1
|
Alshehri MA, Alzahrani H, van den Hoorn W, Klyne DM, Vette AH, Hendershot BD, Roberts BWR, Larivière C, Barbado D, Vera-Garcia FJ, van Dieen JH, Cholewicki J, Nussbaum MA, Madigan ML, Reeves NP, Silfies SP, Brown SHM, Hodges PW. Trunk postural control during unstable sitting among individuals with and without low back pain: A systematic review with an individual participant data meta-analysis. PLoS One 2024; 19:e0296968. [PMID: 38265999 PMCID: PMC10807788 DOI: 10.1371/journal.pone.0296968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Sitting on an unstable surface is a common paradigm to investigate trunk postural control among individuals with low back pain (LBP), by minimizing the influence lower extremities on balance control. Outcomes of many small studies are inconsistent (e.g., some find differences between groups while others do not), potentially due to confounding factors such as age, sex, body mass index [BMI], or clinical presentations. We conducted a systematic review with an individual participant data (IPD) meta-analysis to investigate whether trunk postural control differs between those with and without LBP, and whether the difference between groups is impacted by vision and potential confounding factors. METHODS We completed this review according to PRISMA-IPD guidelines. The literature was screened (up to 7th September 2023) from five electronic databases: MEDLINE, CINAHL, Embase, Scopus, and Web of Science Core Collection. Outcome measures were extracted that describe unstable seat movements, specifically centre of pressure or seat angle. Our main analyses included: 1) a two-stage IPD meta-analysis to assess the difference between groups and their interaction with age, sex, BMI, and vision on trunk postural control; 2) and a two-stage IPD meta-regression to determine the effects of LBP clinical features (pain intensity, disability, pain catastrophizing, and fear-avoidance beliefs) on trunk postural control. RESULTS Forty studies (1,821 participants) were included for the descriptive analysis and 24 studies (1,050 participants) were included for the IPD analysis. IPD meta-analyses revealed three main findings: (a) trunk postural control was worse (higher root mean square displacement [RMSdispl], range, and long-term diffusion; lower mean power frequency) among individuals with than without LBP; (b) trunk postural control deteriorated more (higher RMSdispl, short- and long-term diffusion) among individuals with than without LBP when vision was removed; and (c) older age and higher BMI had greater adverse impacts on trunk postural control (higher short-term diffusion; longer time and distance coordinates of the critical point) among individuals with than without LBP. IPD meta-regressions indicated no associations between the limited LBP clinical features that could be considered and trunk postural control. CONCLUSION Trunk postural control appears to be inferior among individuals with LBP, which was indicated by increased seat movements and some evidence of trunk stiffening. These findings are likely explained by delayed or less accurate corrective responses. SYSTEMATIC REVIEW REGISTRATION This review has been registered in PROSPERO (registration number: CRD42021124658).
Collapse
Affiliation(s)
- Mansour Abdullah Alshehri
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
- Physiotherapy Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hosam Alzahrani
- Department of Physical Therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Wolbert van den Hoorn
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Albert H. Vette
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Canada
| | - Brad D. Hendershot
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, United States of America
| | - Brad W. R. Roberts
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Canada
| | - Christian Larivière
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, Quebec, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal Rehabilitation Institute, Montreal, Quebec, Canada
| | - David Barbado
- Sport Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL Foundation), Miguel Hernández University of Elche, Alicante, Spain
| | - Francisco J. Vera-Garcia
- Sport Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL Foundation), Miguel Hernández University of Elche, Alicante, Spain
| | - Jaap H. van Dieen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Jacek Cholewicki
- Center for Neuromusculoskeletal Clinical Research, Michigan State University, Lansing, Michigan, United States of America
- Department of Osteopathic Manipulative Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Maury A. Nussbaum
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael L. Madigan
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | | | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, United States of America
| | - Stephen H. M. Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Standing Balance Control of a Bipedal Robot Based on Behavior Cloning. Biomimetics (Basel) 2022; 7:biomimetics7040232. [PMID: 36546932 PMCID: PMC9776061 DOI: 10.3390/biomimetics7040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Bipedal robots have gained increasing attention for their human-like mobility which allows them to work in various human-scale environments. However, their inherent instability makes it difficult to control their balance while they are physically interacting with the environment. This study proposes a novel balance controller for bipedal robots based on a behavior cloning model as one of the machine learning techniques. The behavior cloning model employs two deep neural networks (DNNs) trained on human-operated balancing data, so that the trained model can predict the desired wrench required to maintain the balance of the bipedal robot. Based on the prediction of the desired wrench, the joint torques for both legs are calculated using robot dynamics. The performance of the developed balance controller was validated with a bipedal lower-body robotic system through simulation and experimental tests by providing random perturbations in the frontal plane. The developed balance controller demonstrated superior performance with respect to resistance to balance loss compared to the conventional balance control method, while generating a smoother balancing movement for the robot.
Collapse
|
3
|
Spinal Cord Circuits: Models and Reality. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Alshehri MA, van den Hoorn W, Klyne DM, Hodges PW. Postural control of the trunk in individuals with and without low back pain during unstable sitting: A protocol for a systematic review with an individual participant data meta-analysis. PLoS One 2022; 17:e0268381. [PMID: 35551559 PMCID: PMC9098032 DOI: 10.1371/journal.pone.0268381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Postural control of the trunk is critical for performance of everyday activities and the health of spinal tissues. Although some studies report that individuals with low back pain (LBP) have poorer/compromised postural control than pain-free individuals when sitting on an unstable surface, others do not. Analyses commonly lack the statistical power to evaluate the relevance of features that could impact the performance of postural control, such as sex, age, anthropometrics, pain intensity or disability. This paper outlines a protocol for a systematic review with an individual participant data (IPD) meta-analysis that aims to synthesise the evidence and evaluate differences of postural control measures between individuals with and without LBP during unstable sitting. Methods and analysis A systematic review with IPD meta-analysis will be conducted according to PRISMA-IPD guidelines. To identify relevant studies, electronic databases and the reference lists of included articles will be screened. Unstable seat movements are derived from centre of pressure (CoP) data using a force plate or angle of the seat using motion systems/sensors. The comprehensiveness of reporting and methodological quality of included studies will be assessed. Analysis will involve a descriptive analysis to synthesise the findings of all included studies and a quantitative synthesis using two-stage IPD meta-analysis of studies that include both individuals with and without LBP for which IPD set can be obtained from authors. Analyses will include consideration of confounding variables. Ethics Exemption from ethical approval was obtained for this review (University of Queensland, ID: 2019003026). Systematic review registration PROSPERO ID: CRD42021124658.
Collapse
Affiliation(s)
- Mansour Abdullah Alshehri
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
- Physiotherapy Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Wolbert van den Hoorn
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail:
| |
Collapse
|
5
|
Solopova IA, Selionov VA, Blinov EO, Dolinskaya IY, Zhvansky DS, Lacquaniti F, Ivanenko Y. Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex. BIOLOGY 2022; 11:biology11050707. [PMID: 35625435 PMCID: PMC9138260 DOI: 10.3390/biology11050707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Individual differences in the sensorimotor circuitry play an important role for understanding the nature of behavioral variability and developing personalized therapies. While the spinal network likely requires relatively rigid organization, it becomes increasingly evident that adaptability and inter-individual variability in the functioning of the neuronal circuitry is present not only in the brain but also in the spinal cord. In this study we investigated the relationship between the excitability of pattern generation circuitry and segmental reflexes in healthy humans. We found that the high individual responsiveness of pattern generation circuitries to tonic sensory input in both the upper and lower limbs was related to larger H-reflexes. The results provide further evidence for the importance of physiologically relevant assessments of spinal cord neuromodulation and the individual physiological state of reflex pathways. Abstract The state and excitability of pattern generators are attracting the increasing interest of neurophysiologists and clinicians for understanding the mechanisms of the rhythmogenesis and neuromodulation of the human spinal cord. It has been previously shown that tonic sensory stimulation can elicit non-voluntary stepping-like movements in non-injured subjects when their limbs were placed in a gravity-neutral unloading apparatus. However, large individual differences in responsiveness to such stimuli were observed, so that the effects of sensory neuromodulation manifest only in some of the subjects. Given that spinal reflexes are an integral part of the neuronal circuitry, here we investigated the extent to which spinal pattern generation excitability in response to the vibrostimulation of muscle proprioceptors can be related to the H-reflex magnitude, in both the lower and upper limbs. For the H-reflex measurements, three conditions were used: stationary limbs, voluntary limb movement and passive limb movement. The results showed that the H-reflex was considerably higher in the group of participants who demonstrated non-voluntary rhythmic responses than it was in the participants who did not demonstrate them. Our findings are consistent with the idea that spinal reflex measurements play important roles in assessing the rhythmogenesis of the spinal cord.
Collapse
Affiliation(s)
- Irina A. Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Victor A. Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Egor O. Blinov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Irina Y. Dolinskaya
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Dmitry S. Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Correspondence:
| |
Collapse
|
6
|
Fava de Lima F, Silva CR, Kohn AF. Transcutaneous spinal direct current stimulation (tsDCS) does not affect postural sway of young and healthy subjects during quiet upright standing. PLoS One 2022; 17:e0267718. [PMID: 35482798 PMCID: PMC9049532 DOI: 10.1371/journal.pone.0267718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Transcutaneous spinal direct current stimulation (tsDCS) is an effective non-invasive spinal cord electrical stimulation technique to induce neuromodulation of local and distal neural circuits of the central nervous system (CNS). Applied to the spinal cord lumbosacral region, tsDCS changes electrophysiological responses of the motor, proprioceptive and nociceptive pathways, alters the performance of some lower limb motor tasks and can even modulate the behavior of supramedullary neuronal networks. In this study an experimental protocol was conducted to verify if tsDCS (5 mA, 20 minutes) of two different polarizations, applied over the lumbosacral region (tenth thoracic vertebrae (T10)), can induce changes in postural sway oscillations of young healthy individuals during quiet standing. A novel initialization of the electrical stimulation was developed to improve subject blinding to the different stimulus conditions including the sham trials. Measures of postural sway, both global and structural, were computed before, during and following the DC stimulation period. The results indicated that, for the adopted conditions, tsDCS did not induce statistically significant changes in postural sway of young healthy individuals during quiet standing.
Collapse
Affiliation(s)
- Felipe Fava de Lima
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | - Cristiano Rocha Silva
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - Andre Fabio Kohn
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Buchman AS, Bennett DA. Mixed Neuropathologies, Neural Motor Resilience and Target Discovery for Therapies of Late-Life Motor Impairment. Front Hum Neurosci 2022; 16:853330. [PMID: 35399360 PMCID: PMC8987574 DOI: 10.3389/fnhum.2022.853330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
By age 85, most adults manifest some degree of motor impairment. However, in most individuals a specific etiology for motor decline and treatment to modify its inexorable progression cannot be identified. Recent clinical-pathologic studies provide evidence that mixed-brain pathologies are commonly associated with late-life motor impairment. Yet, while nearly all older adults show some degree of accumulation of Alzheimer's disease and related dementias (ADRD) pathologies, the extent to which these pathologies contribute to motor decline varies widely from person to person. Slower or faster than expected motor decline in the presence of brain injury and/or pathology has been conceptualized as more or less "resilience" relative to the average person This suggests that other factors, such as lifestyles or other neurobiologic indices may offset or exacerbate the negative effects of pathologies via other molecular pathways. The mechanisms underlying neural motor resilience are just beginning to be illuminated. Unlike its cousin, cognitive resilience which is restricted to neural mechanisms above the neck, the motor system extends the total length of the CNS and beyond the CNS to reach muscle and musculoskeletal structures, all of which are crucial for motor function. Building on prior work, we propose that by isolating motor decline unrelated to neuropathologies and degeneration, investigators can identify genes and proteins that may provide neural motor resilience. Elucidating these molecular mechanisms will advance our understanding of the heterogeneity of late-life motor impairment. This approach will also provide high value therapeutic targets for drug discovery of therapies that may offset the negative motor consequences of CNS pathologies that are currently untreatable.
Collapse
Affiliation(s)
- Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States,*Correspondence: Aron S. Buchman,
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Ulloa JL. The Control of Movements via Motor Gamma Oscillations. Front Hum Neurosci 2022; 15:787157. [PMID: 35111006 PMCID: PMC8802912 DOI: 10.3389/fnhum.2021.787157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
The ability to perform movements is vital for our daily life. Our actions are embedded in a complex environment where we need to deal efficiently in the face of unforeseen events. Neural oscillations play an important role in basic sensorimotor processes related to the execution and preparation of movements. In this review, I will describe the state of the art regarding the role of motor gamma oscillations in the control of movements. Experimental evidence from electrophysiological studies has shown that motor gamma oscillations accomplish a range of functions in motor control beyond merely signaling the execution of movements. However, these additional aspects associated with motor gamma oscillation remain to be fully clarified. Future work on different spatial, temporal and spectral scales is required to further understand the implications of gamma oscillations in motor control.
Collapse
Affiliation(s)
- José Luis Ulloa
- Programa de Investigación Asociativa (PIA) en Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas (CICC), Facultad de Psicología, Universidad de Talca, Talca, Chile
| |
Collapse
|
9
|
Anderson NK, Gururaja KV, Mangiamele LA, Netoskie EC, Smith S, Fuxjager MJ, Preininger D. Insight into the Evolution of Anuran Foot Flag Displays: A Comparative Study of Color and Kinematics. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nigel K. Anderson
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island 02912; (NKA) ; and (MJF) . Send reprint requests to NKA
| | - K. V. Gururaja
- Research and Development Center and Science Media Center, Indian Institute of Science Campus, Gubbi Labs, Bengaluru 560012, India;
| | - Lisa A. Mangiamele
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063; (LAM) ; and (SS)
| | - Erin C. Netoskie
- Department of Environmental Sciences, Juniata College, Huntingdon, Pennsylvania 16652;
| | - Sarah Smith
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063; (LAM) ; and (SS)
| | - Matthew J. Fuxjager
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island 02912; (NKA) ; and (MJF) . Send reprint requests to NKA
| | - Doris Preininger
- Vienna Zoo, 1130 Vienna, Austria; Department of Evolutionary Biology, University Vienna, Austria;
| |
Collapse
|
10
|
Aoi S, Amano T, Fujiki S, Senda K, Tsuchiya K. Fast and Slow Adaptations of Interlimb Coordination via Reflex and Learning During Split-Belt Treadmill Walking of a Quadruped Robot. Front Robot AI 2021; 8:697612. [PMID: 34422913 PMCID: PMC8378330 DOI: 10.3389/frobt.2021.697612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Interlimb coordination plays an important role in adaptive locomotion of humans and animals. This has been investigated using a split-belt treadmill, which imposes different speeds on the two sides of the body. Two types of adaptation have been identified, namely fast and slow adaptations. Fast adaptation induces asymmetric interlimb coordination soon after a change of the treadmill speed condition from same speed for both belts to different speeds. In contrast, slow adaptation slowly reduces the asymmetry after fast adaptation. It has been suggested that these adaptations are primarily achieved by the spinal reflex and cerebellar learning. However, these adaptation mechanisms remain unclear due to the complicated dynamics of locomotion. In our previous work, we developed a locomotion control system for a biped robot based on the spinal reflex and cerebellar learning. We reproduced the fast and slow adaptations observed in humans during split-belt treadmill walking of the biped robot and clarified the adaptation mechanisms from a dynamic viewpoint by focusing on the changes in the relative positions between the center of mass and foot stance induced by reflex and learning. In this study, we modified the control system for application to a quadruped robot. We demonstrate that even though the basic gait pattern of our robot is different from that of general quadrupeds (due to limitations of the robot experiment), fast and slow adaptations that are similar to those of quadrupeds appear during split-belt treadmill walking of the quadruped robot. Furthermore, we clarify these adaptation mechanisms from a dynamic viewpoint, as done in our previous work. These results will increase the understanding of how fast and slow adaptations are generated in quadrupedal locomotion on a split-belt treadmill through body dynamics and sensorimotor integration via the spinal reflex and cerebellar learning and help the development of control strategies for adaptive locomotion of quadruped robots.
Collapse
Affiliation(s)
- Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takashi Amano
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Soichiro Fujiki
- Department of Physiology, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Warren RA, Zhang Q, Hoffman JR, Li EY, Hong YK, Bruno RM, Sawtell NB. A rapid whisker-based decision underlying skilled locomotion in mice. eLife 2021; 10:63596. [PMID: 33428566 PMCID: PMC7800376 DOI: 10.7554/elife.63596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Skilled motor behavior requires rapidly integrating external sensory input with information about internal state to decide which movements to make next. Using machine learning approaches for high-resolution kinematic analysis, we uncover the logic of a rapid decision underlying sensory-guided locomotion in mice. After detecting obstacles with their whiskers mice select distinct kinematic strategies depending on a whisker-derived estimate of obstacle location together with the position and velocity of their body. Although mice rely on whiskers for obstacle avoidance, lesions of primary whisker sensory cortex had minimal impact. While motor cortex manipulations affected the execution of the chosen strategy, the decision-making process remained largely intact. These results highlight the potential of machine learning for reductionist analysis of naturalistic behaviors and provide a case in which subcortical brain structures appear sufficient for mediating a relatively sophisticated sensorimotor decision.
Collapse
Affiliation(s)
- Richard A Warren
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Qianyun Zhang
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Judah R Hoffman
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Edward Y Li
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Y Kate Hong
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Randy M Bruno
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Nathaniel B Sawtell
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
12
|
Cappellini G, Sylos-Labini F, Dewolf AH, Solopova IA, Morelli D, Lacquaniti F, Ivanenko Y. Maturation of the Locomotor Circuitry in Children With Cerebral Palsy. Front Bioeng Biotechnol 2020; 8:998. [PMID: 32974319 PMCID: PMC7462003 DOI: 10.3389/fbioe.2020.00998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The first years of life represent an important phase of maturation of the central nervous system, processing of sensory information, posture control and acquisition of the locomotor function. Cerebral palsy (CP) is the most common group of motor disorders in childhood attributed to disturbances in the fetal or infant brain, frequently resulting in impaired gait. Here we will consider various findings about functional maturation of the locomotor output in early infancy, and how much the dysfunction of gait in children with CP can be related to spinal neuronal networks vs. supraspinal dysfunction. A better knowledge about pattern generation circuitries in infancy may improve our understanding of developmental motor disorders, highlighting the necessity for regulating the functional properties of abnormally developed neuronal locomotor networks as a target for early sensorimotor rehabilitation. Various clinical approaches and advances in biotechnology are also considered that might promote acquisition of the locomotor function in infants at risk for locomotor delays.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Arthur H Dewolf
- Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Irina A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
13
|
Data-driven spectral analysis for coordinative structures in periodic human locomotion. Sci Rep 2019; 9:16755. [PMID: 31727930 PMCID: PMC6856341 DOI: 10.1038/s41598-019-53187-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
Living organisms dynamically and flexibly operate a great number of components. As one of such redundant control mechanisms, low-dimensional coordinative structures among multiple components have been investigated. However, structures extracted from the conventional statistical dimensionality reduction methods do not reflect dynamical properties in principle. Here we regard coordinative structures in biological periodic systems with unknown and redundant dynamics as a nonlinear limit-cycle oscillation, and apply a data-driven operator-theoretic spectral analysis, which obtains dynamical properties of coordinative structures such as frequency and phase from the estimated eigenvalues and eigenfunctions of a composition operator. Using segmental angle series during human walking as an example, we first extracted the coordinative structures based on dynamics; e.g. the speed-independent coordinative structures in the harmonics of gait frequency. Second, we discovered the speed-dependent time-evolving behaviours of the phase by estimating the eigenfunctions via our approach on the conventional low-dimensional structures. We also verified our approach using the double pendulum and walking model simulation data. Our results of locomotion analysis suggest that our approach can be useful to analyse biological periodic phenomena from the perspective of nonlinear dynamical systems.
Collapse
|
14
|
Oshima H, Aoi S, Funato T, Tsujiuchi N, Tsuchiya K. Variant and Invariant Spatiotemporal Structures in Kinematic Coordination to Regulate Speed During Walking and Running. Front Comput Neurosci 2019; 13:63. [PMID: 31616271 PMCID: PMC6764191 DOI: 10.3389/fncom.2019.00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
Humans walk, run, and change their speed in accordance with circumstances. These gaits are rhythmic motions generated by multi-articulated movements, which have specific spatiotemporal patterns. The kinematic characteristics depend on the gait and speed. In this study, we focused on the kinematic coordination of locomotor behavior to clarify the underlying mechanism for the effect of speed on the spatiotemporal kinematic patterns for each gait. In particular, we used seven elevation angles for the whole-body motion and separated the measured data into different phases depending on the foot-contact condition, that is, single-stance phase, double-stance phase, and flight phase, which have different physical constraints during locomotion. We extracted the spatiotemporal kinematic coordination patterns with singular value decomposition and investigated the effect of speed on the coordination patterns. Our results showed that most of the whole-body motion could be explained by only two sets of temporal and spatial coordination patterns in each phase. Furthermore, the temporal coordination patterns were invariant for different speeds, while the spatial coordination patterns varied. These findings will improve our understanding of human adaptation mechanisms to tune locomotor behavior for changing speed.
Collapse
Affiliation(s)
- Hiroko Oshima
- Department of Mechanical and Systems Engineering, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan.,Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Nobutaka Tsujiuchi
- Department of Mechanical and Systems Engineering, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Easthope CS, Traini LR, Awai L, Franz M, Rauter G, Curt A, Bolliger M. Overground walking patterns after chronic incomplete spinal cord injury show distinct response patterns to unloading. J Neuroeng Rehabil 2018; 15:102. [PMID: 30419945 PMCID: PMC6233558 DOI: 10.1186/s12984-018-0436-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Body weight support (BWS) is often provided to incomplete spinal cord injury (iSCI) patients during rehabilitation to enable gait training before full weight-bearing is recovered. Emerging robotic devices enable BWS during overground walking, increasing task-specificity of the locomotor training. However, in contrast to a treadmill setting, there is little information on how unloading is integrated into overground locomotion. We investigated the effect of a transparent multi-directional BWS system on overground walking patterns at different levels of unloading in individuals with chronic iSCI (CiSCI) compared to controls. METHODS Kinematics of 12 CiSCI were analyzed at six different BWS levels from 0 to 50% body weight unloading during overground walking at 2kmh- 1 and compared to speed-matched controls. RESULTS In controls, temporal parameters, single joint trajectories, and intralimb coordination responded proportionally to the level of unloading, while spatial parameters remained unaffected. In CiSCI, unloading induced similar changes in temporal parameters. CiSCI, however, did not adapt their intralimb coordination or single joint trajectories to the level of unloading. CONCLUSIONS The findings revealed that continuous, dynamic unloading during overground walking results in subtle and proportional gait adjustments corresponding to changes in body load. CiSCI demonstrated diminished responses in specific domains of gait, indicating that their altered neural processing impeded the adjustment to environmental constraints. CiSCI retain their movement patterns under overground unloading, indicating that this is a viable locomotor therapy tool that may also offer a potential window on the diminished neural control of intralimb coordination.
Collapse
Affiliation(s)
| | - Luca Renato Traini
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland
| | - Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland.,Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - Martina Franz
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland
| | - Georg Rauter
- BIROMED-Lab, Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland
| |
Collapse
|
16
|
Puentes S, Kadone H, Watanabe H, Ueno T, Yamazaki M, Sankai Y, Marushima A, Suzuki K. Reshaping of Bilateral Gait Coordination in Hemiparetic Stroke Patients After Early Robotic Intervention. Front Neurosci 2018; 12:719. [PMID: 30356738 PMCID: PMC6189332 DOI: 10.3389/fnins.2018.00719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/19/2018] [Indexed: 01/04/2023] Open
Abstract
Hemiparetic gait is a common condition after stroke which alters importantly the quality of life of stroke survivors. In recent years, several robotic interventions have been developed to support and enhance rehabilitation strategies for such population. The Hybrid Assistive Limb® (HAL) robot suit is a unique device able to collect in real time bioelectric signals from the patient to support and enhance voluntary gait. HAL has been used before in early stages of stroke showing gait improvement after the intervention. However, evaluation of the coordination of gait has not been done yet. Coordination is a key factor for an adequate gait performance; consequently, its changes may be closely related to gait recovery. In this study, we used planar covariation to evaluate coordination changes in hemiparetic stroke patients after early HAL intervention. Before starting, impaired intersegmental coordination for the paretic and non-paretic side was evident. HAL intervention was able to induce recovery of the covariation loop shape and deviation from the covariation plane improving intersegmental coordination. Also, there was a tendency of recovery for movement range evidenced by comparison of peak elevation angles of each limb segment of the patients before and after HAL intervention, and also when compared to healthy volunteers. Our results suggest that early HAL intervention contributed to the improvement of gait coordination in hemiparetic stroke patients by reinforcing central pattern generators and therefore reshaping their gait pattern. Trial registration: UMIN000022410 2016/05/23.
Collapse
Affiliation(s)
- Sandra Puentes
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan.,Center for Innovative Medicine and Engineering, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hideki Kadone
- Center for Innovative Medicine and Engineering, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hiroki Watanabe
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Tomoyuki Ueno
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Aiki Marushima
- Department of Neurosurgery, University of Tsukuba Hospital, Tsukuba, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Wei RH, Zhao C, Rao JS, Zhao W, Zhou X, Tian PY, Song W, Ji R, Zhang AF, Yang ZY, Li XG. The kinematic recovery process of rhesus monkeys after spinal cord injury. Exp Anim 2018; 67:431-440. [PMID: 29769463 PMCID: PMC6219880 DOI: 10.1538/expanim.18-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
After incomplete spinal cord injury (SCI), neural circuits may be plastically
reconstructed to some degree, resulting in extensive functional locomotor recovery. The
present study aimed to observe the post-SCI locomotor recovery of rhesus monkey hindlimbs
and compare the recovery degrees of different hindlimb parts, thus revealing the recovery
process of locomotor function. Four rhesus monkeys were chosen for thoracic hemisection
injury. The hindlimb locomotor performance of these animals was recorded before surgery,
as well as 6 and 12 weeks post-lesion. Via principal component analysis, the relevant
parameters of the limb endpoint, pelvis, hindlimb segments, and joints were processed and
analyzed. Twelve weeks after surgery, partial kinematic recovery was observed at the limb
endpoint, shank, foot, and knee joints, and the locomotor performance of the ankle joint
even recovered to the pre-lesion level; the elevation angle of the thigh and hip joints
showed no obvious recovery. Generally, different parts of a monkey hindlimb had different
spontaneous recovery processes; specifically, the closer the part was to the distal end,
the more extensive was the locomotor function recovery. Therefore, we speculate that
locomotor recovery may be attributed to plastic reconstruction of the motor circuits that
are mainly composed of corticospinal tract. This would help to further understand the
plasticity of motor circuits after spinal cord injury.
Collapse
Affiliation(s)
- Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,School of Instrument Science and Opto-Electronic Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100191, P.R. China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Wei Song
- Rehabilitation Engineering Research Institute, China Rehabilitation Research Center, No. 10 Jiaomenbei Road, Fengtai District, Beijing 100068, P.R. China
| | - Run Ji
- Human Biomechanics Laboratory, National Research Center for Rehabilitation Technical Aids, No. 1 Ronghuazhong Road, Daxing District, Beijing 100176, P.R. China
| | - Ai-Feng Zhang
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, P.R. China
| | - Zhao-Yang Yang
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100191, P.R. China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100191, P.R. China
| |
Collapse
|
18
|
Ivanenko Y, Gurfinkel VS. Human Postural Control. Front Neurosci 2018; 12:171. [PMID: 29615859 PMCID: PMC5869197 DOI: 10.3389/fnins.2018.00171] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
From ancient Greece to nowadays, research on posture control was guided and shaped by many concepts. Equilibrium control is often considered part of postural control. However, two different levels have become increasingly apparent in the postural control system, one level sets a distribution of tonic muscle activity (“posture”) and the other is assigned to compensate for internal or external perturbations (“equilibrium”). While the two levels are inherently interrelated, both neurophysiological and functional considerations point toward distinct neuromuscular underpinnings. Disturbances of muscle tone may in turn affect movement performance. The unique structure, specialization and properties of skeletal muscles should also be taken into account for understanding important peripheral contributors to postural regulation. Here, we will consider the neuromechanical basis of habitual posture and various concepts that were rather influential in many experimental studies and mathematical models of human posture control.
Collapse
Affiliation(s)
- Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Victor S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
19
|
Cappellini G, Sylos-Labini F, MacLellan MJ, Sacco A, Morelli D, Lacquaniti F, Ivanenko Y. Backward walking highlights gait asymmetries in children with cerebral palsy. J Neurophysiol 2017; 119:1153-1165. [PMID: 29357466 DOI: 10.1152/jn.00679.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To investigate how early injuries to developing motor regions of the brain affect different forms of gait, we compared the spatiotemporal locomotor patterns during forward (FW) and backward (BW) walking in children with cerebral palsy (CP). Bilateral gait kinematics and EMG activity of 11 pairs of leg muscles were recorded in 14 children with CP (9 diplegic, 5 hemiplegic; 3.0-11.1 yr) and 14 typically developing (TD) children (3.3-11.8 yr). During BW, children with CP showed a significant increase of gait asymmetry in foot trajectory characteristics and limb intersegmental coordination. Furthermore, gait asymmetries, which were not evident during FW in diplegic children, became evident during BW. Factorization of the EMG signals revealed a comparable structure of the motor output during FW and BW in all groups of children, but we found differences in the basic temporal activation patterns. Overall, the results are consistent with the idea that both forms of gait share pattern generation control circuits providing similar (though reversed) kinematic patterns. However, BW requires different muscle activation timings associated with muscle modules, highlighting subtle gait asymmetries in diplegic children, and thus provides a more comprehensive assessment of gait pathology in children with CP. The findings suggest that spatiotemporal asymmetry assessments during BW might reflect an impaired state and/or descending control of the spinal locomotor circuitry and can be used for diagnostic purposes and as complementary markers of gait recovery. NEW & NOTEWORTHY Early injuries to developing motor regions of the brain affect both forward progression and other forms of gait. In particular, backward walking highlights prominent gait asymmetries in children with hemiplegia and diplegia from cerebral palsy and can give a more comprehensive assessment of gait pathology. The observed spatiotemporal asymmetry assessments may reflect both impaired supraspinal control and impaired state of the spinal circuitry.
Collapse
Affiliation(s)
- Germana Cappellini
- Centre of Space Bio-medicine, University of Rome Tor Vergata , Rome , Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Francesca Sylos-Labini
- Centre of Space Bio-medicine, University of Rome Tor Vergata , Rome , Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | | | - Annalisa Sacco
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Francesco Lacquaniti
- Centre of Space Bio-medicine, University of Rome Tor Vergata , Rome , Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation , Rome , Italy.,Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation , Rome , Italy
| |
Collapse
|
20
|
Yuan Q, Yang J, Wu W, Lin ZX. Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice. Oncotarget 2017; 8:97900-97912. [PMID: 29228660 PMCID: PMC5716700 DOI: 10.18632/oncotarget.18429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
There have been an increasing number of reports of non-cognitive symptoms in Alzheimer's disease (AD). Some symptoms are associated with the loss of motor functions, e.g. gait disturbances, disturbed activity level and balance. Consistent with clinical findings, several AD mouse models harboring amyloid pathology develop motor impairment. Although the factors that contribute to the motor deficits have not yet been determined, it has been suggested that axonopathy is one of the key factors that may contribute to this particular feature of the disease. Our previous study found that TgCRND8 mice exhibited profound motor deficits as early as 3 months old. In this study, we explored the possible factors that may be related to motor deficits in TgCRND8 mice. Results from silver, neurofilament and amyloid precursor protein (APP) staining revealed no axonopathy occurred in the brain and spinal cord of TgCRND8 mice at the age of 3 months. Anterograde labeling of corticospinal tract of spinal cord and electronic microscopy (EM) analysis showed that no axonopathy occurred in TgCRND8 mice at the age of 3 months. According to these results, it could be concluded that no axonal alterations were evident in the TgCRND8 mice when motor deficits was overt. Thus, axonopathy may play a less prominent role in motor deficits in AD. These results suggest that mechanisms by which motor function undergo impairment in AD need to be further studied.
Collapse
Affiliation(s)
- Qiuju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jian Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- GHM Institute of CNS regeneration, Jinan University, Guangzhou, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Fujiki S, Aoi S, Funato T, Tomita N, Senda K, Tsuchiya K. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study. J R Soc Interface 2016; 12:0542. [PMID: 26289658 PMCID: PMC4614464 DOI: 10.1098/rsif.2015.0542] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tetsuro Funato
- Department Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Choufugaoka, Choufu-shi, Tokyo 182-8585, Japan JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Nozomi Tomita
- Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
22
|
Smilde HA, Vincent JA, Baan GC, Nardelli P, Lodder JC, Mansvelder HD, Cope TC, Maas H. Changes in muscle spindle firing in response to length changes of neighboring muscles. J Neurophysiol 2016; 115:3146-55. [PMID: 27075540 DOI: 10.1152/jn.00937.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/05/2016] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.
Collapse
Affiliation(s)
- Hiltsje A Smilde
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| | - Jake A Vincent
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| | - Guus C Baan
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Nardelli
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; School of Applied Physiology and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Johannes C Lodder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tim C Cope
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; School of Applied Physiology and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Huub Maas
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands;
| |
Collapse
|
23
|
Solopova IA, Selionov VA, Zhvansky DS, Gurfinkel VS, Ivanenko Y. Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements. J Neurophysiol 2015; 115:1018-30. [PMID: 26683072 DOI: 10.1152/jn.00897.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
The coordination between arms and legs during human locomotion shares many features with that in quadrupeds, yet there is limited evidence for the central pattern generator for the upper limbs in humans. Here we investigated whether different types of tonic stimulation, previously used for eliciting stepping-like leg movements, may evoke nonvoluntary rhythmic arm movements. Twenty healthy subjects participated in this study. The subject was lying on the side, the trunk was fixed, and all four limbs were suspended in a gravity neutral position, allowing unrestricted low-friction limb movements in the horizontal plane. The results showed that peripheral sensory stimulation (continuous muscle vibration) and central tonic activation (postcontraction state of neuronal networks following a long-lasting isometric voluntary effort, Kohnstamm phenomenon) could evoke nonvoluntary rhythmic arm movements in most subjects. In ∼40% of subjects, tonic stimulation elicited nonvoluntary rhythmic arm movements together with rhythmic movements of suspended legs. The fact that not all participants exhibited nonvoluntary limb oscillations may reflect interindividual differences in responsiveness of spinal pattern generation circuitry to its activation. The occurrence and the characteristics of induced movements highlight the rhythmogenesis capacity of cervical neuronal circuitries, complementing the growing body of work on the quadrupedal nature of human gait.
Collapse
Affiliation(s)
- I A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia;
| | - V A Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - D S Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - V S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, Oregon; and
| | - Y Ivanenko
- Laboratory of Neuromotor Physiology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
24
|
Dambreville C, Labarre A, Thibaudier Y, Hurteau MF, Frigon A. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds. J Neurophysiol 2015; 114:1119-28. [PMID: 26084910 DOI: 10.1152/jn.00419.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023] Open
Abstract
When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds.
Collapse
Affiliation(s)
- Charline Dambreville
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Audrey Labarre
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yann Thibaudier
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-France Hurteau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
25
|
Schack T, Essig K, Frank C, Koester D. Mental representation and motor imagery training. Front Hum Neurosci 2014; 8:328. [PMID: 24904368 PMCID: PMC4033090 DOI: 10.3389/fnhum.2014.00328] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 05/01/2014] [Indexed: 01/12/2023] Open
Abstract
Research in sports, dance and rehabilitation has shown that basic action concepts (BACs) are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, the structural dimensional analysis of mental representation (SDA-M), to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations (MTMR) has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.
Collapse
Affiliation(s)
- Thomas Schack
- Neurocognition and Action-Biomechanics Research Group, Center of Excellence "Cognitive Interaction Technology", Research Institute for Cognition and Robotics, Bielefeld University Bielefeld, Germany
| | - Kai Essig
- Neurocognition and Action-Biomechanics Research Group, Center of Excellence "Cognitive Interaction Technology", Research Institute for Cognition and Robotics, Bielefeld University Bielefeld, Germany
| | - Cornelia Frank
- Neurocognition and Action-Biomechanics Research Group, Center of Excellence "Cognitive Interaction Technology", Research Institute for Cognition and Robotics, Bielefeld University Bielefeld, Germany
| | - Dirk Koester
- Neurocognition and Action-Biomechanics Research Group, Center of Excellence "Cognitive Interaction Technology", Research Institute for Cognition and Robotics, Bielefeld University Bielefeld, Germany
| |
Collapse
|
26
|
Travers MJ, Debenham J, Gibson W, Campbell A, Allison GT. Stability of lower limb minimal perceptible difference in floor height during hopping stretch-shortening cycles. Physiol Meas 2013; 34:1375-86. [DOI: 10.1088/0967-3334/34/10/1375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Fujiki S, Aoi S, Funato T, Tomita N, Senda K, Tsuchiya K. Hysteresis in the metachronal-tripod gait transition of insects: a modeling study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012717. [PMID: 23944500 DOI: 10.1103/physreve.88.012717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 06/02/2023]
Abstract
Locomotion in biological systems involves various gaits, and hysteresis appears when the gaits change in accordance with the locomotion speed. That is, the gaits vary at different locomotion speeds depending on the direction of speed change. Although hysteresis is a typical characteristic of nonlinear dynamic systems, the underlying mechanism for the hysteresis in gait transitions remains largely unclear. In this study, we construct a neuromechanical model of an insect and investigate the dynamic characteristics of its gait and gait transition. The simulation results show that our insect model produces metachronal and tripod gaits depending on the locomotion speed through dynamic interactions among the body mechanical system, the nervous system, and the environment in a self-organized manner. They also show that it undergoes the metachronal-tripod gait transition with hysteresis by changing the locomotion speed. We examined the hysteresis mechanism in the metachronal-tripod gait transition of insects from a dynamic viewpoint.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Kyoto 615-8540, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Fujiki S, Aoi S, Yamashita T, Funato T, Tomita N, Senda K, Tsuchiya K. Adaptive splitbelt treadmill walking of a biped robot using nonlinear oscillators with phase resetting. Auton Robots 2013. [DOI: 10.1007/s10514-013-9331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Aoi S, Kondo T, Hayashi N, Yanagihara D, Aoki S, Yamaura H, Ogihara N, Funato T, Tomita N, Senda K, Tsuchiya K. Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study. BIOLOGICAL CYBERNETICS 2013; 107:201-216. [PMID: 23430278 DOI: 10.1007/s00422-013-0546-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.
Collapse
Affiliation(s)
- Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Functional Roles of Phase Resetting in the Gait Transition of a Biped Robot From Quadrupedal to Bipedal Locomotion. IEEE T ROBOT 2012. [DOI: 10.1109/tro.2012.2205489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Clements IP, Mukhatyar VJ, Srinivasan A, Bentley JT, Andreasen DS, Bellamkonda RV. Regenerative scaffold electrodes for peripheral nerve interfacing. IEEE Trans Neural Syst Rehabil Eng 2012; 21:554-66. [PMID: 23033438 DOI: 10.1109/tnsre.2012.2217352] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Advances in neural interfacing technology are required to enable natural, thought-driven control of a prosthetic limb. Here, we describe a regenerative electrode design in which a polymer-based thin-film electrode array is integrated within a thin-film sheet of aligned nanofibers, such that axons regenerating from a transected peripheral nerve are topographically guided across the electrode recording sites. Cultures of dorsal root ganglia were used to explore design parameters leading to cellular migration and neurite extension across the nanofiber/electrode array boundary. Regenerative scaffold electrodes (RSEs) were subsequently fabricated and implanted across rat tibial nerve gaps to evaluate device recording capabilities and influence on nerve regeneration. In 20 of these animals, regeneration was compared between a conventional nerve gap model and an amputation model. Characteristic shaping of regenerated nerve morphology around the embedded electrode array was observed in both groups, and regenerated axon profile counts were similar at the eight week end point. Implanted RSEs recorded evoked neural activity in all of these cases, and also in separate implantations lasting up to five months. These results demonstrate that nanofiber-based topographic cues within a regenerative electrode can influence nerve regeneration, to the potential benefit of a peripheral nerve interface suitable for limb amputees.
Collapse
Affiliation(s)
- Isaac P Clements
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.
| | | | | | | | | | | |
Collapse
|
32
|
KHALAF KINDA, HEMAMI HOOSHANG. THE PAST AND PRESENT OF HUMAN MOVEMENT RESEARCH: TOWARDS THE DESIGN OF HUMAN-LIKE ROBOTS. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519412400052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Journal of Mechanics in Medicine and Biology(JMMB) has retracted the above paper from its April 2012 issue. The Publisher of JMMB was alerted to the fact that the conference paper was previously published in IEEE in 2011. The authors indicated that this manuscript was suggested by the conference organizers for journal publication. As stated clearly in the journal’s guidelines, only original manuscripts will be considered. Once a manuscript is accepted, the author is assumed to cede full copyright of their manuscript over to the publisher - World Scientific Publishing Co.
Collapse
Affiliation(s)
- KINDA KHALAF
- Khalifa University of Science, Technology and Research, Department of Biomedical Engineering, P. O. Box 127788, Abu Dhabi, UAE
| | - HOOSHANG HEMAMI
- Department of Electrical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
33
|
Vallet JL, Miles JR. Comparison of myelination between large and small pig fetuses during late gestation. Anim Reprod Sci 2012; 132:50-7. [PMID: 22554792 DOI: 10.1016/j.anireprosci.2012.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
We compared myelination of the cerebellum, brain stem, and spinal cord in the largest and smallest pig fetuses within a litter during late gestation. Gilts were killed on Days 92, 100, and 110 of gestation and these neural tissues were obtained from the largest and smallest fetuses in each litter. Myelin basic protein (MBP) mRNA was quantified in each tissue using real time reverse transcriptase polymerase chain reaction (rtPCR). Myelin was recovered from each tissue and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and thin layer chromatography (TLC) was used to measure MBP and lipids, respectively. MBP mRNA increased with advancing gestation in all three tissues examined (P≤0.05) and was less in brain stem of small piglets compared to large piglets (P<0.01). Two coomassie stained protein bands (HMBP and LMBP) were observed by SDS-PAGE. Six prominent lipid bands were obtained by TLC (cholesterol, hydroxy(h)-cerebroside, nonhydroxy(nh)-cerebroside, phosphatidylethanolamine, phosphatidylcholine, and sphingomyelin). Significant day by fetal size interactions for cerebellar MBP and lipids indicated that cerebellar myelination in the smallest fetuses was less compared to the largest fetuses on Days 100 and 110 of gestation. Myelin MBP and lipid obtained from brain stem increased with advancing gestation and LMBP and lipids were less in small piglets compared to large piglets. In contrast, myelination in spinal cord increased with day of gestation but was not different between smallest and largest fetuses. These results confirm that myelination of the cerebellum and brain stem, but not spinal cord, is reduced in small fetuses during late gestation.
Collapse
Affiliation(s)
- J L Vallet
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, United States.
| | | |
Collapse
|
34
|
Physiological and circuit mechanisms of postural control. Curr Opin Neurobiol 2012; 22:646-52. [PMID: 22446009 DOI: 10.1016/j.conb.2012.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/27/2012] [Accepted: 03/05/2012] [Indexed: 11/21/2022]
Abstract
The postural system maintains a specific body orientation and equilibrium during standing and during locomotion in the presence of many destabilizing factors (external and internal). Numerous studies in humans have revealed essential features of the functional organization of this system. Recent studies on different animal models have significantly supplemented human studies. They have greatly expanded our knowledge of how the control system operates, how the postural functions are distributed within different parts of CNS, and how these parts interact with each other to produce postural corrections and adjustments. This review outlines recent advances in the studies of postural control in quadrupeds, with special attention given the neuronal postural mechanisms.
Collapse
|
35
|
Turpin NA, Guével A, Durand S, Hug F. No evidence of expertise-related changes in muscle synergies during rowing. J Electromyogr Kinesiol 2012; 21:1030-40. [PMID: 21856171 DOI: 10.1016/j.jelekin.2011.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/18/2011] [Accepted: 07/18/2011] [Indexed: 11/29/2022] Open
Abstract
The purpose of the present study was to determine whether expertise in rowing is driven by a specific structure in muscular coordination. We compared seven experienced rowers and eight untrained (i.e., inexperienced) subjects during rowing on an ergometer. Both surface electromyography activity and mechanical patterns (forces exerted at the handle and the foot-stretcher) were recorded during a high intensity rowing exercise. A non-negative matrix factorization was applied to 23 electromyographic patterns to differentiate muscle synergies. Results showed that expertise was not associated with different dimensionality in the electromyographic data and that three muscle synergies were sufficient to explain the majority of the variance accounted for (i.e., >90% of the total variance) in the two populations. The synergies extracted were similar in the two populations, with identical functional roles. While the temporal organization of the propulsive synergies was very similar, slight differences were found in the composition of the muscle synergies (muscle synergy vectors) between the two populations. The results suggests that rowing expertise would not require the development of novel muscle synergies but would imply intrinsic synergies already used in different behaviors. Performance in rowing is more probably linked to adjustments in the mechanical output of the muscle synergies rather than to differences in the shape and timing of their activations.
Collapse
Affiliation(s)
- Nicolas A Turpin
- University of Nantes, Laboratory Motricité, Interactions, Performance (EA 4334), F-44000 Nantes, France
| | | | | | | |
Collapse
|
36
|
Rodriguez MJ, Alvarez RJ, Szczupak L. Effect of a nonspiking neuron on motor patterns of the leech. J Neurophysiol 2012; 107:1917-24. [PMID: 22236711 DOI: 10.1152/jn.01070.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Premotor and motoneurons could play regulatory roles in motor control. We have investigated the role of a premotor nonspiking (NS) neuron of the leech nervous system in two locomotive patterns: swimming and crawling. The NS neuron is coupled through rectifying electrical junctions to all the excitatory motoneurons examined. In addition, activation of motoneurons evokes chemically mediated inhibitory responses in NS. During swimming and crawling, the NS membrane potential (Vm(NS)) oscillated phase locked to the motor output. Hyperpolarization or depolarization of NS had no effect on swimming, but hyperpolarization of NS slowed down the crawling activity and decreased the motoneuron firing frequency. Depolarization of NS increased the motoneuron activity, and, at stages where the crawling pattern was fading, depolarization of NS reinstated it. Future work should determine if NS is actually a member of the central pattern generator or a regulatory element.
Collapse
Affiliation(s)
- Mariano J Rodriguez
- Ciudad Universitaria, Pabellón II, piso 2, CABA 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
37
|
Buchman AS, Bennett DA. Loss of motor function in preclinical Alzheimer's disease. Expert Rev Neurother 2011; 11:665-76. [PMID: 21539487 DOI: 10.1586/ern.11.57] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Accumulating evidence suggests that Alzheimer's disease (AD) has a long preclinical phase, during which time its characteristic pathology accumulates and patient function declines, but symptoms are insufficient to warrant a clinical diagnosis of dementia. There have been increasing reports of noncognitive symptoms, including loss of motor function, reported to be associated with incident AD. To understand the link between motor function and preclinical AD, this article examines: our understanding of motor function and its clinical assessment in cohort studies; the relationship of motor function and loss of cognition in older persons; risk factors for cognitive and motor decline; and the relation of post-mortem indices of AD and motor function prior to death. Together, these data suggest that age-related cognitive and motor decline may share a common causation. Furthermore, individuals with a clinical diagnosis of AD may represent the 'tip of the iceberg', since AD pathology may also account for a substantial proportion of cognitive and motor dysfunction currently considered 'normal aging' in older persons without dementia. Thus, AD may have a much larger impact on the health and wellbeing of our aging population.
Collapse
Affiliation(s)
- Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina, Suite 1028, Chicago, IL 60612, USA.
| | | |
Collapse
|
38
|
Tolambiya A, Thomas E, Chiovetto E, Berret B, Pozzo T. An ensemble analysis of electromyographic activity during whole body pointing with the use of support vector machines. PLoS One 2011; 6:e20732. [PMID: 21814541 PMCID: PMC3144191 DOI: 10.1371/journal.pone.0020732] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 05/10/2011] [Indexed: 01/07/2023] Open
Abstract
We explored the use of support vector machines (SVM) in order to analyze the ensemble activities of 24 postural and focal muscles recorded during a whole body pointing task. Because of the large number of variables involved in motor control studies, such multivariate methods have much to offer over the standard univariate techniques that are currently employed in the field to detect modifications. The SVM was used to uncover the principle differences underlying several variations of the task. Five variants of the task were used. An unconstrained reaching, two constrained at the focal level and two at the postural level. Using the electromyographic (EMG) data, the SVM proved capable of distinguishing all the unconstrained from the constrained conditions with a success of approximately 80% or above. In all cases, including those with focal constraints, the collective postural muscle EMGs were as good as or better than those from focal muscles for discriminating between conditions. This was unexpected especially in the case with focal constraints. In trying to rank the importance of particular features of the postural EMGs we found the maximum amplitude rather than the moment at which it occurred to be more discriminative. A classification using the muscles one at a time permitted us to identify some of the postural muscles that are significantly altered between conditions. In this case, the use of a multivariate method also permitted the use of the entire muscle EMG waveform rather than the difficult process of defining and extracting any particular variable. The best accuracy was obtained from muscles of the leg rather than from the trunk. By identifying the features that are important in discrimination, the use of the SVM permitted us to identify some of the features that are adapted when constraints are placed on a complex motor task.
Collapse
Affiliation(s)
- Arvind Tolambiya
- Université de Bourgogne, Campus Universitaire, BP 27877, F-21078 Dijon, France, INSERM, U887, Motricité-Plasticité, Dijon, F-21078, France
| | - Elizabeth Thomas
- Université de Bourgogne, Campus Universitaire, BP 27877, F-21078 Dijon, France, INSERM, U887, Motricité-Plasticité, Dijon, F-21078, France
- * E-mail:
| | - Enrico Chiovetto
- Section for Computational Sensomotorics, Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Centre for Integrative Neuroscience, University Clinic Tübingen, Tübingen, Germany
| | | | - Thierry Pozzo
- Université de Bourgogne, Campus Universitaire, BP 27877, F-21078 Dijon, France, INSERM, U887, Motricité-Plasticité, Dijon, F-21078, France
- Italian Institute of Technology, Genoa, Italy
- IUF, Université de Bourgogne, Campus Universitaire, BP 27877, F-21078 Dijon, France
| |
Collapse
|
39
|
Aoi S, Yamashita T, Tsuchiya K. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:061909. [PMID: 21797405 DOI: 10.1103/physreve.83.061909] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/18/2011] [Indexed: 05/12/2023]
Abstract
We investigated the dynamics of quadrupedal locomotion by constructing a simple quadruped model that consists of a body mechanical model and an oscillator network model. The quadruped model has front and rear bodies connected by a waist joint with a torsional spring and damper system and four limbs controlled by command signals from the oscillator network model. The simulation results reveal that the quadruped model produces various gait patterns through dynamic interactions among the body mechanical system, the oscillator network system, and the environment. They also show that it undergoes a gait transition induced by changes in the waist joint stiffness and the walking speed. In addition, the gait pattern transition exhibits a hysteresis similar to that observed in human and animal locomotion. We examined the hysteresis mechanism from a dynamic viewpoint.
Collapse
Affiliation(s)
- Shinya Aoi
- Deptartment of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
40
|
Hemami H, Dariush B. Control of constraint forces and trajectories in a rich sensory and actuation environment. Math Biosci 2010; 228:171-84. [DOI: 10.1016/j.mbs.2010.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 07/22/2010] [Accepted: 10/01/2010] [Indexed: 11/16/2022]
|
41
|
AuYong N, Ollivier-Lanvin K, Lemay MA. Preferred locomotor phase of activity of lumbar interneurons during air-stepping in subchronic spinal cats. J Neurophysiol 2010; 105:1011-22. [PMID: 21084683 DOI: 10.1152/jn.00523.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal locomotor circuits are intrinsically capable of driving a variety of behaviors such as stepping, scratching, and swimming. Based on an observed rostrocaudal wave of activity in the motoneuronal firing during locomotor tasks, the traveling-wave hypothesis proposes that spinal interneuronal firing follows a similar rostrocaudal pattern of activation, suggesting the presence of spatially organized interneuronal modules within the spinal motor system. In this study, we examined if the spatial organization of the lumbar interneuronal activity patterns during locomotor activity in the adult mammalian spinal cord was consistent with a traveling-wave organizational scheme. The activity of spinal interneurons within the lumbar intermediate zone was examined during air-stepping in subchronic spinal cats. The preferred phase of interneuronal activity during a step cycle was determined using circular statistics. We found that the preferred phases of lumbar interneurons from both sides of the cord were evenly distributed over the entire step cycle with no indication of functional groupings. However, when units were subcategorized according to spinal hemicords, the preferred phases of units on each side largely fell around the period of extensor muscle activity on each side. In addition, there was no correlation between the preferred phases of units and their rostrocaudal locations along the spinal cord with preferred phases corresponding to both flexion and extension phases of the step cycle found at every rostrocaudal level of the cord. These results are consistent with the hypothesis that interneurons operate as part of a longitudinally distributed network rather than a rostrocaudally organized traveling-wave network.
Collapse
Affiliation(s)
- Nicholas AuYong
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
42
|
Fautrelle L, Ballay Y, Bonnetblanc F. Muscular synergies during motor corrections: investigation of the latencies of muscle activities. Behav Brain Res 2010; 214:428-36. [PMID: 20600349 DOI: 10.1016/j.bbr.2010.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/02/2010] [Accepted: 06/13/2010] [Indexed: 11/26/2022]
Abstract
To reduce the complexity of muscular control, a small number of muscular activations are combined to produce an infinity of movements. This concept of muscle synergies has been widely investigated, mainly by means of principal component analyses (PCA) in the case of unperturbed movements. However, reaching movements can be altered at any time if the target location is changed during their execution. In this case, PCA does not precisely measure the latencies of muscles activities. We develop here a simple method to investigate how a random target jump toward a single location induced motor corrections in the whole musculature by precisely determining the latencies of muscle activities during a complex pointing movement. Our main result demonstrated that both initiation times together as well as correction times together were strongly correlated for some pairs of muscles, independently of their occurrences during the motor sequence and independently of the location of the muscles at the anatomical level. This study thus provides a simple method to investigate the latencies of muscular activities and the way they are correlated between certain muscles to stress the muscular synergies involved in the movement. It also suggests that the CNS re-programs a new synergy after the target jumps in order to correct the on-going reaching movement. This latter corrective synergy involves the control of more muscles together compared to that used to initiate the movement. At the level of the Primary Motor Cortice (M1), muscles appear to be controlled as a coupled functional system, rather than individually and separately.
Collapse
Affiliation(s)
- Lilian Fautrelle
- Université de Bourgogne, Dijon, Campus Universitaire, UFR STAPS, BP 27877, F-21078 Dijon, France
| | | | | |
Collapse
|
43
|
Ivanenko YP, Dominici N, Daprati E, Nico D, Cappellini G, Lacquaniti F. Locomotor body scheme. Hum Mov Sci 2010; 30:341-51. [PMID: 21453667 DOI: 10.1016/j.humov.2010.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/08/2010] [Accepted: 04/26/2010] [Indexed: 11/25/2022]
Abstract
The concept of body schema has been introduced and widely discussed in the literature to explain various clinical observations and distortions in the body and space representation. Here we address the role of body schema related information in multi-joint limb motion. The processing of proprioceptive information may differ significantly in static and dynamic conditions since in the latter case the control system may employ specific dynamic rules and constraints. Accordingly, the perception of movement, e.g., estimation of step length and walking distance, may rely on a priori knowledge about intrinsic dynamics of limb segment motion and inherent relationships between gait parameters and body proportions. The findings are discussed in the general framework of space and body movement representation and suggest the existence of a dynamic locomotor body schema used for controlling step length and path estimation.
Collapse
Affiliation(s)
- Y P Ivanenko
- Department of Neuromotor Physiology, Santa Lucia Foundation, via Ardeatina 306, 00179 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Equilibrium constraints do not affect the timing of muscular synergies during the initiation of a whole body reaching movement. Exp Brain Res 2010; 203:147-58. [DOI: 10.1007/s00221-010-2219-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
45
|
Dominici N, Ivanenko YP, Cappellini G, Zampagni ML, Lacquaniti F. Kinematic strategies in newly walking toddlers stepping over different support surfaces. J Neurophysiol 2010; 103:1673-84. [PMID: 20089810 DOI: 10.1152/jn.00945.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In adults, locomotor movements are accommodated to various support surface conditions by means of specific anticipatory locomotor adjustments and changes in the intersegmental coordination. Here we studied the kinematic strategies of toddlers at the onset of independent walking when negotiating various support surface conditions: stepping over an obstacle, walking on an inclined surface, and on a staircase. Generally, toddlers could perform these tasks only when supported by the arm. They exhibited strategies very different from those of the adults. Although adults maintained walking speed roughly constant, toddlers markedly accelerated when walking downhill or downstairs and decelerated when walking uphill or upstairs. Their coordination pattern of thigh-shank-foot elevation angles exhibited greater inter-trial variability than that in adults, but it did not undergo the systematic change as a function of task that was present in adults. Thus the intersegmental covariance plane rotated across tasks in adults, whereas its orientation remained roughly constant in toddlers. In contrast with the adults, the toddlers often tended to place the foot onto the obstacle or across the edges of the stairs. We interpret such foot placements as part of a haptic exploratory repertoire and we argue that the maintenance of a roughly constant planar covariance--irrespective of the surface inclination and height--may be functional to the exploratory behavior. The latter notion is consistent with the hypothesis proposed decades ago by Bernstein that, when humans start to learn a skill, they may restrict the number of degrees of freedom to reduce the size of the search space and simplify the coordination.
Collapse
Affiliation(s)
- Nadia Dominici
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
46
|
Rhythmic muscular activation pattern for fast figure-eight movement. Clin Neurophysiol 2010; 121:754-65. [PMID: 20075001 DOI: 10.1016/j.clinph.2009.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To address the question of how the CNS generates muscle activation patterns for complex gestures, we have chosen to study a figure-eight movement. We hypothesized that the well defined rhythmic aspect of this figure will provide further insights into the temporal features of multi-muscular commands. METHODS Subjects performed, as fast as possible, figure-eights initiated in the center of the figure with 4 different initial directions and 2 positions of the shoulder. We extracted the temporal modulation of the EMG patterns by calculating conjugate cross-correlation functions. RESULTS (1) The muscular command was tuned with respect to the rotational direction of the figure-eight, (2) two sets of synergistic muscles acted in a reciprocal mode, and (3) these reciprocal commands presented an invariant temporal correlation with the spatial component of the velocity having the highest frequency. CONCLUSION Our results suggest that the rhythmic features of certain drawing movements favor the partitioning of the muscles into synergistic groups acting in a reciprocal mode. The inclusion of an individual muscle in one group or the other takes into account the expected number of changes of direction in the movement as a whole. SIGNIFICANCE Muscular temporal synergies may depend on the rhythmic features of the trajectory.
Collapse
|
47
|
Cappellini G, Ivanenko YP, Dominici N, Poppele RE, Lacquaniti F. Motor patterns during walking on a slippery walkway. J Neurophysiol 2009; 103:746-60. [PMID: 19955283 DOI: 10.1152/jn.00499.2009] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Friction and gravity represent two basic physical constraints of terrestrial locomotion that affect both motor patterns and the biomechanics of bipedal gait. To provide insights into the spatiotemporal organization of the motor output in connection with ground contact forces, we studied adaptation of human gait to steady low-friction conditions. Subjects walked along a slippery walkway (7 m long; friction coefficient approximately 0.06) or a normal, nonslippery floor at a natural speed. We recorded gait kinematics, ground reaction forces, and bilateral electromyographic (EMG) activity of 16 leg and trunk muscles and we mapped the recorded EMG patterns onto the spinal cord in approximate rostrocaudal locations of the motoneuron (MN) pools to characterize the spatiotemporal organization of the motor output. The results revealed several idiosyncratic features of walking on the slippery surface. The step length, cycle duration, and horizontal shear forces were significantly smaller, the head orientation tended to be stabilized in space, whereas arm movements, trunk rotations, and lateral trunk inclinations considerably increased and foot motion and gait kinematics resembled those of a nonplantigrade gait. Furthermore, walking on the slippery surface required stabilization of the hip and of the center-of-body mass in the frontal plane, which significantly improved with practice. Motor patterns were characterized by an enhanced (roughly twofold) level of MN activity, substantial decoupling of anatomical synergists, and the absence of systematic displacements of the center of MN activity in the lumbosacral enlargement. Overall, the results show that when subjects are confronted with unsteady surface conditions, like the slippery floor, they adopt a gait mode that tends to keep the COM centered over the supporting limbs and to increase limb stiffness. We suggest that this behavior may represent a distinct gait mode that is particularly suited to uncertain surface conditions in general.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, Scientific Institute Foundation Santa Lucia, 00179 Rome, Italy.
| | | | | | | | | |
Collapse
|
48
|
Giszter SF, Hart CB, Silfies SP. Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man. Exp Brain Res 2009; 200:283-306. [PMID: 19838690 DOI: 10.1007/s00221-009-2016-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022]
Affiliation(s)
- Simon F Giszter
- Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
49
|
Selionov VA, Ivanenko YP, Solopova IA, Gurfinkel VS. Tonic Central and Sensory Stimuli Facilitate Involuntary Air-Stepping in Humans. J Neurophysiol 2009; 101:2847-58. [DOI: 10.1152/jn.90895.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Air-stepping can be used as a model for investigating rhythmogenesis and its interaction with sensory input. Here we show that it is possible to entrain involuntary rhythmic movement patterns in healthy humans by using different kinds of stimulation techniques. The subjects lay on their sides with one or both legs suspended, allowing low-friction horizontal rotation of the limb joints. To evoke involuntary stepping of the suspended leg, either we used continuous muscle vibration, electrical stimulation of the superficial peroneal or sural nerves, the Jendrassik maneuver, or we exploited the postcontraction state of neuronal networks (Kohnstamm phenomenon). The common feature across all stimulations was that they were tonic. Air-stepping could be elicited by most techniques in about 50% of subjects and involved prominent movements at the hip and the knee joint (∼40–70°). Typically, however, the ankle joint was not involved. Minimal loading forces (4–25 N) applied constantly to the sole (using a long elastic cord) induced noticeable (∼5–20°) ankle-joint-angle movements. The aftereffect of a voluntary long-lasting (30-s) contraction in the leg muscles featured alternating rhythmic leg movements that lasted for about 20–40 s, corresponding roughly to a typical duration of the postcontraction activity in static conditions. The Jendrassik maneuver per se did not evoke air-stepping. Nevertheless, it significantly prolonged rhythmic leg movements initiated manually by an experimenter or by a short (5-s) period of muscle vibration. Air-stepping of one leg could be evoked in both forward and backward directions with frequent spontaneous transitions, whereas involuntary alternating two-legged movements were more stable (no transitions). The hypothetical role of tonic influences, contact forces, and bilateral coordination in rhythmogenesis is discussed. The results overall demonstrated that nonspecific tonic drive may cause air-stepping and the characteristics and stability of the evoked pattern depended on the sensory input.
Collapse
|
50
|
Abstract
Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths.
Collapse
Affiliation(s)
- V. Martin
- Institut für Neuroinformatik, Ruhr-Universität Bochum NRW 44801, Germany
| | - J. P. Scholz
- Department of Physical Therapy and Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, U.S.A
| | - G. Schöner
- Institut für Neuroinformatik, Ruhr-Universität Bochum NRW 44801, Germany
| |
Collapse
|