1
|
Borgolte S, Menzel W, Varrelmann M. One-step TaqMan® RT-qPCR detection of sugar beet-infecting poleroviruses in Myzus persicae from yellow water pan traps opens up new possibilities for early risk assessment of virus yellows disease. J Virol Methods 2024; 331:115052. [PMID: 39423871 DOI: 10.1016/j.jviromet.2024.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Virus yellows disease (VY) is a major threat to sugar beet production in Europe. Beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV) are of particular economic importance and are both persistently transmitted by the aphid vector Myzus persicae. As part of integrated pest management strategies, M. persicae influx into sugar beet fields is recorded weekly using yellow water pan traps. To date, only ELISA and RT-PCR assays have been described for BChV and BMYV detection in individual aphids. In this study, we describe for the first time two one-step TaqMan® RT-qPCR assays designed for the specific detection of BChV and BMYV in M. persicae after 7d incubation in water pan trap medium. Both viruses were reproducibly detected in individual aphids. After 7d incubation in trap medium, both viruses were reproducibly detected in individual aphids, as well as in one viruliferous aphid in a pool of 99 non-viruliferous aphids. Significant correlations can be shown between different mixing ratios of viruliferous to non-viruliferous aphids and Ct values of total RNA templates, allowing the percentage of viruliferous aphids in yellow water pan traps to be estimated using a standard curve. The described methodology provides a high sensitivity combined with a high sample throughput and can be used, after evaluation in the field, for practical monitoring, risk modelling and development of decision support systems for VY.
Collapse
Affiliation(s)
- Simon Borgolte
- Department of Phytopathology, Institute of Sugar Beet Research, Holtenser Landstraße 77, Göttingen D-37079, Germany.
| | - Wulf Menzel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7 B, Braunschweig D-38124, Germany.
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Holtenser Landstraße 77, Göttingen D-37079, Germany.
| |
Collapse
|
2
|
Massman C, Rivedal HM, Dorman SJ, Tanner KC, Fredrickson C, Temple TN, Fisk S, Helgerson L, Hayes PM. Yellow Dwarf Virus Resistance in Barley: Phenotyping, Remote Imagery, and Virus-Vector Characterization. PHYTOPATHOLOGY 2024; 114:2084-2095. [PMID: 38916923 DOI: 10.1094/phyto-10-23-0394-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Yellow dwarf viruses (YDVs) spread by aphids are some of the most economically important barley (Hordeum vulgare) virus-vector complexes worldwide. Detection and control of these viruses are critical components in the production of barley, wheat, and numerous other grasses of agricultural importance. Genetic control of plant diseases is often preferable to chemical control to reduce the environmental and economic cost of foliar insecticides. Accordingly, the objectives of this work were to (i) screen a barley population for resistance to YDVs under natural infection using phenotypic assessment of disease symptoms, (ii) implement drone imagery to further assess resistance and test its utility as a disease screening tool, (iii) identify the prevailing virus and vector types in the experimental environment, and (iv) perform a genome-wide association study to identify genomic regions associated with measured traits. Significant genetic differences were found in a population of 192 barley inbred lines regarding their YDV symptom severity, and symptoms were moderately to highly correlated with grain yield. The YDV severity measured with aerial imaging was highly correlated with on-the-ground estimates (r = 0.65). Three aphid species vectoring three YDV species were identified with no apparent genotypic influence on their distribution. A quantitative trait locus impacting YDV resistance was detected on chromosome 2H, albeit undetected using aerial imaging. However, quantitative trait loci for canopy cover and mean normalized difference vegetation index were successfully mapped using the drone. This work provides a framework for utilizing drone imagery in future resistance breeding efforts for YDVs in cereals and grasses, as well as in other virus-vector disease complexes.
Collapse
Affiliation(s)
- Chris Massman
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Hannah M Rivedal
- U.S. Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - Seth J Dorman
- U.S. Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - K Christy Tanner
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Chance Fredrickson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Todd N Temple
- U.S. Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - Scott Fisk
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Laura Helgerson
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Patrick M Hayes
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
3
|
Iqbal Z, Masood M, Shafiq M, Briddon RW. Temporal changes in the levels of virus and betasatellite DNA in B. tabaci feeding on CLCuD affected cotton during the growing season. Front Microbiol 2024; 15:1410568. [PMID: 38841073 PMCID: PMC11150673 DOI: 10.3389/fmicb.2024.1410568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Cotton, a key source of income for Pakistan, has suffered significantly by cotton leaf curl disease (CLCuD) since 1990. This disease is caused by a complex of phylogenetically-related begomovirus (genus Begomovirus, family Geminiviridae) species and a specific betasatellite (genus Betasatellite, family Tolecusatellitidae), cotton leaf curl Multan betasatellite. Additionally, another DNA satellite called alphasatellite (family Alphasatellitidae), is also frequently associated. All these virus components are vectored by a single species of whitefly (Bemisia tabaci). While many factors affect cotton productivity, including cotton variety, sowing time, and environmental cues such as temperature, humidity, and rainfall, CLCuD is a major biotic constraint. Although the understanding of begomoviruses transmission by whiteflies has advanced significantly over the past three decades, however, the in-field seasonal dynamics of the viruses in the insect vector remained an enigma. This study aimed to assess the levels of virus and betasatellite in whiteflies collected from cotton plants throughout the cotton growing season from 2014 to 2016. Notably, begomovirus levels showed no consistent pattern, with minimal variations, ranging from 0.0017 to 0.0074 ng.μg-1 of the genomic DNA in 2014, 0.0356 to 0.113 ng.μg-1 of the genomic DNA in 2015, and 0.0517 to 0.0791 ng.μg-1 of the genomic DNA in 2016. However, betasatellite levels exhibited a distinct pattern. During 2014 and 2015, it steadily increased throughout the sampling period (May to September). While 2016 showed a similar trend from the start of sampling (July) to September but a decline in October (end of sampling). Such a study has not been conducted previously, and could potentially provide valuable insights about the epidemiology of the virus complex causing CLCuD and possible means of controlling losses due to it.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mariyam Masood
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot, Pakistan
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
4
|
Armand T, Souquet M, Korn L, Gauthier K, Jacquot E. Asymmetric interactions between barley yellow dwarf virus -PAV and wheat dwarf virus in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1194622. [PMID: 37496861 PMCID: PMC10366370 DOI: 10.3389/fpls.2023.1194622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
The deciphering of the epidemiology of a plant virus has long been focused on the study of interactions between partners of one pathosystem. However, plants are exposed to numerous viruses which lead to frequent co-infection scenarios. This can change characteristics of virus-vector-host interactions and could impact the epidemiology of viral diseases. Barley yellow dwarf virus-PAV (BYDV-PAV; species: Luteovirus pavhordei; genus Luteovirus), wheat dwarf virus (WDV; genus Mastrevirus) and their respective vectors (BYDV-PAV: e.g. Rhopalosiphum padi and WDV: Psammotettix alienus) are commonly found in cereal fields. Wheat plants co-infected with BYDV-PAV and WDV have been reported from field surveys, although epidemiological outcomes of BYDV-PAV - WDV interactions in planta have not yet been studied. Experiments were carried out to evaluate and compare, through different competition scenarios (i.e. single- and co- (simultaneous and sequential) inoculations), the efficiency of BYDV-PAV and WDV to infect, to accumulate in and to be spread between wheat plants. Moreover, the impact of competition scenarios on the biological parameters of these two viruses was evaluated at different stages of the infection and with plants at different ages at inoculation. Results showed i) that these viruses achieve their infection cycle and their plant-to-plant transmission with different efficiencies and ii) BYDV-PAV - WDV interactions lead to different phenotypes ranging from antagonism to synergism. Finally, when these two viruses share a host, the nature and strength of virus-virus interactions varied depending on the order of virus arrival, stages of the infection cycle and plant age at inoculation. Precisely, the introduction (i.e. co- and sequential inoculation) and infection process (i.e. virus accumulation) of BYDV-PAV in a wheat benefit from the presence of WDV. For the latter, the sympatry with BYDV-PAV exerts opposite pressure on parameters involved in virus introduction (i.e. benefit during sequential inoculation) and spread (i.e. lower transmission efficiency and virus accumulation in co-infected plants). In the context of increased potential exposure of crops to insect vectors, this study participates in a better understanding of the impact of BYDV-PAV and WDV co-infections on biological and ecological parameters of the diseases induced by these viruses.
Collapse
|
5
|
Fine Characterization of a Resistance Phenotype by Analyzing TuYV- Myzus persicae-Rapeseed Interactions. PLANTS 2021; 10:plants10020317. [PMID: 33562120 PMCID: PMC7914523 DOI: 10.3390/plants10020317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Turnip yellows virus (TuYV), transmitted by Myzus persicae, can be controlled in rapeseed fields by insecticide treatments. However, the recent ban of the neonicotinoids together with the description of pyrethrinoid-resistant aphids has weakened insecticide-based control methods available to farmers. Since the deployment of insecticides in the 1980s, few research efforts were made to breed for rapeseed cultivars resistant to aphid-borne viral diseases. Thus, only few rapeseed cultivars released in Europe were reported to be TuYV-resistant, and the resistance phenotype of these cultivars was poorly characterized. In this study, several epidemiological parameters (infection rate, latency period, etc.) associated to the TuYV-resistance of the cv. Architect were estimated. Results showed a partial resistance phenotype for plants inoculated at the 2-/4-leaves stages and a resistance phenotype for plants inoculated at a more advanced growing stage. Moreover, analysis of infected plants highlighted (i) a poor quality of infected cv. Architect as a source of virus for transmission and (ii) an extended latency period for infected plants. Thus, dynamics of virus spread in the field should to be slower for Architect compared to susceptible rapeseed cultivars, which should lead to the maintenance of a higher proportion of healthy plants in the field.
Collapse
|
6
|
Khelifa M. Detection and Quantification of Potato virus Y Genomes in Single Aphid Stylets. PLANT DISEASE 2019; 103:2315-2321. [PMID: 31322977 DOI: 10.1094/pdis-02-19-0398-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Typically, the detection of a plant virus within its vector is carried out on the entire insect body. This process can be a possible source of confusion in the quantification of transmissible virus particles for styletborne viruses such as Potato virus Y (PVY), since the transmissible virus fraction is the one only retained in the aphid vector's mouthparts. The objective of this study was to develop and validate the quantitative PCR method for the detection and quantification of PVY in the vector's stylet. Using a specific method based on TaqMan chemistry with higher sensitivity than conventional reverse transcription PCR, this study reveals that a significant amount of the virus is enclosed within the dissected stylets of Myzus persicae. Because this quantification only concerns the portion of the virus attached to the stylets, uniformity was observed in the recorded numbers of virus targets. This novel assay is applicable to several PVY strains as a rapid and sensitive detection method for use in PVY research and offers a convenient tool for deciphering the mechanism of Potyvirus acquisition.
Collapse
Affiliation(s)
- M Khelifa
- Fédération Nationale des Producteurs de Plants de Pomme de Terre/ Recherche, Développement et Promotion du Plant de Pomme de Terre (FN3PT/RD3PT), 75008 Paris, France
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens Cedex 1, France
| |
Collapse
|
7
|
McGreal B, Sandanayaka M, Chooi KM, MacDiarmid R. Development of sensitive molecular assays for the detection of grapevine leafroll-associated virus 3 in an insect vector. Arch Virol 2019; 164:2333-2338. [PMID: 31187278 DOI: 10.1007/s00705-019-04310-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is an economically significant virus of grapevines, with secondary spread mediated by several species of mealybug and soft scale insects. To better understand virus-vector interactions, sensitive virus detection in these insects is a key tool. In this research, two new hydrolysis-probe-based real-time assays for GLRaV-3 detection were developed and compared to three existing assays. Of the five assays compared, the one-step RT-qPCR probe-based assay was the most sensitive and reliable, with as few as 10 virus RNA copies detected. This is the first description of a real-time molecular assay for virus detection in mealybugs with such sensitivity.
Collapse
Affiliation(s)
- Brogan McGreal
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand. .,School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | - Manoharie Sandanayaka
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Application of Loop-Mediated Isothermal Amplification in an Early Warning System for Epidemics of an Externally Sourced Plant Virus. PLANTS 2019; 8:plants8050139. [PMID: 31137835 PMCID: PMC6572431 DOI: 10.3390/plants8050139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022]
Abstract
Restricting Turnip yellows virus (TuYV) spread in canola (Brassica napus) crops often relies upon the application of systemic insecticides to protect young vulnerable plants from wide-scale green-peach aphid (GPA; Myzus persicae) colonization and subsequent virus infection. For these to be applied at the optimal time to ensure they prevent epidemics, growers would need to be forewarned of incoming viruliferous aphid migration and colonization. This study was conducted to field validate a loop-mediated isothermal amplification (LAMP) protocol designed to detect TuYV in aphids caught on traps and develop an early warning system for TuYV epidemics. Double-sided yellow sticky traps were deployed at 30 sites sown with canola over a two-year period in the south-west Australian grainbelt. Using LAMP, the percentage (%) of trap sides with TuYV-carrying aphids was measured and related to TuYV infection incidence in the adjacent crop. When TuYV was detected in aphids on >30% trap sides in a six-week period from pre-emergence to GS15 (five-leaf stage), TuYV reached >60% crop incidence by GS30 (beginning of stem elongation). Whereas, TuYV detection in aphids on ≤15% trap sides during this period was associated with ≤6% TuYV incidence by GS30. Furthermore, when large numbers of aphids, including GPA, were caught during this period but no TuYV was detected in them, minimal TuYV spread (≤5%) occurred in the crop by GS30. Therefore, the LAMP TuYV protocol can be used in an early warning system for TuYV epidemics by providing detection of initial viruliferous aphid migration into a canola crop before they establish colonies throughout the crop and spread virus. This would enable proactive, non-prophylactic, and thereby more effective systemic insecticide applications to minimize seed yield and quality losses due to early season TuYV infection.
Collapse
|
9
|
Babu B, Jeyaprakash A, Jones D, Schubert TS, Baker C, Washburn BK, Miller SH, Poduch K, Knox GW, Ochoa-Corona FM, Paret ML. Development of a rapid, sensitive TaqMan real-time RT-PCR assay for the detection of Rose rosette virus using multiple gene targets. J Virol Methods 2016; 235:41-50. [PMID: 27210549 DOI: 10.1016/j.jviromet.2016.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/02/2016] [Accepted: 05/15/2016] [Indexed: 12/30/2022]
Abstract
Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV.
Collapse
Affiliation(s)
- Binoy Babu
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, United States.
| | - Ayyamperumal Jeyaprakash
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, United States
| | - Debra Jones
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, United States
| | - Timothy S Schubert
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, United States
| | - Carlye Baker
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, United States
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, United States
| | - Steven H Miller
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, United States
| | - Kristina Poduch
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, United States
| | - Gary W Knox
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, United States
| | - Francisco M Ochoa-Corona
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States
| | - Mathews L Paret
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, United States.
| |
Collapse
|
10
|
Noris E, Miozzi L. Real-time PCR protocols for the quantification of the begomovirus tomato yellow leaf curl Sardinia virus in tomato plants and in its insect vector. Methods Mol Biol 2015; 1236:61-72. [PMID: 25287496 DOI: 10.1007/978-1-4939-1743-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tomato yellow leaf curl Sardinia virus (TYLCSV) (Geminiviridae) is an important pathogen, transmitted by the whitefly Bemisia tabaci, that severely affects the tomato production in the Mediterranean basin. Here, we describe real-time PCR protocols suitable for relative and absolute quantification of TYLCSV in tomato plants and in whitefly extracts. Using primers and probe specifically designed for TYLCSV, the protocols for relative quantification allow to compare the amount of TYLCSV present in different plant or whitefly samples, normalized to the amount of DNA present in each sample using endogenous tomato or Bemisia genes as internal references. The absolute quantification protocol allows to calculate the number of genomic units of TYLCSV over the genomic units of the plant host (tomato), with a sensitivity of as few as ten viral genome copies per sample. The described protocols are potentially suitable for several applications, such as plant breeding for resistance, analysis of virus replication, and virus-vector interaction studies.
Collapse
Affiliation(s)
- Emanuela Noris
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Strada delle Cacce 73, 10135, Torino, Italy,
| | | |
Collapse
|
11
|
The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat. Virus Res 2013; 186:97-103. [PMID: 24374266 DOI: 10.1016/j.virusres.2013.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/02/2013] [Accepted: 12/07/2013] [Indexed: 11/23/2022]
Abstract
Barley yellow dwarf virus-PAV (BYDV-PAV) is associated with yellow dwarf disease, one of the most economically important diseases of cereals worldwide. In this study, the impact of current and future predicted temperatures for the Wimmera wheat growing district in Victoria, Australia on the titre of BYDV-PAV in wheat was investigated. Ten-day old wheat (Triticum aestivum, cv. Yitpi) seedlings were inoculated with BYDV-PAV and grown at ambient (5.0-16.1°C, night-day) or elevated (10.0-21.1°C, night-day) temperature treatments, simulating the current Wimmera average and future daily temperature cycles, respectively, during the wheat-growing season. Whole above-ground plant samples were collected from each temperature treatment at 0 (day of inoculation), 3, 6, 9, 12, 15, 18, 21 and 24 days after inoculation and the titre of BYDV-PAV was measured in each sample using a specific one-step multiplex normalised reverse transcription quantitative PCR (RT-qPCR) assay. Physical measurements, including plant height, dry weight and tiller number, were also taken at each sampling point. The titre of BYDV-PAV was significantly greater in plants grown in the elevated temperature treatment than in plants grown in the ambient treatment on days 6, 9 and 12. Plants grown at elevated temperature were significantly bigger and symptoms associated with BYDV-PAV were visible earlier than in plants grown at ambient temperature. These results may have important implications for the epidemiology of yellow dwarf disease under future climates in Australia.
Collapse
|
12
|
Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses. J Virol Methods 2013; 188:21-4. [DOI: 10.1016/j.jviromet.2012.11.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/14/2012] [Accepted: 11/26/2012] [Indexed: 11/21/2022]
|
13
|
Development of SYBR Green I based real-time PCR assays for quantitative detection of Rice tungro bacilliform virus and Rice tungro spherical virus. J Virol Methods 2012; 181:86-92. [DOI: 10.1016/j.jviromet.2012.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/16/2012] [Accepted: 01/24/2012] [Indexed: 11/24/2022]
|
14
|
Péréfarres F, Hoareau M, Chiroleu F, Reynaud B, Dintinger J, Lett JM. A novel synthetic quantification standard including virus and internal report targets: application for the detection and quantification of emerging begomoviruses on tomato. Virol J 2011; 8:389. [PMID: 21819593 PMCID: PMC3175178 DOI: 10.1186/1743-422x-8-389] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 08/05/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Begomovirus is a genus of phytopathogenic single-stranded DNA viruses, transmitted by the whitefly Bemisia tabaci. This genus includes emerging and economically significant viruses such as those associated with Tomato Yellow Leaf Curl Disease, for which diagnostic tools are needed to prevent dispersion and new introductions. Five real-time PCRs with an internal tomato reporter gene were developed for accurate detection and quantification of monopartite begomoviruses, including two strains of the Tomato yellow leaf curl virus (TYLCV; Mld and IL strains), the Tomato leaf curl Comoros virus-like viruses (ToLCKMV-like viruses) and the two molecules of the bipartite Potato yellow mosaic virus. These diagnostic tools have a unique standard quantification, comprising the targeted viral and internal report amplicons. These duplex real-time PCRs were applied to artificially inoculated plants to monitor and compare their viral development. RESULTS Real-time PCRs were optimized for accurate detection and quantification over a range of 2 × 10(9) to 2 × 10(3) copies of genomic viral DNA/μL for TYLCV-Mld, TYLCV-IL and PYMV-B and 2 × 10(8) to 2 × 10(3) copies of genomic viral DNA/μL for PYMV-A and ToLCKMV-like viruses. These real-time PCRs were applied to artificially inoculated plants and viral loads were compared at 10, 20 and 30 days post-inoculation. Different patterns of viral accumulation were observed between the bipartite and the monopartite begomoviruses. Interestingly, PYMV accumulated more viral DNA at each date for both genomic components compared to all the monopartite viruses. Also, PYMV reached its highest viral load at 10 dpi contrary to the other viruses (20 dpi). The accumulation kinetics of the two strains of emergent TYLCV differed from the ToLCKMV-like viruses in the higher quantities of viral DNA produced in the early phase of the infection and in the shorter time to reach this peak viral load. CONCLUSIONS To detect and quantify a wide range of begomoviruses, five duplex real-time PCRs were developed in association with a novel strategy for the quantification standard. These assays should be of a great interest for breeding programs and epidemiological surveys to monitor viral populations.
Collapse
Affiliation(s)
- Frédéric Péréfarres
- CIRAD, UMR PVBMT CIRAD-Université de la Réunion, Pôle de protection des plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, Ile de la Réunion, France
| | - Murielle Hoareau
- CIRAD, UMR PVBMT CIRAD-Université de la Réunion, Pôle de protection des plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, Ile de la Réunion, France
| | - Frédéric Chiroleu
- CIRAD, UMR PVBMT CIRAD-Université de la Réunion, Pôle de protection des plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, Ile de la Réunion, France
| | - Bernard Reynaud
- CIRAD, UMR PVBMT CIRAD-Université de la Réunion, Pôle de protection des plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, Ile de la Réunion, France
| | - Jacques Dintinger
- CIRAD, UMR PVBMT CIRAD-Université de la Réunion, Pôle de protection des plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, Ile de la Réunion, France
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT CIRAD-Université de la Réunion, Pôle de protection des plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, Ile de la Réunion, France
| |
Collapse
|
15
|
Delaunay A, Lacroix C, Morliere S, Riault G, Chain F, Trottet M, Jacquot E. A single-stranded conformational polymorphism (SSCP)-derived quantitative variable to monitor the virulence of a Barley yellow dwarf virus-PAV (BYDV-PAV) isolate during adaptation to the TC14 resistant wheat line. MOLECULAR PLANT PATHOLOGY 2010; 11:651-661. [PMID: 20696003 PMCID: PMC6640491 DOI: 10.1111/j.1364-3703.2010.00635.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A standardized single-stranded conformational polymorphism (SSCP) procedure is proposed as an alternative to the time-consuming biological characterization of Barley yellow dwarf virus-PAV (BYDV-PAV) isolates. Using this procedure, six of 21 overlapping regions used to scan the viral genome gave patterns specific to '4E' (avirulent) or '4T' ('4E'-derived virulent) isolates. The calibration of samples and integration of SSCP patterns corresponding to the nucleotide region 1482-2023 allowed the estimation of P(T) values that reflect the proportions of a '4T'-specific band. Analysis of the biological (area under the pathogen progress curve) and molecular (P(T)) data suggested a positive linear relation between these variables. Moreover, sequence analysis of the nucleotide region 1482-2023 highlighted the presence of a nucleotide polymorphism (C/A(1835)) which can be considered as a candidate for virus-host interactions linked to the monitored virulence. According to these parameters, P(T) values associated with '4E'- and '4T'-derived populations show that: (i) long-term infection of a BYDV-PAV isolate on the 'TC14' resistant host leads to the fixation of virulent individuals in viral populations; and (ii) the introduction of susceptible hosts in successive 'TC14' infections results in the maintenance of low virulence of the populations. Thus, the presented study demonstrates that SSCP is a useful tool for monitoring viral populations during the host adaptation process. The described impact of host alternation provides new opportunities for the use of the 'TC14' resistance source in BYDV-resistant breeding programmes. This study is part of the global effort made by the scientific community to propose sustainable alternatives to the chemical control of this viral disease.
Collapse
Affiliation(s)
- Agnes Delaunay
- INRA-Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P (Biology of Organisms and Populations Applied to Plant Protection), Le Rheu, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang X, Zhou G, Wang X. Detection of wheat dwarf virus (WDV) in wheat and vector leafhopper (Psammotettix alienus Dahlb.) by real-time PCR. J Virol Methods 2010; 169:416-9. [PMID: 20691208 DOI: 10.1016/j.jviromet.2010.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/21/2010] [Accepted: 07/26/2010] [Indexed: 11/26/2022]
Abstract
Wheat dwarf virus (WDV) is a newly emerging pathogen affecting wheat production in China. A real-time PCR method using the TaqMan probe is described for quantitative detection of WDV in wheat tissues and in leafhopper (Psammotettix alienus Dahlb.). Primers and probes for specific detection of WDV were designed within the conserved region of the coat protein (CP) gene sequence. A sensitivity assay showed the detection limit of the assay was 30 copies, and the standard curve was linear over range 30-3 × 10(6) copies, with good reproducibility. Simultaneously, this real-time PCR assay could be used to detect WDV CP genes in viruliferous leafhoppers. As determined by an end-point dilution comparison, real-time PCR was close to 10(4)-fold more sensitive than the indirect enzyme-linked immunosorbent assay for WDV detection. Field samples of wheat and leafhopper collected from different regions of China were detected by both real-time PCR and gel-based PCR. The results showed more positive samples could be identified by real-time PCR than by gel-based PCR. This quantitative detection assay provides a valuable tool for diagnosis and molecular studies of WDV biology.
Collapse
Affiliation(s)
- Xun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | |
Collapse
|
17
|
Jarošová J, Kundu J. Detection of Prune dwarf virus by one-step RT-PCR and its quantitation by real-time PCR. J Virol Methods 2010; 164:139-44. [DOI: 10.1016/j.jviromet.2009.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
|
18
|
Ananthakrishnan G, Venkataprasanna T, Roy A, Brlansky RH. Characterization of the mixture of genotypes of a Citrus tristeza virus isolate by reverse transcription-quantitative real-time PCR. J Virol Methods 2009; 164:75-82. [PMID: 20005260 DOI: 10.1016/j.jviromet.2009.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/24/2009] [Accepted: 12/03/2009] [Indexed: 11/18/2022]
Abstract
A multiplex real-time PCR assay was developed to detect and quantify the Citrus tristeza virus (CTV) genotypic mixture present in infected plants. CTV isolate FS627, a complex Florida isolate containing T36, T30 and VT genotypes and its aphid transmitted subisolates was used. The relative quantitative assay was carried out using specific primers and probes developed from the genotypes of three CTV virus isolates and included the coat protein region of isolate T36 and the 5' end, ORF 1a and ORF 2 region of isolates T36, T30 and VT. Among the three genotypes present in the aphid transmitted subisolates, the T30 genotype showed higher overall relative quantitation in all specific regions compared to other isolates. The profiles of the some aphid transmitted subisolates were different from the parent source from which they transmitted. The 2(-DeltaDeltaCt) method (the amount of target, normalized to an endogenous control and relative to a calibrator) was used to analyze the relative titers of the three reference genotypes in the aphid transmitted plants infected with FS627. This protocol enabled assessments of CTV genetic diversity in the aphid transmitted subisolates. This simple quantitative assay was sensitive, efficient, and took less time than other existing methods. This relative quantitative assay will be a reliable tool for diagnosis, detection and genetic diversity studies on CTV.
Collapse
Affiliation(s)
- G Ananthakrishnan
- University of Florida, IFAS, Citrus Research and Education Center, Plant Pathology, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | | | |
Collapse
|
19
|
Quantitative estimation of plum pox virus targets acquired and transmitted by a single Myzus persicae. Arch Virol 2009; 154:1391-9. [PMID: 19597934 DOI: 10.1007/s00705-009-0450-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 06/28/2009] [Indexed: 10/20/2022]
Abstract
The viral charge acquired and inoculated by single aphids in a non-circulative transmission is estimated using plum pox virus (PPV). A combination of electrical penetration graph and TaqMan real-time RT-PCR techniques was used to establish the average number of PPV RNA targets inoculated by an aphid in a single probe (26,750), approximately half of the acquired ones. This number of PPV targets is responsible for a systemic infection of 20% on the inoculated receptor plants. No significant differences were found between the number of PPV RNA targets acquired after one and after five intracellular punctures (pd), but the frequency of infected receptor plants was higher after 5 pd. The percentage of PPV-positive leaf discs after just 1 pd of inoculation probe (28%/4,603 targets) was lower than after 5 pd (45.8%/135 x 10(6) targets). The methodology employed could be easily extended to other virus-vector-host combinations to improve the accuracy of models used in virus epidemiology.
Collapse
|
20
|
A one-step real time RT-PCR assay for quantifying rice stripe virus in rice and in the small brown planthopper (Laodelphax striatellus Fallen). J Virol Methods 2008; 151:181-187. [DOI: 10.1016/j.jviromet.2008.05.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 05/11/2008] [Accepted: 05/14/2008] [Indexed: 11/20/2022]
|
21
|
Saponari M, Manjunath K, Yokomi RK. Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan®). J Virol Methods 2008; 147:43-53. [PMID: 17888522 DOI: 10.1016/j.jviromet.2007.07.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
A quantitative and multiplex real-time RT-PCR assay was developed to detect Citrus tristeza virus (CTV) along with plant mRNA, which serves as an internal control to ascertain RNA extraction quality. The real-time technique was validated against 39 CTV strains from around the world as well as with the aphid vector, Aphis gossypii, given a 48 h acquisition access period on a CTV source plant. The assay was effective for quantitation of the viral template in infected plants and in single aphids. CTV detection was compared from different plant tissues and for different RNA isolation methods from aphids. Less than 1 fg was consistently detected when RNA transcripts were diluted in extracts from healthy plants while RNA copies carried by single aphids were estimated to be between 12,000 and 13,000,000. The assay was more sensitive and less time consuming than ELISA or traditional RT-PCR. The real-time RT-PCR assay developed is a valuable new tool for detection and titer quantitation of CTV.
Collapse
Affiliation(s)
- Maria Saponari
- USDA, Agricultural Research Service, 9611 S. Riverbend Avenue, Parlier, CA 93648, USA
| | | | | |
Collapse
|
22
|
Mason G, Caciagli P, Accotto GP, Noris E. Real-time PCR for the quantitation of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. J Virol Methods 2007; 147:282-9. [PMID: 17980920 DOI: 10.1016/j.jviromet.2007.09.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/12/2007] [Accepted: 09/17/2007] [Indexed: 11/26/2022]
Abstract
Tomato yellow leaf curl Sardinia virus (TYLCSV) (Geminiviridae) is an important pathogen severely affecting tomato production in the Mediterranean basin. Although diagnostic protocols are available for its detection in plants and its vector Bemisia tabaci (Gennadius), suitable tools for estimating and comparing viral loads in plant and insect tissues are needed. In this paper, real-time PCR methods are described for quantitation of TYLCSV in both tomato plant and whitefly extracts. The DNA extraction method was optimised on TYLCSV-infected tomato tissue. The amount of virus was determined using specific primers and probe and standardised to the amount of DNA present in each sample, using selected endogenous tomato or Bemisia genes as internal references. The distribution of TYLCSV was relatively quantified within the four uppermost leaves of plants. An absolute estimation of the amount of TYLCSV in the first leaf below the apex was obtained. The kinetics of virus retention within different batches of viruliferous whiteflies was also analysed. The real-time PCR was 2200-fold more sensitive than membrane hybridisation, allowing detection of as few as 10 viral copies in a sample. These methods are potentially suitable for several applications, such as plant breeding for resistance, analysis of virus replication, and virus-vector interaction studies.
Collapse
Affiliation(s)
- Giovanna Mason
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Turin, Italy
| | | | | | | |
Collapse
|
23
|
Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S. A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J Virol Methods 2007; 145:96-105. [PMID: 17573130 DOI: 10.1016/j.jviromet.2007.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/04/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
A real-time RT-PCR assay using SYBR Green was developed for specific and reliable quantitative detection of Citrus tristeza virus (CTV) in infected plants. A general primer set designed from conserved sequences in ORFs 1b and 2 enabled amplification of the genomic RNA (gRNA) while excluding most subgenomic and defective RNAs. Single RT-PCR products of 204 bp (isolate T36) or 186 bp (other isolates) were obtained with no primer-dimer or non-specific amplifications detected. Melting curve analysis revealed distinct melting temperature peaks (T(m)) for severe and mild isolates. External standard curves using RNA transcripts of the selected target allowed a reproducible quantitative assay, with a wide dynamic range of detection starting with 10(2) gRNA copies and with very low variation coefficient values. This protocol enabled reliable assessments of CTV accumulation in different tissues and from different citrus species, grown in the greenhouse or under field conditions, and infected with CTV isolates differing in their pathogenicity. CTV accumulation was higher in bark and fruits than in roots or leaves and showed minimal differences among several susceptible citrus species, but it was significantly lower in sour orange. This quantitative detection assay will be a valuable tool for diagnosis and molecular studies on CTV biology.
Collapse
Affiliation(s)
- Susana Ruiz-Ruiz
- Instituto Valenciano de Investigaciones Agrarias, Cra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain
| | | | | | | |
Collapse
|
24
|
Viganó F, Stevens M. Development of a multiplex immunocapture-RT-PCR for simultaneous detection of BMYV and BChV in plants and single aphids. J Virol Methods 2007; 146:196-201. [PMID: 17686535 DOI: 10.1016/j.jviromet.2007.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/21/2007] [Accepted: 06/27/2007] [Indexed: 11/21/2022]
Abstract
A multiplex immunocapture-reverse transcription-polymerase chain reaction protocol (mIC-RT-PCR) was successfully developed to improve the detection of Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV) in plants and aphids in single and mixed infections. Viral particles from plant and aphid extracts were enriched by antibody-capture and lysed by heating to release the viral RNA. During the RT-PCR step, 5' end sequences specific to each virus were amplified and the products analysed by gel electrophoresis; the PCR products corresponding to BMYV and BChV were 440 and 348bp respectively. The test was evaluated on single aphids carrying BMYV, BChV or both viruses and the results demonstrated that the mIC-RT-PCR is specific and sensitive. Its sensitivity was found to be 10(5) times higher than the TAS-ELISA routinely used for detecting BMYV and BChV and 10(4) times better than RT-PCR when both viruses were present. Eliminating the antibody-capture step to simplify the technique did not affect the sensitivity of the test and a procedure using microtitre plates was developed to allow simultaneous processing of large numbers of samples.
Collapse
Affiliation(s)
- Felicita Viganó
- Broom's Barn Research Centre, Higham, Bury St. Edmunds, Suffolk IP28 6NP, UK.
| | | |
Collapse
|
25
|
Hashimoto Y, Valles SM, Strong CA. Detection and quantitation of Solenopsis invicta virus in fire ants by real-time PCR. J Virol Methods 2006; 140:132-9. [PMID: 17174411 DOI: 10.1016/j.jviromet.2006.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 11/03/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
A quantitative real-time PCR (QPCR) method was developed to detect and quantify the amount of Solenopsis invicta virus (SINV) infecting individual ants of S. invicta. The two-step method utilized a gene-specific oligonucleotide primer targeting the SINV RNA-dependent RNA polymerase (RdRp) for cDNA synthesis. Dithiothreitol used in the cDNA synthesis step was found to significantly decrease the detection sensitivity for SINV RdRp and was therefore omitted. SINV RdRp cDNA was then quantified by QPCR using SYBR Green dye and a standard curve generated from SINV RdRp plasmid clones. A standard curve was successfully constructed from clones of the SINV RdRp region. A strong linear relationship [r2=0.998; y=(-3.63+/-0.37)x+(39.19+/-1.33)] between C(T) and starting SINV RdRp copy number was observed within a dynamic range of 5-5 x 10(6) copies. SINV RdRp copy number was determined with the optimized QPCR method in individual S. invicta ants taken from an infected field colony. Worker ants exhibited the highest RdRp copy number (2.1 x 10(9) copies/worker ant) and pupae exhibited the lowest (4.2 x 10(2) copies/pupa). Mean RdRp copy number was lowest in early larvae and pupae. Overall, SINV RdRp copy number increased through larval development, sharply declined during pupation, then sharply increased in adults.
Collapse
Affiliation(s)
- Yoshifumi Hashimoto
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | | | | |
Collapse
|
26
|
Balme-Sinibaldi V, Tribodet M, Croizat F, Lefeuvre P, Kerlan C, Jacquot E. Improvement of Potato virus Y (PVY) detection and quantitation using PVY(N)- and PVY(O)-specific real-time RT-PCR assays. J Virol Methods 2006; 134:261-6. [PMID: 16513184 DOI: 10.1016/j.jviromet.2006.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 01/18/2006] [Accepted: 01/23/2006] [Indexed: 11/21/2022]
Abstract
A Potato virus Y (PVY) single nucleotide polymorphism (A/G(2213)), recently identified as a molecular determinant of the tobacco leaf necrosis symptom induced by PVY(N) isolates, has been used as a target to develop two PVY group-specific (PVY(N) and PVY(O)) fluorescent (TaqMan-based) real-time RT-PCR assays. These procedures allow detection, characterisation, and quantitation of a wide range of PVY isolates in samples containing 10(3)-10(8) viral transcripts. Moreover, the high specificity of these two new assays make the simultaneous detection and the reliable quantitation of PVY(N) and PVY(O) isolates in mixed solutions, regardless of the Y(N)/Y(O) ratio, feasible. The high sensitivity (threshold of 10(3) copies per reaction) and the PVY group specificity of these two new PVY detection tools clearly improve previously published PVY detection tests and offer new opportunities for PVY research programs.
Collapse
Affiliation(s)
- Valérie Balme-Sinibaldi
- INRA/ENSA, Unité Mixte de Recherche Biologie des Organismes et des Populations Appliquée à la Protection des Plantes (BiO3P), Domaine de la Motte B.P. 35327, F-35653 Le Rheu Cedex, France
| | | | | | | | | | | |
Collapse
|
27
|
Liu S, Bonning BC, Allen Miller W. A simple wax-embedding method for isolation of aphid hemolymph for detection of luteoviruses in the hemocoel. J Virol Methods 2006; 132:174-80. [PMID: 16307802 DOI: 10.1016/j.jviromet.2005.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 09/16/2005] [Accepted: 10/03/2005] [Indexed: 11/16/2022]
Abstract
A protocol for isolating hemolymph from viruliferous aphids has been developed. This method uses warm melted wax to immobilize the aphid. Following removal of a hind leg, the hemolymph can be collected readily. Flushing with RNase-free water allows for collection of sufficient hemolymph for RNA extraction from individual aphids. The extracted RNA was successfully used for detection of barley yellow dwarf virus (BYDV) and pea enation mosaic virus (PEMV) from individual viruliferous Rhopalosiphum padi and Acyrthosiphon pisum aphids, respectively. A TaqMan real-time RT-PCR protocol for quantitation of PEMV in the hemolymph of individual aphids was developed. The wax-embedding hemolymph collection technique provides a useful tool for studying molecular interactions between persistent and circulative plant viruses and their insect vectors.
Collapse
Affiliation(s)
- Sijun Liu
- 418 Science II, Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
28
|
Mumford R, Boonham N, Tomlinson J, Barker I. Advances in molecular phytodiagnostics - new solutions for old problems. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2006; 116:1-19. [PMID: 32214677 PMCID: PMC7087944 DOI: 10.1007/s10658-006-9037-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2006] [Indexed: 05/05/2023]
Abstract
In the last decade, developments in molecular (nucleic acid-based) diagnostic methods have made significant improvements in the detection of plant pathogens. By using methods such as the polymerase chain reaction (PCR), the range of targets that can now be reliably diagnosed has grown to the extent that there are now extremely few, known pathogens that cannot be identified accurately by using laboratory-based diagnostics. However, while the detection of pathogens in individual, infected samples is becoming simpler, there are still many scenarios that present a major challenge to diagnosticians and plant pathologists. Amongst these are the detection of pathogens in soil or viruses in their vectors, high throughput testing and the development of generic methods, that allow samples to be simultaneously screened for large numbers of pathogens. Another major challenge is to develop robust technologies that avoid the reliance on well-equipped central laboratories and making reliable diagnostics available to pathologists in the field or in less-developed countries. In recent years, much of the research carried out on phytodiagnostics has focussed in these areas and as a result many novel, routine diagnostic tests are becoming available. This has been possible due to the introduction of new molecular technologies such real-time PCR and microarrays. These advances have been complemented by the development of new nucleic acid extraction methods, increased automation, reliable internal controls, assay multiplexing and generic amplification methods. With developments in new hardware, field-portable real-time PCR is now also a reality and offers the prospect of ultra-rapid, on-site molecular diagnostics for the first time. In this paper, the development and implementation of new diagnostic methods based upon novel molecular techniques is presented, with specific examples given to demonstrate how these new methods can be used to overcome some long-standing problems.
Collapse
Affiliation(s)
- Rick Mumford
- Central Science Laboratory, Sand Hutton, York YO41 1LZ UK
| | - Neil Boonham
- Central Science Laboratory, Sand Hutton, York YO41 1LZ UK
| | | | - Ian Barker
- Central Science Laboratory, Sand Hutton, York YO41 1LZ UK
| |
Collapse
|
29
|
Olmos A, Bertolini E, Gil M, Cambra M. Real-time assay for quantitative detection of non-persistently transmitted Plum pox virus RNA targets in single aphids. J Virol Methods 2005; 128:151-5. [PMID: 15964640 DOI: 10.1016/j.jviromet.2005.05.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/26/2005] [Accepted: 05/03/2005] [Indexed: 11/30/2022]
Abstract
A TaqMan real-time RT-PCR was developed to detect and quantify RNA-targets from the non-circulative, non-persistently transmitted Plum pox virus (PPV) in individual fresh or aphids captured previously and squashed on paper. Reliable quantitation ranged from 40 up to 4 x 10(8) copies of control transcripts. This technique was applied successfully to plant material and to individual PPV vector (Myzus persicae) and non-vector of PPV (Aphis nerii) aphid species demonstrating acquisition of viral targets by both vector and non-vector aphids. The number of viruliferous aphids detected by real-time RT-PCR and nested RT-PCR in a single closed tube was similar in parallel assays, nevertheless the sensitivity provided by real-time RT-PCR was 100 times higher than nested RT-PCR and 1000 times higher than DASI-ELISA and conventional RT-PCR. The quantities of PPV-RNA targets detected in a single aphid ranged from 40 to more than 2 x 10(3) units. The combined system (immobilization of targets on paper by squash capture and real-time RT-PCR) allows, for the first time, reliable quantitation of PPV targets acquired by individual aphid species and constitute an excellent tool for understanding better PPV epidemiology.
Collapse
Affiliation(s)
- Antonio Olmos
- Departamento de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera km 5, 46113 Moncada, Valencia, Spain
| | | | | | | |
Collapse
|
30
|
Vialatte A, Dedryver CA, Simon JC, Galman M, Plantegenest M. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants. Proc Biol Sci 2005; 272:1075-82. [PMID: 16024367 PMCID: PMC1599878 DOI: 10.1098/rspb.2004.3033] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed.
Collapse
Affiliation(s)
- Aude Vialatte
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
- Makhteshim Agan France12 Bd des Iles, 92441 Issy Les Moulineaux Cedex, France
| | - Charles-Antoine Dedryver
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
| | - Jean-Christophe Simon
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
| | - Marina Galman
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
| | - Manuel Plantegenest
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
- Author for correspondence ()
| |
Collapse
|
31
|
Jacquot E, Tribodet M, Croizat F, Balme-Sinibaldi V, Kerlan C. A single nucleotide polymorphism-based technique for specific characterization of YO and YN isolates of Potato virus Y (PVY). J Virol Methods 2005; 125:83-93. [PMID: 15737420 DOI: 10.1016/j.jviromet.2005.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/17/2004] [Accepted: 01/11/2005] [Indexed: 11/24/2022]
Abstract
One of the most important properties used to classify Potato virus Y (PVY) isolates is their ability to induce (PVY(N)) or not (PVY(O)) veinal necrosis symptoms on the indicator host plant Nicotiana tabacum cv. Xanthi. As an alternative to biological assays, several serological and molecular detection tools have been developed for PVY detection and characterization and these have evolved as our knowledge of PVY has improved. However, the assays that have been previously published are all based on the use of neutral markers (antigenic determinants, sequence data, recombination sites or restriction enzyme cleavage sites), which are unlinked to the biological property being characterized (e.g. veinal necrosis). Using the recently identified molecular determinants of the tobacco leaf necrosis symptom induced by PVY(N) isolates, a one-step fluorescent [TaqMan] RT-PCR assay, based on a single nucleotide polymorphism (SNP) linked to the necrosis property of PVY isolates, has been designed. This assay reliably detects and distinguishes PVY(N) and PVY(O) isolates. The method is simple (leaf soak extraction process, gel-free, no post-PCR manipulations), rapid (96 tests in less than 3h from plants sampling to diagnostic results), sensitive (threshold in a range of 10(4)-10(5) PVY copies), reliable (correctly assigns 42 PVY isolates in their respective group) and allows co-detection of mixed samples containing close to equivalent PVY(N) and PVY(O) quantities. All these characteristics suggest that the newly developed SNP assay could be used to reliably classify PVY isolates, as a substitute for biological assays performed on N. tabacum cv. Xanthi.
Collapse
Affiliation(s)
- Emmanuel Jacquot
- INRA/ENSA, Unité Mixte de Recherche Biologie des Organismes et des Populations Appliquée à la Protection des Plantes (BiO3P), Domaine de la Motte B.P. 35327, F-35653 Le Rheu Cedex, France.
| | | | | | | | | |
Collapse
|