1
|
Peretti A, Scorpio DG, Kong WP, Pang YYS, McCarthy MP, Ren K, Jackson M, Graham BS, Buck CB, McTamney PM, Pastrana DV. A multivalent polyomavirus vaccine elicits durable neutralizing antibody responses in macaques. Vaccine 2023; 41:1735-1742. [PMID: 36764908 PMCID: PMC9992340 DOI: 10.1016/j.vaccine.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
In 2019, there were about 100,000 kidney transplants globally, with more than a quarter of them performed in the United States. Unfortunately, some engrafted organs are lost to polyomavirus-associated nephropathy (PyVAN) caused by BK and JC viruses (BKPyV and JCPyV). Both viruses cause brain disease and possibly bladder cancer in immunosuppressed individuals. Transplant patients are routinely monitored for BKPyV viremia, which is an accepted hallmark of nascent nephropathy. If viremia is detected, a reduction in immunosuppressive therapy is standard care, but the intervention comes with increased risk of immune rejection of the engrafted organ. Recent reports have suggested that transplant recipients with high levels of polyomavirus-neutralizing antibodies are protected against PyVAN. Virus-like particle (VLP) vaccines, similar to approved human papillomavirus vaccines, have an excellent safety record and are known to induce high levels of neutralizing antibodies and long-lasting protection from infection. In this study, we demonstrate that VLPs representing BKPyV genotypes I, II, and IV, as well as JCPyV genotype 2 produced in insect cells elicit robust antibody titers. In rhesus macaques, all monkeys developed neutralizing antibody titers above a previously proposed protective threshold of 10,000. A second inoculation, administered 19 weeks after priming, boosted titers to a plateau of ≥ 25,000 that was maintained for almost two years. No vaccine-related adverse events were observed in any macaques. A multivalent BK/JC VLP immunogen did not show inferiority compared to the single-genotype VLP immunogens. Considering these encouraging results, we believe a clinical trial administering the multivalent VLP vaccine in patients waiting to receive a kidney transplant is warranted to evaluate its ability to reduce or eliminate PyVAN.
Collapse
Affiliation(s)
- Alberto Peretti
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| | - Diana G Scorpio
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Wing-Pui Kong
- Virology Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Yuk-Ying S Pang
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| | - Michael P McCarthy
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Kuishu Ren
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Moriah Jackson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Christopher B Buck
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Patrick M McTamney
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
3
|
Ye D, Zimmermann T, Demina V, Sotnikov S, Ried CL, Rahn H, Stapf M, Untucht C, Rohe M, Terstappen GC, Wicke K, Mezler M, Manninga H, Meyer AH. Trafficking of JC virus-like particles across the blood-brain barrier. NANOSCALE ADVANCES 2021; 3:2488-2500. [PMID: 36134165 PMCID: PMC9418390 DOI: 10.1039/d0na00879f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 06/10/2023]
Abstract
Hollow viral vectors, such as John Cunningham virus-like particles (JC VLPs), provide a unique opportunity to deliver drug cargo into targeted cells and tissue. Current understanding of the entry of JC virus in brain cells has remained insufficient. In particular, interaction of JC VLPs with the blood-brain barrier (BBB) has not been analyzed in detail. Thus, JC VLPs were produced in this study for investigating the trafficking across the BBB. We performed a carotid artery injection procedure for mouse brain to qualitatively study JC VLPs' in vivo binding and distribution and used in vitro approaches to analyze their uptake and export kinetics in brain endothelial cells. Our results show that clathrin-dependent mechanisms contributed to the entry of VLPs into brain endothelial cells, and exocytosis or transcytosis of VLPs across the BBB was observed in vitro. VLPs were found to interact with sialic acid glycans in mouse brain endothelia. The ability of JC VLPs to cross the BBB can be useful in developing a delivery system for transport of genes and small molecule cargoes to the brain.
Collapse
Affiliation(s)
- Dong Ye
- AbbVie Deutschland GmbH & Co. KG, DMPK, Bioanalytical Research Knollstraße 67061 Ludwigshafen Germany
| | - Tina Zimmermann
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | | | | | - Christian L Ried
- AbbVie Deutschland GmbH & Co. KG, Development Sciences NBE Knollstraße 67061 Ludwigshafen Germany
| | - Harri Rahn
- AbbVie Deutschland GmbH & Co. KG, Development Sciences NBE Knollstraße 67061 Ludwigshafen Germany
| | - Marcus Stapf
- NEUWAY Pharma GmbH Ludwig-Erhard-Allee 2 53175 Bonn Germany
| | - Christopher Untucht
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | - Michael Rohe
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | - Georg C Terstappen
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | - Karsten Wicke
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | - Mario Mezler
- AbbVie Deutschland GmbH & Co. KG, DMPK, Bioanalytical Research Knollstraße 67061 Ludwigshafen Germany
| | - Heiko Manninga
- NEUWAY Pharma GmbH Ludwig-Erhard-Allee 2 53175 Bonn Germany
| | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, DMPK, Bioanalytical Research Knollstraße 67061 Ludwigshafen Germany
| |
Collapse
|
4
|
Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector. Sci Rep 2018; 8:2213. [PMID: 29396437 PMCID: PMC5797127 DOI: 10.1038/s41598-018-19825-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most common malignant brain tumor, has a short period of survival even with recent multimodality treatment. The neurotropic JC polyomavirus (JCPyV) infects glial cells and oligodendrocytes and causes fatal progressive multifocal leukoencephalopathy in patients with AIDS. In this study, a possible gene therapy strategy for GBM using JCPyV virus-like particles (VLPs) as a gene delivery vector was investigated. We found that JCPyV VLPs were able to deliver the GFP reporter gene into tumor cells (U87-MG) for expression. In an orthotopic xenograft model, nude mice implanted with U87 cells expressing the near-infrared fluorescent protein and then treated by intratumoral injection of JCPyV VLPs carrying the thymidine kinase suicide gene, combined with ganciclovir administration, exhibited significantly prolonged survival and less tumor fluorescence during the experiment compared with controls. Furthermore, JCPyV VLPs were able to protect and deliver a suicide gene to distal subcutaneously implanted U87 cells in nude mice via blood circulation and inhibit tumor growth. These findings show that metastatic brain tumors can be targeted by JCPyV VLPs carrying a therapeutic gene, thus demonstrating the potential of JCPyV VLPs to serve as a gene therapy vector for the far highly treatment-refractory GBM.
Collapse
|
5
|
Abstract
Over the last 10 years, the number of identified polyomaviruses has grown to more than 35 subtypes, including 13 in humans. The polyomaviruses have similar genetic makeup, including genes that encode viral capsid proteins VP1, 2, and 3 and large and small T region proteins. The T proteins play a role in viral replication and have been implicated in viral chromosomal integration and possible dysregulation of growth factor genes. In humans, the Merkel cell polyomavirus has been shown to be highly associated with integration and the development of Merkel cell cancers. The first two human polyomaviruses discovered, BKPyV and JCPyV, are the causative agents for transplant-related kidney disease, BK commonly and JC rarely. JC has also been strongly associated with the development of progressive multifocal leukoencephalopathy (PML), a rare but serious infection in untreated HIV-1-infected individuals and in other immunosuppressed patients including those treated with monoclonal antibody therapies for autoimmune diseases systemic lupus erythematosus, rheumatoid arthritis, or multiple sclerosis. The trichodysplasia spinulosa-associated polyomavirus (TSAPyV) may be the causative agent of the rare skin disease trichodysplasia spinulosa. The remaining nine polyomaviruses have not been strongly associated with clinical disease to date. Antiviral therapies for these infections are under development. Antibodies specific for each of the 13 human polyomaviruses have been identified in a high percentage of normal individuals, indicating a high rate of exposure to each of the polyomaviruses in the human population. PCR methods are now available for detection of these viruses in a variety of clinical samples.
Collapse
|
6
|
Bhattacharjee S, Chattaraj S. Entry, infection, replication, and egress of human polyomaviruses: an update. Can J Microbiol 2017; 63:193-211. [DOI: 10.1139/cjm-2016-0519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyomaviruses (PyVs), belonging to the family Polyomaviridae, are a group of small, nonenveloped, double-stranded, circular DNA viruses widely distributed in the vertebrates. PyVs cause no apparent disease in adult laboratory mice but cause a wide variety of tumors when artificially inoculated into neonates or semipermissive animals. A few human PyVs, such as BK, JC, and Merkel cell PyVs, have been unequivocally linked to pathogenesis under conditions of immunosuppression. Infection is thought to occur early in life and persists for the lifespan of the host. Over evolutionary time scales, it appears that PyVs have slowly co-evolved with specific host animal lineages. Host cell surface glycoproteins and glycolipids seem to play a decisive role in the entry stage of viral infection and in channeling the virions to specific intracellular membrane-bound compartments and ultimately to the nucleus, where the genomes are replicated and packaged for release. Therefore the transport of the infecting virion or viral genome to this site of multiplication is an essential process in productive viral infection as well as in latent infection and transformation. This review summarizes the major findings related to the characterization of the nature of the interactions between PyV and host protein and their impact in host cell invasion.
Collapse
Affiliation(s)
- Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
| | - Sutanuka Chattaraj
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
| |
Collapse
|
7
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
8
|
Kim H, Kim HJ. Yeast as an expression system for producing virus-like particles: what factors do we need to consider? Lett Appl Microbiol 2016; 64:111-123. [DOI: 10.1111/lam.12695] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- H.J. Kim
- Laboratory of Virology; College of Pharmacy; Chung-Ang University; Seoul South Korea
| | - H.-J. Kim
- Laboratory of Virology; College of Pharmacy; Chung-Ang University; Seoul South Korea
| |
Collapse
|
9
|
Barth H, Solis M, Kack-Kack W, Soulier E, Velay A, Fafi-Kremer S. In Vitro and In Vivo Models for the Study of Human Polyomavirus Infection. Viruses 2016; 8:E292. [PMID: 27782080 PMCID: PMC5086624 DOI: 10.3390/v8100292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
Developments of genome amplification techniques have rapidly expanded the family of human polyomaviruses (PyV). Following infection early in life, PyV persist in their hosts and are generally of no clinical consequence. High-level replication of PyV can occur in patients under immunosuppressive or immunomodulatory therapy and causes severe clinical entities, such as progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy or Merkel cell carcinoma. The characterization of known and newly-discovered human PyV, their relationship to human health, and the mechanisms underlying pathogenesis remain to be elucidated. Here, we summarize the most widely-used in vitro and in vivo models to study the PyV-host interaction, pathogenesis and anti-viral drug screening. We discuss the strengths and limitations of the different models and the lessons learned.
Collapse
Affiliation(s)
- Heidi Barth
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Morgane Solis
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Wallys Kack-Kack
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Eric Soulier
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Aurélie Velay
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Samira Fafi-Kremer
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
10
|
Cayres-Vallinoto IMV, Vallinoto ACR, Pena GPDA, Azevedo VN, Machado LFA, Ishak MDOG, Ishak R. JC virus/human immunodeficiency virus 1 co-infection in the Brazilian Amazonian region. Braz J Infect Dis 2016; 20:360-4. [PMID: 27266589 PMCID: PMC9427546 DOI: 10.1016/j.bjid.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/04/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022] Open
Abstract
JC virus (JCV) is a member of the Polyomaviridae family and is associated to a severe disease known as progressive multifocal leukoencephalopathy, PML, which is gradually increasing in incidence as an opportunistic infection among AIDS patients. The present study aimed to investigate the occurrence of JCV among HIV-1 carriers including their types and molecular subtypes and the possible association with disease. Urine samples from 66 HIV-1 infected subjects were investigated for the presence of the virus by amplifying VP1 (215bp) and IG (610bp) regions using the polymerase chain reaction. JCV was detected in 32% of the samples. The results confirmed the occurrence of type B (subtype Af2); in addition, another polyomavirus, BKV, was also detected in 1.5% of samples of the HIV-1 infected subjects. Apparently, there was no significant difference between mono- (HIV-1 only) and co-infected (HIV-1/JCV) subjects regarding their TCD4(+)/TCD8(+) lymphocyte counts or HIV-1 plasma viral load. Self admitted seizures, hearing and visual loses were not significantly different between the two groups.
Collapse
Affiliation(s)
| | | | | | - Vânia Nakauth Azevedo
- Universidade Federal do Pará (UFPA), Instituto de Ciências Biológicas, Laboratório de Vírus, Belem, Para, Brazil
| | | | | | - Ricardo Ishak
- Universidade Federal do Pará (UFPA), Instituto de Ciências Biológicas, Laboratório de Vírus, Belem, Para, Brazil
| |
Collapse
|
11
|
Saundh BK, Baker R, Harris M, Hale A. A prospective study of renal transplant recipients reveals an absence of primary JC polyomavirus infections. J Clin Virol 2016; 77:101-5. [PMID: 26923352 DOI: 10.1016/j.jcv.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Both JC polyomavirus (JCPyV) and BK polyomavirus (BKPyV) are acquired at an early age. JCPyV causes progressive multifocal leukoencephalopathy and has been described in association with nephropathy. OBJECTIVES Urine and plasma samples from renal transplant recipients (RTRs) were examined for JCPyV to determine its involvement in causing infection and disease. STUDY DESIGN JCPyV testing was performed on 112 RTRs included in a randomised controlled study of steroid-sparing immunosuppressive regimens [1]. Urine and EDTA blood samples were collected pre- and post-transplantation and analysed for JCPyV using real-time PCR and sequencing to determine genotype and viral variation. Donor and recipient IgG antibody status to JCPyV was also determined. RESULTS Overall, 13.3% of RTRs were positive for JCPyV of which one patient developed viraemia without viruria. JCPyV DNA was detected early following transplantation (defined as five days post transplantation) from recipients with donors that were positive for JCPyV IgG antibodies. No dual cases of JCPyV and BKPyV were observed. One patient sample had sequence duplication in the non-coding control region. CONCLUSIONS Like BKPyV, JCPyV tends to occur early post transplantation but did not result in sustained viraemia. There was no deterioration of renal function in patients positive for JCPyV. As with other viruses, JCPyV donor serostatus was a risk factor for detection of JCPyV DNA. JCPyV appears to protect individuals from BKPyV infection, as recipients were twice as likely to develop BKPyV with a negative JCPyV donor.
Collapse
Affiliation(s)
- Baljit K Saundh
- Leeds Teaching Hospital NHS Trust, Microbiology and Renal Unit, Leeds, United Kingdom.
| | - Richard Baker
- Leeds Teaching Hospital NHS Trust, Microbiology and Renal Unit, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Antony Hale
- Leeds Teaching Hospital NHS Trust, Microbiology and Renal Unit, Leeds, United Kingdom
| |
Collapse
|
12
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
13
|
Chao CN, Huang YL, Lin MC, Fang CY, Shen CH, Chen PL, Wang M, Chang D, Tseng CE. Inhibition of human diffuse large B-cell lymphoma growth by JC polyomavirus-like particles delivering a suicide gene. J Transl Med 2015; 13:29. [PMID: 25623859 PMCID: PMC4312600 DOI: 10.1186/s12967-015-0389-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/12/2015] [Indexed: 01/12/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of aggressive B-cell non-Hodgkin lymphoma. About one-third of patients are either refractory to the treatment or experience relapse afterwards, pointing to the necessity of developing other effective therapies for DLBCL. Human B-lymphocytes are susceptible to JC polyomavirus (JCPyV) infection, and JCPyV virus-like particles (VLPs) can effectively deliver exogenous genes to susceptible cells for expression, suggesting the feasibility of using JCPyV VLPs as gene therapy vectors for DLBCL. Methods The JCPyV VLPs packaged with a GFP reporter gene were used to infect human DLBCL cells for gene delivery assay. Furthermore, we packaged JCPyV VLPs with a suicide gene encoding thymidine kinase (TK) to inhibit the growth of DLBCL in vitro and in vivo. Results Here, we show that JCPyV VLPs effectively entered human germinal center B-cell-like (GCB-like) DLBCL and activated B-cell-like (ABC-like) DLBCL and expressed the packaged reporter gene in vitro. As measured by the MTT assay, treatment with tk-VLPs in combination with gancyclovir (GCV) reduced the viability of DLBCL cells by 60%. In the xenograft mouse model, injection of tk-VLPs through the tail vein in combination with GCV administration resulted in a potent 80% inhibition of DLBCL tumor nodule growth. Conclusions Our results demonstrate the effectiveness of JCPyV VLPs as gene therapy vectors for human DLBCL and provide a potential new strategy for the treatment of DLBCL.
Collapse
Affiliation(s)
- Chun-Nun Chao
- Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan. .,Department of Pediatrics, Chiayi Christian Hospital, Chiayi, Taiwan.
| | - Yih-Leh Huang
- Department of Medical Research, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan.
| | - Mien-Chun Lin
- Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan. .,Department of Urology, Chiayi Christian Hospital, Chiayi, Taiwan.
| | - Chiung-Yao Fang
- Department of Medical Research, Chiayi Christian Hospital, Chiayi, Taiwan.
| | - Cheng-Huang Shen
- Department of Urology, Chiayi Christian Hospital, Chiayi, Taiwan.
| | - Pei-Lain Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| | - Meilin Wang
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.
| | - Deching Chang
- Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan.
| | - Chih-En Tseng
- Department of Anatomic Pathology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan. .,School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
14
|
Teunissen EA, de Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Control Release 2013; 172:305-321. [PMID: 23999392 DOI: 10.1016/j.jconrel.2013.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Virus-like particles (VLPs), aggregates of capsid proteins devoid of viral genetic material, show great promise in the fields of vaccine development and gene therapy. These particles spontaneously self-assemble after heterologous expression of viral structural proteins. This review will focus on the use of virus-like particles derived from polyomavirus capsid proteins. Since their first recombinant production 27 years ago these particles have been investigated for a myriad of biomedical applications. These virus-like particles are safe, easy to produce, can be loaded with a broad range of diverse cargoes and can be tailored for specific delivery or epitope presentation. We will highlight the structural characteristics of polyomavirus-derived VLPs and give an overview of their applications in diagnostics, vaccine development and gene delivery.
Collapse
Affiliation(s)
- Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus de Raad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
15
|
Moens U, Van Ghelue M, Song X, Ehlers B. Serological cross-reactivity between human polyomaviruses. Rev Med Virol 2013; 23:250-64. [DOI: 10.1002/rmv.1747] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences; Department of Medical Biology; Tromsø Norway
| | - Marijke Van Ghelue
- University Hospital of Northern-Norway; Department of Medical Genetics; Tromsø Norway
| | - Xiaobo Song
- University of Tromsø, Faculty of Health Sciences; Department of Medical Biology; Tromsø Norway
| | - Bernhard Ehlers
- Robert Koch Institute; Department of Infectious Diseases; Berlin Germany
| |
Collapse
|
16
|
Cayres-Vallinoto IMV, Vallinoto ACR, Azevedo VN, Machado LFA, Ishak MDOG, Ishak R. Human JCV infections as a bio-anthropological marker of the formation of Brazilian Amazonian populations. PLoS One 2012; 7:e46523. [PMID: 23071582 PMCID: PMC3470572 DOI: 10.1371/journal.pone.0046523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/03/2012] [Indexed: 12/01/2022] Open
Abstract
JC polyomavirus (JCV) is a member of the Polyomaviridae family. It presents a tropism to kidney cells, and the infection occurs in a variety of human population groups of different ethnic background. The present study investigated the prevalence of JCV infection among human populations from the Brazilian Amazon region, and describes the molecular and phylogenetic features of the virus. Urine samples from two urban groups of Belém (healthy subjects), one Brazilian Afro-descendant “quilombo” from the Rio Trombetas region, and native Indians from the Wai-Wai, Urubu-Kaapor, Tembé, Assurini, Arara do Laranjal, Aukre, Parakanã, Surui and Munduruku villages were investigated for the presence of the virus by amplifying VP1 (230 bp) and IG (610 bp) regions using a polymerase chain reaction. Nucleotide sequences (440 nucleotides, nt) from 48 samples were submitted to phylogenetic analysis. The results confirmed the occurrence of types A (subtype EU), B (subtypes Af-2, African and MY, Asiatic) and C (subtype Af-1) among healthy subjects; type B, subtypes Af-2 and MY, among the Afro-Brazilians; and type B, subtype MY, within the Surui Indians. An unexpected result was the detection of another polyomavirus, the BKV, among Afro-descendants. The present study shows, for the first time, the occurrence of JC and BK polyomaviruses infecting humans from the Brazilian Amazon region. The results show a large genetic variability of strains circulating in the region, infecting a large group of individuals. The presence of European, Asiatic and African subtypes associated to the ethnic origin of the population samples investigated herein, highlights the idea that JCV is a fairly good marker for studying the early migration of human populations, reflecting their early and late history. Furthermore, the identification of the specific mutations associated to the virus subtypes, suggests that these mutations have occurred after the entrance of the virus in the Amazon region of Brazil.
Collapse
Affiliation(s)
| | | | | | | | | | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
- * E-mail:
| |
Collapse
|
17
|
Petraitytė-Burneikienė R, Nalivaiko K, Lasickienė R, Firantienė R, Ėmužytė R, Sasnauskas K, Žvirblienė A. Generation of recombinant metapneumovirus nucleocapsid protein as nucleocapsid-like particles and development of virus-specific monoclonal antibodies. Virus Res 2011; 161:131-9. [DOI: 10.1016/j.virusres.2011.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/29/2022]
|
18
|
Chang CF, Wang M, Ou WC, Chen PL, Shen CH, Lin PY, Fang CY, Chang D. Human JC virus-like particles as a gene delivery vector. Expert Opin Biol Ther 2011; 11:1169-75. [DOI: 10.1517/14712598.2011.583914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Saundh BK, Tibble S, Baker R, Sasnauskas K, Harris M, Hale A. Different patterns of BK and JC polyomavirus reactivation following renal transplantation. J Clin Pathol 2011; 63:714-8. [PMID: 20702473 DOI: 10.1136/jcp.2009.074864] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM Reactivation of latent BK polyomavirus (BKV) infection is relatively common following renal transplantation and BKV-associated nephropathy has emerged as a significant complication. JC polyomavirus (JCV) reactivation is less well studied. The aim of the study was to determine reactivation patterns for these polyomaviruses in renal transplant recipients using an in-house quantitative real-time multiplex PCR assay and IgG serological assays using recombinant BK and JC virus-like particles. METHODS Retrospective analysis of urine and plasma samples collected from 30 renal transplant patients from February 2004 to May 2005 at Leeds Teaching Hospitals NHS Trust. Samples were collected at 5 days and thereafter at 1, 3, 6 and 12 months post-transplantation. RESULTS Eight patients (26.7%) were positive for BK viruria; three of these patients submitted plasma samples and two had BK viraemia. Five patients (16.7%) were positive for JC viruria. A corresponding rise in BKV and JCV antibody titres was seen in association with high levels of viruria. CONCLUSIONS Different patterns of reactivation were observed: BK viruria was detected after 3-6 months, and JC viruria was observed as early as 5 days post-transplantation. One patient had biopsy-proven BKV nephropathy. No dual infections were seen. In order to ensure better graft survival, early diagnosis of these polyomaviruses is desirable.
Collapse
Affiliation(s)
- Baljit K Saundh
- Leeds Teaching Hospitals NHS Trust, Microbiology and Renal Unit, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Roldão A, Silva A, Mellado M, Alves P, Carrondo M. Viruses and Virus-Like Particles in Biotechnology. COMPREHENSIVE BIOTECHNOLOGY 2011. [PMCID: PMC7151966 DOI: 10.1016/b978-0-08-088504-9.00072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this article, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitorization, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
21
|
Dondoni A, Marra A. Calixarene and calixresorcarene glycosides: their synthesis and biological applications. Chem Rev 2010; 110:4949-77. [PMID: 20496911 DOI: 10.1021/cr100027b] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Dondoni
- Dipartimento di Chimica, Laboratorio di Chimica Organica, Universita di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy.
| | | |
Collapse
|
22
|
Todorova I, Iliev I, Gedvilaitė A, Zvirbliene A, Sasnauskas K, Shikova E. Elisa Using Yeast-Expressed Polyomavirus-Like Particles Detects Serum Antibodies. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
23
|
Synthesis of recombinant human parainfluenza virus 1 and 3 nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Res 2008; 133:178-86. [DOI: 10.1016/j.virusres.2007.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/20/2022]
|
24
|
Marra A, Moni L, Pazzi D, Corallini A, Bridi D, Dondoni A. Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org Biomol Chem 2008; 6:1396-409. [DOI: 10.1039/b800598b] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Juozapaitis M, Serva A, Kucinskaite I, Zvirbliene A, Slibinskas R, Staniulis J, Sasnauskas K, Shiell BJ, Bowden TR, Michalski WP. Generation of menangle virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae. J Biotechnol 2007; 130:441-7. [PMID: 17602774 DOI: 10.1016/j.jbiotec.2007.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/25/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022]
Abstract
Menangle virus (MenV), which was isolated in Australia in 1997 during an outbreak of severe reproductive disease in pigs, is a novel member of the genus Rubulavirus in the family Paramyxoviridae. Although successfully eradicated from the affected piggery, fruit bats are considered to be the natural reservoir of the virus and therefore an ongoing risk of re-introduction to the pig population exists. Accordingly, reagents to facilitate serological surveillance are required to enhance the diagnostic capability for MenV, which is a newly recognized cause of disease in pigs with the potential to severely affect production in naive breeding herds. To address this need, recombinant MenV nucleocapsid (N) protein was expressed in the yeast Saccharomyces cerevisiae. Using the expression vector pFGG3 under control of the GAL7 promoter, high yields of recombinant MenV N protein were obtained. Electron microscopy demonstrated that purified recombinant N protein self-assembled into nucleocapsid-like particles which were identical in density and morphology, although not in length, to authentic nucleocapsids from virus-infected cells. Electron microscopy analysis also showed that yeast-expressed N protein which lacked the C-terminal tail (amino acid residues 400-519) formed significantly longer and denser nucleocapsid-like particles. Nucleocapsid-like particles derived from the full-length recombinant protein were stable and readily purified by CsCl gradient ultracentrifugation. When used as coating antigen in an indirect ELISA, the recombinant N protein reacted with sera derived from pigs experimentally infected with MenV and a simple serological assay to detect MenV-specific antibodies in pigs, fruit bats and humans could be designed on this basis.
Collapse
|
26
|
Juozapaitis M, Serva A, Zvirbliene A, Slibinskas R, Staniulis J, Sasnauskas K, Shiell BJ, Wang LF, Michalski WP. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Res 2007; 124:95-102. [PMID: 17123657 DOI: 10.1016/j.virusres.2006.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/15/2006] [Accepted: 10/20/2006] [Indexed: 11/30/2022]
Abstract
Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.
Collapse
|
27
|
Gee GV, Dugan AS, Tsomaia N, Mierke DF, Atwood WJ. The role of sialic acid in human polyomavirus infections. Glycoconj J 2006; 23:19-26. [PMID: 16575519 DOI: 10.1007/s10719-006-5434-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
JC virus (JCV) and BK virus (BKV) are human polyomaviruses that infect approximately 85% of the population worldwide [1,2]. JCV is the underlying cause of the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML), a condition resulting from JCV induced lytic destruction of myelin producing oligodendrocytes in the brain [3]. BKV infection of kidneys in renal transplant recipients results in a gradual loss of graft function known as polyomavirus associated nephropathy (PVN) [4]. Following the identification of these viruses as the etiological agents of disease, there has been greater interest in understanding the basic biology of these human pathogens [5,6]. Recent advances in the field have shown that viral entry of both JCV and BKV is dependent on the ability to interact with sialic acid. This review focuses on what is known about the human polyomaviruses and the role that sialic acid plays in determining viral tropism.
Collapse
Affiliation(s)
- Gretchen V Gee
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
28
|
Rech R, Ayub MAZ. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2006. [DOI: 10.1590/s0104-66322006000400001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- R. Rech
- Federal University of Rio Grande do Sul State, Brazil
| | - M. A. Z. Ayub
- Federal University of Rio Grande do Sul State, Brazil
| |
Collapse
|
29
|
Zielonka A, Gedvilaite A, Ulrich R, Lüschow D, Sasnauskas K, Müller H, Johne R. Generation of virus-like particles consisting of the major capsid protein VP1 of goose hemorrhagic polyomavirus and their application in serological tests. Virus Res 2006; 120:128-37. [PMID: 16780983 DOI: 10.1016/j.virusres.2006.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
Goose hemorrhagic polyomavirus (GHPV) is the causative agent of hemorrhagic nephritis and enteritis of geese (HNEG), a fatal disease of young geese with high mortality rates. GHPV cannot be efficiently propagated in tissue culture. To provide antigens for diagnostic tests and vaccines, its major structural protein VP1 was recombinantly expressed in Sf9 insect cells and in the yeast Saccharomyces cerevisiae. As demonstrated by density gradient centrifugation and electron microscopy, GHPV-VP1 expressed in insect cells formed virus-like particles (VLPs) with a diameter of 45 nm indistinguishable from infectious polyomavirus particles. However, efficiency of VLP formation was low as compared to the monkey polyomavirus SV-40-VP1. In yeast cells, GHPV-VP1 alone formed smaller VLPs, 20 nm in diameter. Remarkably, co-expression of GHPV-VP2 resulted in VLPs with a diameter of 45 nm. All three types of GHPV-VLPs were shown to hemagglutinate chicken erythrocytes. ELISA and hemagglutination inhibition tests using the VLPs as antigen detected GHPV-specific antibodies in up to 85.7% of sera derived from flocks with HNEG but in none of the sera of a clinically healthy flock. However, GHPV-specific antibodies were also detected in sera from two other flocks without HNEG indicating a broad distribution of GHPV due to subclinical or unrecognised infections.
Collapse
Affiliation(s)
- Anja Zielonka
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Viscidi RP, Clayman B. Serological cross reactivity between polyomavirus capsids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:73-84. [PMID: 16626028 DOI: 10.1007/0-387-32957-9_5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Multiple methods have been used to measure antibodies to polyomavirus virions. In order to have a common method for all polyomaviruses, we developed enzyme immunoassays (EIAs) using virus-like-particles (VLPs) produced in the baculovirus expression system. We tested serum samples from humans and rhesus macaques in VLP-based EIAs for the two human polyomaviruses, BK and JC virus, and two nonhuman primate polyomaviruses, simian virus 40 (SV40) and lymphotropic polyomavirus (LPV). Rhesus sera exhibited low level reactivity to BK and JC, and approximately 10 and 15% of human sera showed low level reactivity to SV40 and LPV, respectively. Competitive inhibition assays with VLP protein demonstrated that the reactivity of rhesus sera against BK and JC VLPs was blocked by both SV40 and the respective human polyomavirus, indicating that the BK and JC assays were detected cross-reacting antibodies. Similarly, the reactivity of the majority of human sera to SV40 was blocked by both SV40 and BK or JC, demonstrating that the SV40 reactivity of human sera is largely due to cross reacting BK and JC antibodies. In contrast, the reactivity of human sera to LPV VLPs was blocked by LPV but not by BK or JC, providing serological evidence for an unknown human polyomavirus related to LPV. SV40 and LPV VLP-based EIAs and competitive inhibition assays with heterologous VLPs provide tools for seroepidemiological studies of possible SV40 and LPV-like infections of humans.
Collapse
Affiliation(s)
- Raphael P Viscidi
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
31
|
Pattenden LK, Middelberg APJ, Niebert M, Lipin DI. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol 2006; 23:523-9. [PMID: 16084615 DOI: 10.1016/j.tibtech.2005.07.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/03/2005] [Accepted: 07/21/2005] [Indexed: 11/20/2022]
Abstract
Virus-like particles (VLPs) are of interest in vaccination, gene therapy and drug delivery, but their potential has yet to be fully realized. This is because existing laboratory processes, when scaled, do not easily give a compositionally and architecturally consistent product. Research suggests that new process routes might ultimately be based on chemical processing by self-assembly, involving the precision manufacture of precursor capsomeres followed by in vitro VLP self-assembly and scale-up to required levels. A synergistic interaction of biomolecular design and bioprocess engineering (i.e. biomolecular engineering) is required if these alternative process routes and, thus, the promise of new VLP products, are to be realized.
Collapse
Affiliation(s)
- Leonard K Pattenden
- Centre for Biomolecular Engineering, School of Engineering and The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, QLD 4072, Australia
| | | | | | | |
Collapse
|
32
|
Parolin C, Corso AD, Alberghina L, Porro D, Branduardi P. Heterologous production of five Hepatitis C virus-derived antigens in three Saccharomyces cerevisiae host strains. J Biotechnol 2005; 120:46-58. [PMID: 16039743 DOI: 10.1016/j.jbiotec.2005.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 05/13/2005] [Accepted: 05/17/2005] [Indexed: 11/28/2022]
Abstract
In this study, the production of recombinant Hepatitis C virus (HCV) derived proteins from transformed Saccharomyces cerevisiae yeast cells is reported. Three different yeast strains (GRF18U, BY4743-4A and CENPK 113-5D) have been transformed for the intracellular expression of five antigens of different dimensions (from 32.8 to 85.2 kDa), all derived from the non-structural (NS) region of different HCV viruses' genotypes and posed under the control of a glycolytic promoter. The putative trans-membrane domains contained in four antigens seem responsible of their accumulation as protein aggregates. Good productions of the smaller and of the bigger antigens (50 and 30 mgl(-1), respectively) have been observed in simple flask batch cultures. Productions are strongly dependent from the genetic background of the yeast host and from the cellular localization of the antigen, while they appear independent from the growth rate of the transformed hosts. For every recombinant antigen tested, the highest production levels were achieved with the CENPK 113-5D-host strain, while the GRF18U strain shows symptoms of a heavily stressed phenotype.
Collapse
Affiliation(s)
- Carola Parolin
- Università degli Studi di Milano - Bicocca, Dipartimento di Biotecnologie e Bioscienze, p.za della Scienza 2, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
33
|
Wang M, Tsou TH, Chen LS, Ou WC, Chen PL, Chang CF, Fung CY, Chang D. Inhibition of simian virus 40 large tumor antigen expression in human fetal glial cells by an antisense oligodeoxynucleotide delivered by the JC virus-like particle. Hum Gene Ther 2005; 15:1077-90. [PMID: 15610608 DOI: 10.1089/hum.2004.15.1077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human JC virus (JCV) is a neurotropic virus, and the etiological agent of progressive multifocal leukoencephalopathy (PML), a fatal neurological disease. Because of its natural infection tropism, it is possible to use the JCV capsid as a gene-transducing vector for therapeutic purposes in neurological disorders. In the current study, a recombinant JCV virus-like particle (VLP) was generated and purified from yeast. VLP was able to accommodate and protect DNA molecules of up to approximately 2000 bp in length. VLP was able to package and deliver an antisense oligodeoxynucleotide (AS-ODN) against simian virus 40 (SV40) large tumor antigen (LT) into SV40-transformed human fetal glial (SVG) cells in order to inhibit expression of the oncoprotein. Subsequently, apoptosis of VLP-AS-ODN-treated cells was demonstrated after the blocking of LT expression. In addition, JCV VLP was able to deliver ODN into human astrocytoma, neuroblastoma, and glioblastoma cells with high efficiency. In vivo delivery of ODN into a human neuroblastoma tumor nodule by VLP was also demonstrated. These findings suggest that JCV VLP is a gene delivery vector with potential therapeutic use for human neurological disorders.
Collapse
Affiliation(s)
- Meilin Wang
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Adamec T, Palková Z, Velková K, Stokrová J, Forstová J. Point mutation in calcium-binding domain of mouse polyomavirus VP1 protein does not prevent virus-like particle formation, but changes VP1 interactions with cell structures. FEMS Yeast Res 2005; 5:331-40. [PMID: 15691738 DOI: 10.1016/j.femsyr.2004.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 07/29/2004] [Accepted: 10/29/2004] [Indexed: 11/26/2022] Open
Abstract
The mouse polyomavirus gene for the major structural protein, VP1, with point mutation in the calcium-binding pocket (VP1(Ala)), was expressed in Saccharomyces cerevisiae and in a baculovirus expression system. Surprisingly, VP1(Ala) forms virus-like particles (VLPs) in nuclei of both yeast and insect cells. VP1(Ala)-VLPs produced in S. cerevisiae are unstable and, unlike wild-type VP1 (VP1(wt))-VLPs, they disassemble during the purification procedure and storage. In contrast to VP1(wt), VP1(Ala) does not interact with the yeast mitotic spindle. Nevertheless, both wild-type and mutated VP1 inhibit yeast cell growth. The inhibition is cAMP-dependent. The production of VP1(Ala) and VP1(wt)-VLPs in insect cells also revealed differences in their interactions with cellular protein(s). Thus, the mutation in the VP1 calcium pocket alters the stability and surface conformation of VLPs rather than the ability of VP1 to self-assemble.
Collapse
Affiliation(s)
- Tomás Adamec
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicná 5, 128 44 Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Razanskiene A, Schmidt J, Geldmacher A, Ritzi A, Niedrig M, Lundkvist A, Krüger DH, Meisel H, Sasnauskas K, Ulrich R. High yields of stable and highly pure nucleocapsid proteins of different hantaviruses can be generated in the yeast Saccharomyces cerevisiae. J Biotechnol 2004; 111:319-33. [PMID: 15246668 DOI: 10.1016/j.jbiotec.2004.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 04/14/2004] [Accepted: 04/30/2004] [Indexed: 11/26/2022]
Abstract
Recently, the high-level expression of authentic and hexahistidine (His)-tagged Puumala (strain Vranica/Hällnäs) hantavirus nucleocapsid protein derivatives in the yeast Saccharomyces cerevisiae has been reported [Dargeviciute et al., Vaccine, 20 (2002) 3523-3531]. Here we describe the expression of His-tagged nucleocapsid proteins of other Puumala virus strains (Sotkamo, Kazan) as well as Dobrava (strains Slovenia and Slovakia) and Hantaan (strain Fojnica) hantaviruses using the same system. All nucleocapsid proteins were expressed in the yeast S. cerevisiae at high levels. The nucleocapsid proteins can be easily purified by nickel chelate chromatography; the yield for all nucleocapsid proteins ranged from 0.5 to 1.5 mg per g wet weight of yeast cells. In general, long-term storage of all nucleocapsid proteins without degradation can be obtained by storage in PBS at -20 degrees C or lyophilization. The nucleocapsid protein of Puumala virus (strain Vranica/Hällnäs) was demonstrated to contain only traces of less than 10 pg nucleic acid contamination per 100 microg of protein. The yeast-expressed nucleocapsid proteins of Hantaan, Puumala and Dobrava viruses described here represent useful tools for serological hantavirus diagnostics and for vaccine development.
Collapse
Affiliation(s)
- Ausra Razanskiene
- Institute of Biotechnology, V. Graiciuno 8, LT-2028 Vilnius, Lithuania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Slibinskas R, Samuel D, Gedvilaite A, Staniulis J, Sasnauskas K. Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae. J Biotechnol 2004; 107:115-24. [PMID: 14711495 DOI: 10.1016/j.jbiotec.2003.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of a simple, efficient and cost-effective system for generation of measles virus nucleoprotein might help to upgrade reagents for measles serology. The gene encoding measles nucleoprotein was successfully expressed in two different yeast genera, Pichia pastoris and Saccharomyces cerevisiae, respectively. Both yeast genera synthesized a high level of nucleoprotein, up to 29 and 18% of total cell protein, in P. pastoris and S. cerevisiae, respectively. This protein is one of most abundantly expressed in yeast. After purification nucleocapsid-like particles (NLPs) derived from both yeast genera appeared to be similar to those detected in mammalian cells infected with measles virus. A spontaneous assembly of nucleoprotein into nucleocapsid-like particles in the absence of the viral leader RNA or viral proteins has been shown. Compartmentalisation of recombinant protein into large compact inclusions in the cytoplasm of yeast S. cerevisiae by green fluorescence protein (GFP) fusion has been demonstrated. Sera from measles patients reacted with the recombinant protein expressed in both yeast genera and a simple diagnostic assay to detect measles IgM could be designed on this basis.
Collapse
|
37
|
Knowles WA, Pipkin P, Andrews N, Vyse A, Minor P, Brown DWG, Miller E. Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J Med Virol 2003; 71:115-23. [PMID: 12858417 DOI: 10.1002/jmv.10450] [Citation(s) in RCA: 428] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular studies suggest that the simian polyomavirus SV40 is present in the human population, possibly introduced in contaminated polio vaccine. However, no recent seroepidemiological data exist in England on SV40 or on the two human polyomaviruses, BKV and JCV. A comparative age seroprevalence study was undertaken on 2,435 residual sera from 1991 by haemagglutination inhibition (HI) for BKV and JCV, and virus neutralisation for SV40. The overall rates of seropositivity for BKV and JCV were 81% and 35%, respectively, and each was significantly related to age (P < 0.001). BKV seroprevalence reached 91% at 5-9 years of age, but JCV seroprevalence reached only 50% by age 60-69 years. There was a highly significant association between BKV antibody titre and age (P < 0.001), titres decreasing linearly at a rate of 8.7% per 10 years (95% CI = 7.4-10% drop). Significantly more males than females had antibody to JCV (P = 0.013). In individuals under 40 years of age there was a significant negative association between the presence of antibody to BKV and JCV (P < 0.001). By contrast, the antibody prevalence to SV40 remained at 1.3-5% throughout all age groups and titres were low. There was a significant positive association between the presence of antibody to SV40 and antibody to both BKV (P < 0.001) and JCV (P = 0.009), and also to the geometric mean titre (GMT) of BKV antibody (P = 0.011). The results indicate that BKV and JCV are transmitted by different routes. There is no serological evidence that SV40 entered the human population during the past 80 years, and the possibility of cross-reaction with BKV or JCV antibody must be considered.
Collapse
Affiliation(s)
- Wendy A Knowles
- Enteric, Respiratory and Neurological Virus Laboratory, Specialist and Reference Microbiology Division, Health Protection Agency, Colindale, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
38
|
Slibinskas R, Zvirbliene A, Gedvilaite A, Samuel D, Jin L, Beard S, Staniulis J, Sasnauskas K. Synthesis of mumps virus nucleocapsid protein in yeast Pichia pastoris. J Biotechnol 2003; 103:43-9. [PMID: 12770503 DOI: 10.1016/s0168-1656(03)00068-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of mumps virus nucleocapsid protein in yeast Pichia pastoris was investigated. Viral nucleocapsid proteins usually elicit a strong long-term humoral immune response in patients and experimental animals. Therefore, the detection of antibodies specific to mumps virus nucleoprotein can play an important role in immunoassays for mumps diagnosis. For producing a high-level of recombinant mumps virus nucleoprotein the expression system of yeast P. pastoris was employed. The recombinant nucleocapsid protein was purified by cesium chloride ultracentrifugation of yeast lysates. Electron microscopy of the purified recombinant nucleocapsid protein revealed a herring-bone structure similar to the one discovered in mammalian cells infected with mumps virus. The yield of purified nucleocapsid-like particles from P. pastoris constituted 2.1 mg per 1 g of wet biomass and was considerably higher in comparison to the other expression systems.
Collapse
|
39
|
Stolt A, Sasnauskas K, Koskela P, Lehtinen M, Dillner J. Seroepidemiology of the human polyomaviruses. J Gen Virol 2003; 84:1499-1504. [PMID: 12771419 DOI: 10.1099/vir.0.18842-0] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To assess the stability of polyomavirus antibodies in serial samples over time and the incidence and age-specific prevalence of polyomavirus infections, we established enzyme immunoassays (EIAs) using purified yeast-expressed virus-like particles (VLPs) containing the VP1 major capsid proteins of JC virus (JCV) and the AS and SB strains of BK virus (BKV). A random subsample of 150 Finnish women who had serum samples taken during the first trimester of pregnancy and had a second pregnancy during a 5 year follow-up period was selected, grouped by age of first pregnancy. The polyomavirus antibody levels were similar in samples taken during the first and second pregnancies (correlation coefficient 0.93 for BKV SB and 0.94 for JCV). Analysis of serum samples from 290 Swedish children aged 1-13 years, grouped by age in 2 year intervals, demonstrated that BKV seropositivity increased rapidly with increasing age of the children, reaching 98 % seroprevalence at 7-9 years of age, followed by a minor decrease. JCV seroprevalence increased only slowly with increasing age and reaching 72 % positivity among mothers >25 years of age. The age-specific seroprevalence of the human polyomaviruses measured using this VLP-based EIA was similar to previous serosurveys by other methods. The stability of the antibodies over time indicates that polyomavirus seropositivity is a valid marker of cumulative virus exposure, and polyoma VLP-based EIAs may therefore be useful for epidemiological studies of these viruses.
Collapse
Affiliation(s)
- Annika Stolt
- Department of Medical Microbiology, Malmö University Hospital, Entrance 78, S-20502 Malmö, Sweden
| | | | - Pentti Koskela
- Department of Microbiology, National Public Health Institute, PO Box 310 (Aapistie 1), FIN-90101 Oulu, Finland
| | - Matti Lehtinen
- Department of Infectious Disease Epidemiology, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | - Joakim Dillner
- Department of Medical Microbiology, Malmö University Hospital, Entrance 78, S-20502 Malmö, Sweden
| |
Collapse
|
40
|
Knowles WA, Sasnauskas K. Comparison of cell culture-grown JC virus (primary human fetal glial cells and the JCI cell line) and recombinant JCV VP1 as antigen for the detection of anti-JCV antibody by haemagglutination inhibition. J Virol Methods 2003; 109:47-54. [PMID: 12668267 DOI: 10.1016/s0166-0934(03)00043-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
JC virus (JCV) is the causative agent of the demyelinating disease progressive multifocal leucoencephalopathy (PML), which can be diagnosed by detection in the cerebrospinal fluid (CSF) of both JCV DNA and intrathecally-produced anti-JCV antibody. However, the restricted in-vitro species and cell tropism shown by JCV has made antigen production difficult and limited serological investigations both in PML diagnosis and for JCV epidemiology. In this study antigen prepared as a crude cell lysate of JCV-infected primary human fetal glial (PHFG) cells was compared in a haemagglutination inhibition (HI) assay with antigen produced from the JCV carrier cell line, JCI, and yeast-expressed JCV VP1. Forty-two sera were tested with each antigen and there was a high level of correlation between the assays: 96.5% between the HI assays with PHFG and JCI antigens and 98.1% between the HI assays with PHFG and recombinant VP1 (rVP1) antigens. The JCI antigen gave HI titres 19% lower than the PHFG antigen (P=0.022). Titres with the rVP1 antigen were 2% higher than with the PHFG antigen (P=0.83). When serum/CSF pairs from 11 PML patients were tested, the antibody index calculated in each case confirmed the production of intrathecal anti-JCV antibody. Antibody testing for JCV is no longer reliant on PHFG cells and JCV serological tests should be available more widely.
Collapse
Affiliation(s)
- W A Knowles
- Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK.
| | | |
Collapse
|
41
|
Viscidi RP, Rollison DEM, Viscidi E, Clayman B, Rubalcaba E, Daniel R, Major EO, Shah KV. Serological cross-reactivities between antibodies to simian virus 40, BK virus, and JC virus assessed by virus-like-particle-based enzyme immunoassays. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:278-85. [PMID: 12626455 PMCID: PMC150538 DOI: 10.1128/cdli.10.2.278-285.2003] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enzyme immunoassays (EIAs) for detection of serum antibodies to simian virus 40 (SV40), BK virus (BKV), and JC virus (JCV) were developed by using virus-like-particles (VLPs) produced in insect cells from recombinant baculoviruses expressing the VP1 protein of the respective virus. Rhesus macaque sera with neutralizing antibodies to SV40 showed a high level of reactivity in the SV40 VLP-based EIA, and these sera also showed lower levels of reactivity in the BKV and JCV VLP-based EIAs. Rhesus macaque sera negative for neutralizing antibodies to SV40 were negative in all three EIAs. Competitive binding assays showed that SV40 VLPs inhibited BKV reactivity. In rhesus macaque sera, high optical density (OD) values for antibodies to SV40 VLPs were correlated with high OD values for antibodies to BKV but not with high OD values for antibodies to JCV VLPs. Human sera with neutralizing antibodies to SV40 were more reactive to SV40 VLPs than human sera without neutralizing antibodies to SV40. The greater SV40 reactivities of human sera were correlated with greater reactivities to BKV VLPs but not JCV VLPs. These data suggest that cross-reactivity with BKV antibodies may account for part of the low-level SV40 reactivity seen in human sera. With their greater versatility and their suitability for large-scale testing, the VLP-based EIAs for SV40, BKV, and JCV are likely to contribute to a better understanding of the biology of these viruses.
Collapse
Affiliation(s)
- Raphael P Viscidi
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|