides (2) and aminoamides (3) as gamma-secretase inhibitors for the potential treatment of Alzheimer's disease. The in vitro structure-activity relationships of 2 and 3 along with dog pharmacokinetic results are described.
Collapse
Affiliation(s)
- Michael G Yang
- Bristol-Myers Squibb Co., Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shepherd J, Langley GJ, Herniman JM, Kilburn JD. Rapid Sequencing of Split-and-Mix Peptide Receptor Libraries – Identification of Binding Partners for Val-Val-Ile-Ala in Aqueous Solution. European J Org Chem 2007. [DOI: 10.1002/ejoc.200601004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Byeon SR, Lee JH, Sohn JH, Kim DC, Shin KJ, Yoo KH, Mook-Jung I, Lee WK, Kim DJ. Bis-styrylpyridine and bis-styrylbenzene derivatives as inhibitors for Aβ fibril formation. Bioorg Med Chem Lett 2007; 17:1466-70. [PMID: 17270435 DOI: 10.1016/j.bmcl.2006.10.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/25/2006] [Accepted: 10/28/2006] [Indexed: 11/28/2022]
Abstract
New bis-styrylpyridine and bis-styrylbenzene derivatives were designed and synthesized. These 34 compounds were evaluated by Abeta fibril formation inhibitory assay using thioflavin T as a dye (named ThT assay). Most of them showed excellent inhibitory activities for Abeta fibril formation at IC50 of 0.1-2.7 microM which is comparable to curcumin (IC50 of 0.8 microM). Among them, nine compounds were screened for their cytotoxicities on HT-22 cell by MTT assay at 1, 10, and 50 microM. In particular, I-7 and II-2 exhibited the best combination of inhibitory activity and compound cytotoxicity.
Collapse
Affiliation(s)
- Seong Rim Byeon
- Medicinal Chemistry Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hartmann T. Role of amyloid precursor protein, amyloid-beta and gamma-secretase in cholesterol maintenance. NEURODEGENER DIS 2006; 3:305-11. [PMID: 17047372 DOI: 10.1159/000095271] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipids play an important part as risk factors for Alzheimer's disease. This article summarizes the current understanding of the molecular mechanism by which amyloid-beta (Abeta) peptides regulate cholesterol and sphingomyelin metabolism, and how in return cholesterol and sphingomyelin regulate Abeta peptide production. An understanding of the physiological function of amyloid precursor protein processing and Abeta function is critical for the development of future therapeutic approaches, e.g. statin treatment.
Collapse
Affiliation(s)
- Tobias Hartmann
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
16
|
Romanelli MN, Galeotti N, Ghelardini C, Manetti D, Martini E, Gualtieri F. Pharmacological characterization of DM232 (unifiram) and DM235 (sunifiram), new potent cognition enhancers. CNS DRUG REVIEWS 2006; 12:39-52. [PMID: 16834757 PMCID: PMC6741768 DOI: 10.1111/j.1527-3458.2006.00039.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DM232 (unifiram) and DM235 (sunifiram) are potent cognition-enhancers, which are four order of magnitude more potent than piracetam. These compounds, although not showing affinity in binding studies for the most important central receptors or channels, are able to prevent amnesia induced by modulation of several neurotransmission systems. These compounds are able to increase the release of acetylcholine from rat cerebral cortex, and, as far as unifiram is concerned, to increase the amplitude of fEPSP in rat hippocampal slices. In vitro experiments, performed on hippocampal slices, also supported the hypothesis of a role of the AMPA receptors for the cognition-enhancing properties of unifiram and sunifiram.
Collapse
Affiliation(s)
- M N Romanelli
- Dipartimento di Scienze Farmaceutiche, University of Florence, Sesto Fiorentino, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by neuronal dysfunction and the formation of amyloid plaques in the brain. Although the pathological processes resulting in the onset and progression of AD are not well understood, there is a growing body of evidence to support a central role for biometals in many critical aspects of the illness. Recent reports have described the exciting development of potential therapeutic agents based on the modulation of metal bioavailability. The metal ligand, clioquinol has demonstrated promising results in animal models and small clinical trials and a new generation of metal ligand-based therapeutics are currently under development. However, further research is necessary to fully understand the complex and interdependent pathways of biometal homeostasis and amyloid metabolism in AD. This information will be vital for the development of safe and effective metal-based pharmaceuticals for the treatment of AD and, potentially, other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anthony R White
- The University of Melbourne, Department of Pathology, Victoria 3010, Australia.
| | | | | |
Collapse
|
18
|
Delatour B, Guégan M, Volk A, Dhenain M. In vivo MRI and histological evaluation of brain atrophy in APP/PS1 transgenic mice. Neurobiol Aging 2006; 27:835-47. [PMID: 16023262 DOI: 10.1016/j.neurobiolaging.2005.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 04/06/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Regional cerebral atrophy was evaluated in APP/PS1 mice harboring mutated transgenes linked to familial Alzheimer's disease, using complementary methods. In vivo high resolution MRI was selected for measurements of brain atrophy and associated cerebrospinal fluid dilation; histological analysis was performed to reveal localized atrophies and to evaluate amyloid burden. Young APP/PS1 mice examined at a pre-amyloid stage (10 weeks) showed disruption in development (reduced intracranial and brain volumes). Comparison of young and old (24 months) mice, indicated that both APP/PS1 and control brains endure growth during adulthood. Aged APP/PS1 animals showed a moderate although significant global brain atrophy and a dilation of CSF space in posterior brain regions. The locus of this atrophy was identified in the midbrain area and not, as expected, at isocortical/hippocampal levels. Atrophy was also detected in fiber tracts. The severity of brain atrophy in old APP/PS1 mice was not correlated with the extent of cerebral amyloidosis. The relevance of current transgenic mouse models for the study of brain atrophy related to Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- Benoît Delatour
- Laboratoire NAMC, CNRS, UMR 8620, Bât 446, Université Paris Sud, 91405 Orsay, France
| | | | | | | |
Collapse
|
19
|
Nichols L, Pike VW, Cai L, Innis RB. Imaging and in vivo quantitation of beta-amyloid: an exemplary biomarker for Alzheimer's disease? Biol Psychiatry 2006; 59:940-7. [PMID: 16487944 DOI: 10.1016/j.biopsych.2005.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 11/01/2005] [Accepted: 11/17/2005] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is characterized pathologically by the presence of beta-amyloid plaques in the brain. A substantial body of research indicates that the presence of increased beta-amyloid peptide (Abeta) is neurotoxic and may initiate the further pathology observed in AD, including neurofibrillary tangles, synaptic loss and dysfunction, and neurodegeneration. The use of brain imaging in patients with or at risk for AD has increased our understanding of the pathophysiology of the disease and may potentially aid in diagnosis. The development of new therapeutics that reduce Abeta in the brain has also indicated a potential use for amyloid imaging in monitoring response to treatment. This review explores the utility of amyloid as a biomarker and the use of positron emission tomography and magnetic resonance imaging in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Lisa Nichols
- Molecular Imaging Branch, National Institutes of Health, Bethesda, Maryland 20892-0135, USA
| | | | | | | |
Collapse
|
20
|
Gillmore JD, Hawkins PN. Drug Insight: emerging therapies for amyloidosis. ACTA ACUST UNITED AC 2006; 2:263-70. [PMID: 16932439 DOI: 10.1038/ncpneph0169] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 02/28/2006] [Indexed: 02/07/2023]
Abstract
Amyloidosis is a clinical disorder caused by extracellular deposition of proteins that are normally soluble as insoluble, abnormal fibrils that impair organ function. More than 20 unrelated proteins can form amyloid fibrils in vivo. All fibrils share cross-beta core structure and pathognomonic red-green birefringence when viewed under cross-polarized light after staining with Congo red. Amyloidosis can be acquired or hereditary, localized or systemic, and is classified according to the fibril precursor protein. Local amyloid deposition occurs in the brain in Alzheimer's disease and in the pancreas in maturity-onset diabetes, but a direct role in the pathogenesis of these diseases remains unproven. Systemic amyloidosis, with amyloid deposits in the viscera, blood vessel walls and connective tissues, is usually fatal and is the cause of about one death per thousand in developed countries. Recent elucidation of fundamental aspects of the pathogenesis of amyloidosis, and developments in diagnosis and monitoring of this disorder have greatly improved outcome for patients. Several exciting novel therapeutic strategies, reviewed in this article, are in development. These include interference with different stages of fibrillogenesis and enhancement of clearance of amyloid deposits.
Collapse
Affiliation(s)
- Julian D Gillmore
- National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
21
|
Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides. FASEB J 2006; 20:1269-71. [PMID: 16636099 DOI: 10.1096/fj.05-5530fje] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For millennia, ginseng and some of its components have been used to treat a wide variety of medical conditions, including age-related memory impairment. Because of its purported effects and apparently low rate of side effects, ginseng remains one of the top selling natural product remedies in the United States. Given its potential role for improving age-related memory impairments and its common use in China for the treatment of Alzheimer's disease-like symptoms, we analyzed the effects of commercially available preparations of ginseng on the accumulation of the Alzheimer's amyloid beta peptide (Abeta) in a cell-based model system. In this model system, ginseng treatment resulted in a significant reduction in the levels of Abeta in the conditioned medium. We next examined the effects of several compounds isolated from ginseng and found that certain ginsenosides lowered Abeta concentration in a dose-dependent manner with ginsenoside Rg3 having an approximate IC50 of under 25 microM against Abeta42. Furthermore, we found that three of these isolated components, ginsenoside Rg1, Rg3, and RE, resulted in significant reductions in the amount of Abeta detected in the brains of animals after single oral doses of these agents. The results indicate that ginseng itself, or purified ginsenosides, may have similarly useful effects in human disease.
Collapse
Affiliation(s)
- Feng Chen
- Mayo Clinic College of Medicine, Department of Pharmacology, Birdsall Bldg. Rm. 327, 4500 San Pablo Rd., Jacksonville, Florida 32224, USA
| | | | | |
Collapse
|
22
|
El Tannir El Tayara N, Delatour B, Le Cudennec C, Guégan M, Volk A, Dhenain M. Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2006; 22:199-208. [PMID: 16337798 DOI: 10.1016/j.nbd.2005.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/25/2005] [Accepted: 10/31/2005] [Indexed: 11/26/2022] Open
Abstract
T1 and T2 magnetic resonance relaxation times have the potential to provide biomarkers of amyloid-beta deposition that could be helpful to the development of new therapies for Alzheimer's disease. Here, we measured T1 and T2 times as well as plaques and iron loads in APP/PS1 mice, which model brain amyloidosis, and control PS1 mice. Iron was mostly associated with amyloid deposits in APP/PS1 animals, while it was diffuse in the PS1 mice. T1 was negatively correlated with age in most structures in APP/PS1 animals. This may be related to the age-associated myelin loss described in APP/PS1 mice rather than to amyloid deposition. T2 in the subiculum of adult APP/PS1 animals was lower than in PS1 mice, which may be related to the very high amyloid and iron loads in this region. T2 in the subiculum could thus serve as an early marker of the amyloid pathology.
Collapse
Affiliation(s)
- Nadine El Tannir El Tayara
- Integrative Imaging Unit, Curie Institute-INSERM, Centre Universitaire, Laboratoire 112, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Silverberg GD, Mayo M, Saul T, Carvalho J, McGuire D. Novel ventriculo-peritoneal shunt in Alzheimer's disease cerebrospinal fluid biomarkers. Expert Rev Neurother 2006; 4:97-107. [PMID: 15853620 DOI: 10.1586/14737175.4.1.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease is an age-related dementia and its incidence is rising in developed countries as the population ages. Amyloid plaques and tau-rich neurofibrillary tangles are pathologic hallmarks of the disease. Treatment is symptomatic, consisting of compounds that block enzymatic acetylcholine degradation (acetylcholinesterase inhibitors). Cognitive benefits of the four approved antidementia drugs are typically modest and limited in duration. While Alzheimer's disease is undoubtedly multifactorial in cause, advancing age is the most important risk factor. Any robust theory of pathogenesis must account for the profound influence of age on the emergence of Alzheimer's disease. There is evidence that senescent changes in cerebrospinal fluid production, circulation, turnover and clearance of amyloid beta-peptides may be a key factor in the onset and progression of Alzheimer's disease. The effect of increasing cerebrospinal fluid circulation and turnover in Alzheimer's disease patients by implanting a novel, low-flow drainage system (COGNIshunt) has been studied and promising trends in cognitive stabilization and improvement in cerebrospinal fluid biomarkers have been found.
Collapse
Affiliation(s)
- Gerald D Silverberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
24
|
de Groot NS, Aviles FX, Vendrell J, Ventura S. Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer's peptide. Side-chain properties correlate with aggregation propensities. FEBS J 2006; 273:658-68. [PMID: 16420488 DOI: 10.1111/j.1742-4658.2005.05102.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein misfolding and deposition underlie an increasing number of debilitating human disorders. Alzheimer's disease is pathologically characterized by the presence of numerous insoluble amyloid plaques in the brain, composed primarily of the 42 amino acid human beta-amyloid peptide (Abeta42). Disease-linked mutations in Abeta42 occur in or near a central hydrophobic cluster comprising residues 17-21. We exploited the ability of green fluorescent protein to act as a reporter of the aggregation of upstream fused Abeta42 variants to characterize the effects of a large set of single-point mutations at the central position of this hydrophobic sequence as well as substitutions linked to early onset of the disease located in or close to this region. The aggregational properties of the different protein variants clearly correlated with changes in the intrinsic physicochemical properties of the side chains at the point of mutation. Reduction in hydrophobicity and beta-sheet propensity resulted in an increase of in vivo fluorescence indicating disruption of aggregation, as confirmed by the in vitro analysis of synthetic Abeta42 variants. The results confirm the key role played by the central hydrophobic stretch on Abeta42 deposition and support the hypothesis that sequence tunes the aggregation propensities of polypeptides.
Collapse
Affiliation(s)
- Natalia Sánchez de Groot
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona
| | | | | | | |
Collapse
|
25
|
Cornista JC, Koga Y, Takano K, Kanaya S. Amyloidogenecity and pitrilysin sensitivity of a lysine-free derivative of amyloid beta-peptide cleaved from a recombinant fusion protein. J Biotechnol 2005; 122:186-97. [PMID: 16233926 DOI: 10.1016/j.jbiotec.2005.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/27/2005] [Accepted: 09/13/2005] [Indexed: 12/20/2022]
Abstract
The progressive cerebral deposition of a 40-42 residues amyloid beta-peptide (Abeta) is regarded as a major factor in the onset of the Alzheimer's disease. It has recently been shown that Abeta(1-40) is cleaved by Escherichia coli pitrilysin, a homologue of insulysin, at a specific site. To facilitate the studies on a recognition mechanism of Abeta by pitrilysin, an overproduction system of Abeta(1-40) as a fusion protein with E. coli RNase HI was constructed. This fusion protein was designed such that an Abeta(1-40) derivative, Abeta(1-40)*, in which Lys16 and Lys28 of Abeta(1-40) are simultaneously replaced by Ala, is attached to the C-terminus of E. coli RNase HI and Abeta(1-40)* is separated from RNase HI upon cleavage with lysyl endopeptidase. The fusion protein was overproduced in E. coli in inclusion bodies, solubilized and purified in the presence of guanidine hydrochloride, and cleaved by lysyl endopeptidase. Abeta(1-40)* was purified from the resultant peptide fragments by reverse-phase HPLC. Measurement of the far-UV CD spectra suggests that Abeta(1-40)* is conformationally similar to Abeta(1-40). However, the thioflavin T binding assay suggests that Abeta(1-40)* is more amyloidogenic than Abeta(1-40). Nevertheless, Abeta(1-40)* was cleaved by pitrilysin at the site identical to that in Abeta(1-40).
Collapse
Affiliation(s)
- Joel C Cornista
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
26
|
Kang SS, Lee JY, Choi YK, Song SS, Kim JS, Jeon SJ, Han YN, Son KH, Han BH. Neuroprotective effects of naturally occurring biflavonoids. Bioorg Med Chem Lett 2005; 15:3588-91. [PMID: 15978805 DOI: 10.1016/j.bmcl.2005.05.078] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/09/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
We examined neuroprotective effects of naturally occurring biflavonoids on oxidative stress-induced and amyloid beta peptide-induced cell death in neuronal cells. Among the nine biflavonoids tested, amentoflavone, ginkgetin, and isoginkgetin exhibited strong neuroprotection against cytotoxic insults induced by oxidative stress and amyloid beta, suggesting their therapeutic potential against neurodegenerative diseases, including ischemic stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Sam Sik Kang
- Department of Manufacturing Pharmacy, Seoul National University College of Pharmacy, Seoul 110-460, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Lee KH, Shin BH, Shin KJ, Kim DJ, Yu J. A hybrid molecule that prohibits amyloid fibrils and alleviates neuronal toxicity induced by beta-amyloid (1-42). Biochem Biophys Res Commun 2005; 328:816-23. [PMID: 15707952 DOI: 10.1016/j.bbrc.2005.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Indexed: 11/16/2022]
Abstract
Inhibition of oligomeric amyloid beta (Abeta) peptide or fibril formation has emerged as a major therapeutic target for developing new drugs for Alzheimer's disease. We focused on developing inhibitors by synthesizing hybrid molecules of ferulic acid and styryl benzene, which has been known as a fibril binder. Initially, cell-based assay was carried out to evaluate the effective compound. A selected effector, 1, alleviated the Abeta-induced neuronal toxicity in differentiated SH-SY5Y human neuroblastoma cells. The effector could also inhibit Abeta fibril formation, monitored by thioflavin T fluorescence intensity assay and transmitted electron microscopic images. A strong binding affinity of 1 to non-fibrous monomer-like Abeta, which was immobilized to a surface chip, was measured using a surface plasmon resonance technique. The data suggest that the effector shifts the equilibrium of multimeric Abeta, inhibiting the pathogenic oligomer or fibril formation.
Collapse
Affiliation(s)
- Kyung Hyun Lee
- Department of Chemistry and Education, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
29
|
Wiseman RL, Johnson SM, Kelker MS, Foss T, Wilson IA, Kelly JW. Kinetic Stabilization of an Oligomeric Protein by a Single Ligand Binding Event. J Am Chem Soc 2005; 127:5540-51. [PMID: 15826192 DOI: 10.1021/ja042929f] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein native state stabilization imposed by small molecule binding is an attractive strategy to prevent the misfolding and misassembly processes associated with amyloid diseases. Transthyretin (TTR) amyloidogenesis requires rate-limiting tetramer dissociation before misassembly of a partially denatured monomer ensues. Selective stabilization of the native TTR tetramer over the dissociative transition state by small molecule binding to both thyroxine binding sites raises the kinetic barrier of tetramer dissociation, preventing amyloidogenesis. Assessing the amyloidogenicity of a TTR tetramer having only one amyloidogenesis inhibitor (I) bound is challenging because the two small molecule binding constants are generally not distinct enough to allow for the exclusive formation of TTR.I in solution to the exclusion of TTR.I(2) and unliganded TTR. Herein, we report a method to tether one fibril formation inhibitor to TTR by disulfide bond formation. Occupancy of only one of the two thyroxine binding sites is sufficient to inhibit tetramer dissociation in 6.0 M urea and amyloidogenesis under acidic conditions by imposing kinetic stabilization on the entire tetramer. The sufficiency of single occupancy for stabilizing the native state of TTR provides the incentive to search for compounds displaying striking negative binding cooperativity (e.g., K(d1) in nanomolar range and K(d2) in the micromolar to millimolar range), enabling lower doses of inhibitor to be employed in the clinic, mitigating potential side effects.
Collapse
Affiliation(s)
- R Luke Wiseman
- Department of Chemistry, the Department of Molecular Biology, and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 265, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer's disease and other neurodegenerative disorders--memantine, a new hope. Pharmacol Res 2005; 51:1-17. [PMID: 15519530 DOI: 10.1016/j.phrs.2004.05.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease is the fourth largest cause of death for people over 65 years of age. Dementia of Alzheimer's type is the commonest form of dementia, the other two forms being vascular dementia and mixed dementia. At present, the therapy of Alzheimer's disease is aimed at improving both, cognitive and behavioural symptoms and thereby, quality of life for the patients. Since the discovery of Alzheimer's disease by Alois Alzheimer, many pathological mechanisms have been proposed which led to the testing of various new treatments. Until recently the available drugs for the treatment of Alzheimer's disease are cholinesterase inhibitors, which have limited success because these drugs improve cognitive functions only in mild dementia and cannot stop the process of neurodegeneration. Moreover, drugs of this category show gastrointestinal side effects. As the cells of central and peripheral nervous system cannot regenerate, newer strategies are aimed at preserving the surviving neurons by preventing their degeneration. NMDA-receptor-mediated glutamate excitotoxicity plays a major role in Abeta-induced neuronal death. Hence, it was thought that NMDA receptors could be a promising target for preventing the progression of Alzheimer's disease. All the compounds synthesized initially in this category showed toxicity mainly because of their high affinity for NMDA receptors. Memantine (1-amino adamantane derivative), NMDA-receptor antagonist was reported to be effective therapeutically in Alzheimer's disease. It was available in Germany as well as European Union and has been approved for moderate to severe dementia in United States of America recently. It is an uncompetitive, moderate affinity antagonist of NMDA receptors that inhibits the pathological functions of NMDA receptors while physiological processes in learning and memory are unaffected. Memantine is also reported to have beneficial effects in other CNS disorders viz., Parkinson's disease (PD), stroke, epilepsy, CNS trauma, amyotrophic lateral sclerosis (ALS), drug dependence and chronic pain. Mechanisms of neuroprotection, preclinical and clinical evidence for effectiveness of memantine have been provided. Pharmacology and pharmacokinetics of memantine and other NMDA-receptor antagonists in comparison with currently approved drugs for dementia treatment have been discussed. The focus is on 'glutamate excitotoxicity' and glutamate receptors as drug target. Various other novel strategies for the treatment of dementia of neurodegenerative disorders have also been discussed.
Collapse
Affiliation(s)
- S K Sonkusare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160 062, India
| | | | | |
Collapse
|
31
|
Schmuck C, Frey P, Heil M. Inhibition of Fibril Formation of Aβ by Guanidiniocarbonyl Pyrrole Receptors. Chembiochem 2005; 6:628-31. [PMID: 15719356 DOI: 10.1002/cbic.200400270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carsten Schmuck
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
32
|
Miida T, Hirayama S, Nakamura Y. Cholesterol-independent effects of statins and new therapeutic targets: ischemic stroke and dementia. J Atheroscler Thromb 2005; 11:253-64. [PMID: 15557707 DOI: 10.5551/jat.11.253] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or "statins", are used as cholesterol-lowering agents worldwide. Statins inhibit cholesterol biosynthesis, leading to enhanced uptake of low-density lipoprotein (LDL) from the circulation via LDL receptors. This strong cholesterol-lowering action contributes to the beneficial effects of statins. For example, large clinical trials have demonstrated that statins significantly reduce cardiovascular risk. Recent research has shown that statins have other multiple actions involved in endothelial function, cell proliferation, inflammatory response, immunological reactions, platelet function, and lipid oxidation. These "pleiotropic actions" of statins probably provide a significant contribution to the reduction of cardiovascular events. This review summarizes the pleiotropic actions of statins in both basic and clinical studies. It also considers the potential for statin therapy in the treatment of stroke and dementia.
Collapse
Affiliation(s)
- Takashi Miida
- Division of Clinical Preventive Medicine, Department of Community Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Japan.
| | | | | |
Collapse
|
33
|
Quéléver G, Kachidian P, Melon C, Garino C, Laras Y, Pietrancosta N, Sheha M, Louis Kraus J. Enhanced delivery of γ-secretase inhibitor DAPT into the brain via an ascorbic acid mediated strategy. Org Biomol Chem 2005; 3:2450-7. [PMID: 15976862 DOI: 10.1039/b504988a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of gamma-secretase, one of the enzymes responsible for the cleavage of the amyloid precursor protein (APP) to produce pathogenic Abeta peptides, is an attractive approach for the treatment of Alzheimer's disease. We designed a gamma-secretase inhibitor bearing an ascorbic acid moiety which allows a specific delivery of the drug to the brain. Through, on the one hand, Abeta peptide production measurements by specific in vitro assays (gamma-secretase cell free assay and cell based assay on HEK 293 APP transfected cells) and on the other hand through pharmacokinetic studies on animal models, the new inhibitor shows a good pharmacokinetic profile as well as a potent gamma-secretase inhibitory activity in vitro. From the obtained results, it is expected that drug will be mainly delivered to the CNS with a low diffusion in the peripheral tissues. Consequently the side effects of this gamma-secretase inhibitor on the immune cells could be reduced.
Collapse
Affiliation(s)
- Gilles Quéléver
- INSERM U-623, Institut de Biologie du Développement de Marseille (CNRS-INSERM-Université de la Méditerranée), Laboratoire de Chimie Biomoléculaire, Faculté des Sciences de Luminy, case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Laras Y, Quéléver G, Garino C, Pietrancosta N, Sheha M, Bihel F, Wolfe MS, Kraus JL. Substituted thiazolamide coupled to a redox delivery system: a new γ-secretase inhibitor with enhanced pharmacokinetic profile. Org Biomol Chem 2005; 3:612-8. [PMID: 15703796 DOI: 10.1039/b415090b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of gamma-secretase, one of the enzymes responsible for the cleavage of the amyloid precursor protein (APP) to produce pathogenic A beta peptides, is an attractive approach for the treatment of Alzheimer's disease. We have designed a new gamma-secretase thiazolamide inhibitor bearing a dihydronicotinoyl moiety as Redox Delivery System which allows specific delivery of the drug to the brain. Through, on the one hand, A beta peptide production measurements by specific in vitro assays (gamma-secretase Cell Free assay and Cell Based assay on HEK 293 APP transfected cells) and, on the other hand, pharmacokinetic studies on animal models, the new inhibitor shows a good pharmacokinetic profile as well as a potent gamma-secretase inhibitory activity in vitro. From the obtained results, it is expected that drug will be mainly delivered to the CNS with low diffusion in the peripheral tissues. Consequently the side effects of this gamma-secretase inhibitor on the immune cells could be reduced.
Collapse
Affiliation(s)
- Younes Laras
- INSERM U-623, Institut de Biologie du Developpement de Marseille, CNRS-INSERM-Universite de la Mediterranee, Laboratoire de Chimie Biomoleculaire, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pietrancosta N, Quéléver G, Laras Y, Garino C, Burlet S, Kraus JL. Design of β-Secretase Inhibitors by Introduction of a Mandelyl Moiety in DAPT Analogues. Aust J Chem 2005. [DOI: 10.1071/ch05102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the synthesis of two series of compounds with 3,5-difluoromandelyl-alanyl or 3,5-difluorophenylacetyl-alanyl backbones coupled to various heterocyclic or peptidic moieties. These two series of compounds were evaluated for their inhibitory properties on β-secretase (BACE-1) enzymatic assay, a target enzyme for Alzheimer’s disease (AD) pathology. We found that both diastereomers obtained from the racemic mixture 7 of the coumarin derivative bearing a mandelyl moiety were the most potent BACE-1 inhibitors studied in this work (IC50 = 1 × 10−6 M). Analysis of the obtained results led to the hypothesis that introduction of a difluoromandelyl residue in place of a difluorophenylacetyl moiety may induce β-secretase inhibitory activity.
Collapse
|
36
|
Patel S, Vuillard L, Cleasby A, Murray CW, Yon J. Apo and inhibitor complex structures of BACE (beta-secretase). J Mol Biol 2004; 343:407-16. [PMID: 15451669 DOI: 10.1016/j.jmb.2004.08.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/05/2004] [Accepted: 08/09/2004] [Indexed: 12/01/2022]
Abstract
Human BACE, also known as beta-secretase, shows promise as a potential therapeutic target for Alzheimer's disease. We determined the apo structure of BACE to 1.75 A, and a structure of a hydroxyethylamine inhibitor complex derived by soaking. These show significant active-site movements compared to previously described BACE structures. Additionally, the structures reveal two pockets that could be targeted by structure-based drug design.
Collapse
Affiliation(s)
- Sahil Patel
- Astex Technology, 436 Cambridge Science Park, Milton Road, CB4 0QA, UK
| | | | | | | | | |
Collapse
|
37
|
Abstract
Amyloidosis encompasses a spectrum of diseases in which there is disordered folding of certain proteins that leads to them being deposited as insoluble fibrils in the extracellular space. The result of this process is impaired tissue structure and function. Amyloidosis may be acquired or hereditary and local or systemic, and is defined according to the identity of the fibril precursor protein. Over 20 unrelated proteins can form amyloid fibrils in vivo, which all share a lamellar cross-beta-sheet structure composed of non-covalently associated protein or peptide subunits. Glycosaminoglycans and the pentraxin protein, serum amyloid P component, are universal non-fibrillar constituents of amyloid deposits that are believed to play a role in fibrillogenesis and fibril persistence. Greater understanding of the processes underlying amyloidogenesis, at all levels from cellular to clinical, has led to improvements in diagnosis, monitoring and treatment of this group of diseases, as well as pointing to possible future therapies.
Collapse
|
38
|
El-Gendy AM, Adejare A. Membrane permeability related physicochemical properties of a novel γ-secretase inhibitor. Int J Pharm 2004; 280:47-55. [PMID: 15265546 DOI: 10.1016/j.ijpharm.2004.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 04/27/2004] [Accepted: 04/28/2004] [Indexed: 11/20/2022]
Abstract
Pharmaceutical profiling studies were conducted on a novel prototype gamma-secretase inhibitor, to determine the potential of its oral absorption. Such compounds can be of use in the treatment of Alzheimer's disease (AD). The studies included determination of solubility, dissociation constant (pK(a)), octanol/water partition coefficient (log P) and the capacity factor (k'(IAM)) on immobilized artificial membrane (IAM) chromatographic columns. The compound is very slightly solubility in water (120 +/- 50 microg/mL) but the solubility increased considerably in basic medium (270 +/- 60 microg/mL). The compound exhibited pK(a) of (10.36 +/- 0.11); and log P of (3.36 +/- 0.16) determined by shake-flask method and (3.31 +/- 0.01) determined by high performance liquid chromatography (HPLC). The experimentally determined log P values correlated well with the calculated one of 3.44. The observed log k'(IAM) value of (2.79 +/- 0.04) indicates that the compound can reasonably be expected to have high membrane permeability, and therefore, good absorption profile if taken orally. This conclusion is also supported by other parameters determined.
Collapse
Affiliation(s)
- Ahmed M El-Gendy
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
39
|
Doraiswamy PM, Finefrock AE. Metals in our minds: therapeutic implications for neurodegenerative disorders. Lancet Neurol 2004; 3:431-4. [PMID: 15207800 DOI: 10.1016/s1474-4422(04)00809-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Abnormal interactions of copper or iron in the brain with metal-binding proteins (such as amyloid-beta peptide [Abeta] or neuromelanin) that lead to oxidative stress have emerged as important potential mechanisms in brain ageing and neurodegenerative disorders. Although a controlled study of desferrioxamine in Alzheimer's disease(AD) had some promising results, concerns about toxicity and brain delivery have limited trials of traditional chelators. The therapeutic significance of metal dysregulation in neurodegenerative disorders has remained difficult to test. RECENT DEVELOPMENTS Clioquinol was identified as a prototype metal-protein-attenuating compound (MPAC). In a blinded and controlled 9 week study of a mouse model of AD, oral clioquinol decreased brain Abeta by 49% without systemic toxicity. The concentrations of copper and zinc in the brain rose by about 15% in mice treated with clioquinol. Two other studies in mice showed that the raising of brain copper concentrations through diet or genetics could lower amyloid load and increase survival. A recent placebo-controlled trial in 36 patients with AD showed that clioquinol (250-750 mg daily) reduced plasma concentrations of Abeta(1-42), raised plasma concentrations of zinc, and-in a subset with moderate dementia-slowed cognitive decline over 24 weeks. Two recent experiments also showed the neuroprotective effects of iron chelation in a mouse model of Parkinson's disease. WHERE NEXT?: The experimental and transgenic-animal studies of metal-protein interactions are convincing but do not provide conclusive answers either about causality or whether this strategy will protect against neurodegeneration in human beings. The finding that clioquinol could modulate plasma concentrations of amyloid and cognition in patients with AD needs to be interpreted cautiously, but is an important first step. Clioquinol was withdrawn because of concerns of its association with subacute myelo-optic neuropathy in Japan; therefore, any additional studies with this drug will likely be small and closely monitored proof-of-concept studies. The development of optimal second-generation MPACs is a desirable goal and may permit greater insights into the significance of metal-protein interactions across several neurodegenerative disorders.
Collapse
Affiliation(s)
- P Murali Doraiswamy
- Department of Psychiatry, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
40
|
Hellström-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A, Thomas A, Perry E, Bednar I, Nordberg A. Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 2004; 19:2703-10. [PMID: 15147304 DOI: 10.1111/j.0953-816x.2004.03377.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ten days treatment with nicotine reduced insoluble amyloid A beta 1-40 and Alpha beta 1-42 peptides by 80% in the cortex of 9-month-old APPsw mice, which is more than that observed in 14.5-month-old mice following nicotine treatment for 5.5 months. A reduction in A beta associated with cerebral vessels was observed in addition to that deposited as parenchymal plaques after 5.5 months treatment. The diminution in A beta peptides observed was not accompanied by changes in brain alpha, beta or gamma secretase-like activities, NGF or BDNF protein expression measured in brain homogenates. A significant increase in sAPP was observed after nicotine treatment of SH-SY5Yneuroblastoma cells that could be blocked by the nicotinic antagonist mecamylamine. Attenuation of elevated [(125)I]-alpha bungarotoxin binding (alpha 7) in APPsw mice was observed after 5.5 months nicotine treatment. Both these observations suggest that the reduction in insoluble A beta by nicotine might be in part mediated via the alpha 7 nicotinic receptor. Further studies are required to identify potential mechanisms of the nicotine's amyloid-reducing effect.
Collapse
Affiliation(s)
- Ewa Hellström-Lindahl
- Karolinska Institutet, Neurotec Department, Division of Molecular Neuropharmacology, Karolinska University Hospital Huddinge B84, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chang WP, Koelsch G, Wong S, Downs D, Da H, Weerasena V, Gordon B, Devasamudram T, Bilcer G, Ghosh AK, Tang J. In vivo
inhibition of Aβ production by memapsin 2 (β‐secretase) inhibitors. J Neurochem 2004; 89:1409-16. [PMID: 15189343 DOI: 10.1111/j.1471-4159.2004.02452.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously reported structure-based design of memapsin 2 (beta-secretase) inhibitors with high potency. Here we show that two such inhibitors covalently linked to a "carrier peptide" penetrated the plasma membrane in cultured cells and inhibited the production of beta-amyloid (Abeta). Intraperitoneal injection of the conjugated inhibitors in transgenic Alzheimer's mice (Tg2576) resulted in a significant decrease of Abeta level in the plasma and brain. These observations verified that memapsin 2 is a therapeutic target for Abeta reduction and also establish that transgenic mice are suitable in vivo models for the study of memapsin 2 inhibition.
Collapse
Affiliation(s)
- Wan-Pin Chang
- Protein Studies Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Amyloidosis is a disorder of protein folding in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Over 20 unrelated proteins form amyloid fibrils in vivo, with fibrils sharing a lamellar cross-beta sheet structure, composed of non-covalently associated protein or peptide subunits. Amyloidosis may be acquired or hereditary and local or systemic, and is defined according to the precursor protein. Of note, local amyloid deposition occurs in Alzheimer's disease (AD) and maturity onset diabetes but their precise role in the pathogenesis of these diseases remains uncertain. Glycosaminoglycans (GAG) and the pentraxin protein, serum amyloid P (SAP) component, are universal non-fibrillar constituents of amyloid deposits that contribute to fibrillogenesis. We review potential therapies for amyloidosis, which include measures to reduce the production of amyloidogenic precursor proteins, interference with fibrillogenesis, and enhancement of amyloid clearance, either by active or passive immunisation or by destabilising deposits through removal of serum amyloid P component.
Collapse
Affiliation(s)
- G M Hirschfield
- Centre for Amyloidosis, Royal Free University College Medical School, NW3 2PF London, UK.
| | | |
Collapse
|
43
|
Piazzi L, Rampa A, Bisi A, Gobbi S, Belluti F, Cavalli A, Bartolini M, Andrisano V, Valenti P, Recanatini M. 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer's disease therapy. J Med Chem 2003; 46:2279-82. [PMID: 12773032 DOI: 10.1021/jm0340602] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, the investigation of acetylcholinesterase (AChE) inhibitors has gained further interest, because the involvement of the peripheral site of the enzyme in the beta-amyloid (Abeta) aggregation process has been disclosed. We present here, for the first time, a direct evidence of the Abeta antiaggregating action of an AChE inhibitor (AP2238) purposely designed to bind at both the catalytic and the peripheral sites of the human enzyme.
Collapse
Affiliation(s)
- Lorna Piazzi
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The amyloid precursor protein and the proteases cleaving this protein are important players in the pathogenesis of Alzheimer's disease via the generation of the amyloid peptide. Physiologically, the amyloid precursor protein is implied in axonal vesicular trafficking and the proteases are implicated in developmentally important signaling pathways, most significantly those involving regulated intramembrane proteolysis or RIP. We discuss the cell biology behind the amyloid and tangle hypothesis for Alzheimer's disease, drawing on the many links to the fields of cell biology and developmental biology that have been established in the recent years.
Collapse
Affiliation(s)
- Wim Annaert
- Neuronal Cell Biology Laboratory, Flanders Interuniversity Institute for Biotechnology (VIB) and Catholic University of Leuven, Center for Human Genetics Herestraat 49, Belgium
| | | |
Collapse
|
45
|
|
46
|
Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Müller-Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, Wollmer MA, Umbricht D, de Quervain DJF, Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM. Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron 2003; 38:547-54. [PMID: 12765607 DOI: 10.1016/s0896-6273(03)00294-0] [Citation(s) in RCA: 545] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test whether antibodies against beta-amyloid are effective in slowing progression of Alzheimer's disease, we assessed cognitive functions in 30 patients who received a prime and a booster immunization of aggregated Abeta(42) over a 1 year period in a placebo-controlled, randomized trial. Twenty patients generated antibodies against beta-amyloid, as determined by tissue amyloid plaque immunoreactivity assay. Patients who generated such antibodies showed significantly slower rates of decline of cognitive functions and activities of daily living, as indicated by the Mini Mental State Examination, the Disability Assessment for Dementia, and the Visual Paired Associates Test of delayed recall from the Wechsler Memory Scale, as compared to patients without such antibodies. These beneficial clinical effects were also present in two of three patients who had experienced transient episodes of immunization-related aseptic meningoencephalitis. Our results establish that antibodies against beta-amyloid plaques can slow cognitive decline in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Christoph Hock
- Division of Psychiatry Research, University of Zurich, August Forel Strasse 1, 8008 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bartolini M, Bertucci C, Cavrini V, Andrisano V. beta-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 2003; 65:407-16. [PMID: 12527333 DOI: 10.1016/s0006-2952(02)01514-9] [Citation(s) in RCA: 454] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aggregation of beta-amyloid (1-40) (Abeta) induced by human recombinant acetylcholinesterase (HuAChE) was studied by means of circular dichroism (CD) and by thioflavin T fluorescence spectroscopy. Abeta was incubated alone and with HuAChE. The kinetic of fibrils formation was followed for 48 hr. The increasing beta-conformation content induced by HuAChE, preliminary to the formation of Abeta fibrils, was determined by circular dichroism. This phenomenon was found to be related to the thioflavin T emission of fluorescence at 490 nm. Incubation experiments were performed in the presence of known AChE inhibitors (physostigmine, edrophonium, decamethonium, propidium) and drugs used for Alzheimer's disease (AD) (tacrine, donepezil), to test their capability of preventing the HuAChE-induced Abeta aggregation. The non-competitive or mixed mode of AChE inhibition was confirmed to be an essential feature. At 100 microM propidium, decamethonium, donepezil and physostigmine were found to inhibit the HuAChE-induced Abeta aggregation by 82, 25, 22 and 30%, respectively.
Collapse
Affiliation(s)
- Manuela Bartolini
- Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | |
Collapse
|