1
|
Yang CM, Lee IT, Hsiao LD, Yu ZY, Yang CC. Rhamnetin Prevents Bradykinin-Induced Expression of Matrix Metalloproteinase-9 in Rat Brain Astrocytes by Suppressing Protein Kinase-Dependent AP-1 Activation. Biomedicines 2023; 11:3198. [PMID: 38137419 PMCID: PMC10740693 DOI: 10.3390/biomedicines11123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Bradykinin (BK) has been recognized as a stimulant for matrix metalloproteinase (MMP)-9 expression, contributing to neuroinflammation. Modulating the BK/MMP-9 pathway offers potential in the treatment of neuroinflammatory disorders. Rhamnetin (RNT), a flavonoid compound known for its antioxidant and anti-inflammatory effects, has shown promise. However, the specific mechanisms through which RNT inhibits BK-induced MMP-9 expression remain unclear. Therefore, this study aims to delve into the intricate mechanisms underlying this process. Here, we initially demonstrated that RNT effectively attenuated BK-induced MMP-9 expression and its associated cell migration in rat brain astrocyte-1 (RBA-1) cells. Further investigation revealed that BK-driven MMP-9 protein, mRNA, and promoter activity linked to cell migration relied on c-Src, Pyk2, EGFR, PDGFR, PI3K/Akt, JNK1/2, and c-Jun. This was validated by the inhibition of these effects through specific inhibitors, a finding substantiated by the introduction of siRNAs targeting these signaling molecules. Notably, the phosphorylated levels of these signaling components induced by BK were significantly reduced by their respective inhibitors and RNT, underscoring the inhibitory role of RNT in this process. These findings indicate that, in RBA-1 cells, RNT diminishes the heightened induction of MMP-9 triggered by BK through the inhibition of c-Src/Pyk2/PDGFR and EGFR/PI3K/Akt/JNK1/2-dependent AP-1 activation. This suggests that RNT holds promise as a potential therapeutic approach for addressing neuroinflammation in the brain.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-M.Y.); (L.-D.H.); (Z.-Y.Y.)
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-M.Y.); (L.-D.H.); (Z.-Y.Y.)
| | - Zih-Yao Yu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-M.Y.); (L.-D.H.); (Z.-Y.Y.)
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan 333008, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| |
Collapse
|
2
|
Guo Y, Sun CK, Tang L, Tan MS. Microglia PTK2B/Pyk2 in the Pathogenesis of Alzheimer's Disease. Curr Alzheimer Res 2023; 20:692-704. [PMID: 38321895 DOI: 10.2174/0115672050299004240129051655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Alzheimer's disease (AD) is a highly hereditary disease with complex genetic susceptibility factors. Extensive genome-wide association studies have established a distinct susceptibility link between the protein tyrosine kinase 2β (PTK2B) gene and late-onset Alzheimer's disease (LOAD), but the specific pathogenic mechanisms remain incompletely understood. PTK2B is known to be expressed in neurons, and recent research has revealed its more important significance in microglia. Elucidating the role of PTK2B high expression in microglia in AD's progression is crucial for uncovering novel pathogenic mechanisms of the disease. Our review of existing studies suggests a close relationship between PTK2B/proline-rich tyrosine kinase 2 (Pyk2) and tau pathology, and this process might be β-amyloid (Aβ) dependence. Pyk2 is hypothesized as a pivotal target linking Aβ and tau pathologies. Concurrently, Aβ-activated Pyk2 participates in the regulation of microglial activation and its proinflammatory functions. Consequently, it is reasonable to presume that Pyk2 in microglia contributes to amyloid-induced tau pathology in AD via a neuroinflammatory pathway. Furthermore, many things remain unclear, such as identifying the specific pathways that lead to the release of downstream inflammatory factors due to Pyk2 phosphorylation and whether all types of inflammatory factors can activate neuronal kinase pathways. Additionally, further in vivo experiments are essential to validate this hypothesized pathway. Considering PTK2B/Pyk2's potential role in AD pathogenesis, targeting this pathway may offer innovative and promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Cheng-Kun Sun
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Lian Tang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
Momin AA, Mendes T, Barthe P, Faure C, Hong S, Yu P, Kadaré G, Jaremko M, Girault JA, Jaremko Ł, Arold ST. PYK2 senses calcium through a disordered dimerization and calmodulin-binding element. Commun Biol 2022; 5:800. [PMID: 35945264 PMCID: PMC9363500 DOI: 10.1038/s42003-022-03760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity. Protein tyrosine kinase 2-beta is shown to function as a sensor and effector of cellular calcium influx through self-association.
Collapse
Affiliation(s)
- Afaque A Momin
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tiago Mendes
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Philippe Barthe
- Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France
| | - Camille Faure
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piao Yu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gress Kadaré
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Mariusz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Łukasz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France.
| |
Collapse
|
4
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
5
|
Huang C, Ou R, Chen X, Zhang Y, Li J, Liang Y, Zhu X, Liu L, Li M, Lin D, Qiu J, Liu G, Zhang L, Wu Y, Tang H, Liu Y, Liang L, Ding Y, Liao W. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:304. [PMID: 34583750 PMCID: PMC8477524 DOI: 10.1186/s13046-021-02108-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Background Tumor-associated macrophages (TAMs) are key regulators of the complex interplay between cancer and the immune microenvironment. Tumor cell-derived spondin 2 (SPON2) is an extracellular matrix glycoprotein that has complicated roles in recruitment of macrophages and neutrophils during inflammation. Overexpression of SPON2 has been shown to promote tumor cell migration in colorectal cancer (CRC). However, the mechanism by which SPON2 regulates the accumulation of TAMs in the tumor microenvironment (TME) of CRC is unknown. Methods Immunohistochemistry was used to examine SPON2 expression in clinical CRC tissues. In vitro migration assays, transendothelial migration assays (iTEM), and cell adhesion assays were used to investigate the effects of SPON2 on monocyte/macrophage migration. Subcutaneous tumor formation and orthotopic implantation assays were performed in C57 BL/6 mice to confirm the effects of SPON2 on TAM infiltration in tumors. Results SPON2 expression is positively correlated with M2-TAM infiltration in clinical CRC tumors and poor prognosis of CRC patients. In addition, SPON2 promotes cytoskeletal remodeling and transendothelial migration of monocytes by activating integrin β1/PYK2 axis. SPON2 may indirectly induce M2-polarization through upregulating cytokines including IL10, CCL2 and CSF1 expression in tumor cells. Blocking M2 polarization and Macrophage depletion inhibited the SPON2-induced tumors growth and invasion. Furthermore, blocking the SPON2/integrin β1/PYK2 axis impairs the transendothelial migration of monocytes and cancer-promoting functions of TAMs in vivo. Conclusions Our findings demonstrate that SPON2-driven M2-TAM infiltration plays an important role during CRC tumor growth and metastasis. SPON2 may be a valuable biomarker guiding the use of macrophage-targeting strategies and a potential therapeutic target in advanced CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02108-0.
Collapse
Affiliation(s)
- Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ruizhang Ou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xiaoning Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yihao Liang
- Department of Orthopedist, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Xiaohui Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Lei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Dagui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Lingjie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yuanyuan Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Huiyi Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanmin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
6
|
Zheng J, Suo L, Zhou Y, Jia L, Li J, Kuang Y, Cui D, Zhang X, Wu Q. Pyk2 suppresses contextual fear memory in an autophosphorylation-independent manner. J Mol Cell Biol 2021; 13:808-821. [PMID: 34529077 PMCID: PMC8782590 DOI: 10.1093/jmcb/mjab057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Clustered protocadherins (Pcdhs) are a large family of cadherin-like cell adhesion proteins that are central for neurite self-avoidance and neuronal connectivity in the brain. Their downstream non-receptor tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2, also known as Ptk2b, Cakb, Raftk, Fak2, and Cadtk) is predominantly expressed in the hippocampus. We constructed Pyk2 null mouse lines and found that these mutant mice showed enhancement in contextual fear memory, without any change in auditory-cued and spatial-referenced learning and memory. In addition, by preparing Y402F mutant mice, we observed that Pyk2 suppressed contextual fear memory in an autophosphorylation-independent manner. Moreover, using high-throughput RNA sequencing, we found that immediate early genes, such as Npas4, cFos, Zif268/Egr1, Arc, and Nr4a1, were enhanced in Pyk2 null mice. We further showed that Pyk2 disruption affected pyramidal neuronal complexity and spine dynamics. Thus, we demonstrated that Pyk2 is a novel fear memory suppressor molecule and Pyk2 null mice provide a model for understanding fear-related disorders. These findings have interesting implications regarding dysregulation of the Pcdh‒Pyk2 axis in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jin Zheng
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Lun Suo
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuxiao Zhou
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Liling Jia
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Jingwei Li
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xuehong Zhang
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| |
Collapse
|
7
|
Rajani V, Sengar AS, Salter MW. Src and Fyn regulation of NMDA receptors in health and disease. Neuropharmacology 2021; 193:108615. [PMID: 34051267 DOI: 10.1016/j.neuropharm.2021.108615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
The Src family kinases (SFKs) are cytoplasmic non-receptor tyrosine kinases involved in multiple signalling pathways. In the central nervous system (CNS), SFKs are key regulators of N-methyl-d-aspartate receptor (NMDAR) function and major points of convergence for neuronal transduction pathways. Physiological upregulation of NMDAR activity by members of the SFKs, namely Src and Fyn, is crucial for induction of plasticity at Schaffer collateral-CA1 synapses of the hippocampus. Aberrant SFK regulation of NMDARs is implicated in several pathological conditions in the CNS including schizophrenia and pain hypersensitivity. Here, evidence is presented to highlight the current understanding of the intermolecular interactions of SFKs within the NMDAR macromolecular complex, the upstream regulators of SFK activity on NMDAR function and the role Src and Fyn have in synaptic plasticity and metaplasticity. The targeting of SFK protein-protein interactions is discussed as a potential therapeutic strategy to restore signalling activity underlying glutamatergic dysregulation in CNS disease pathophysiology.
Collapse
Affiliation(s)
- Vishaal Rajani
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
8
|
Impaired inhibitory GABAergic synaptic transmission and transcription studied in single neurons by Patch-seq in Huntington's disease. Proc Natl Acad Sci U S A 2021; 118:2020293118. [PMID: 33952696 DOI: 10.1073/pnas.2020293118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patch-sequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant Htt decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons. In support of a pivotal role for epigenetic mechanisms in HD pathophysiology, we found that inhibiting histone deacetylase 1/3 activities rectified several functional and morphological deficits and alleviated the aberrant transcriptional profiles in mutant Htt neurons. With this study, we demonstrate that Patch-seq technology can be applied both to better understand molecular mechanisms underlying a complex neurological disease at the single-cell level and to provide a platform for screening for therapeutics for the disease.
Collapse
|
9
|
Choi MR, Jin YB, Kim HN, Chai YG, Im CN, Lee SR, Kim DJ. Gene expression in the striatum of cynomolgus monkeys after chronic administration of cocaine and heroin. Basic Clin Pharmacol Toxicol 2021; 128:686-698. [PMID: 33404192 DOI: 10.1111/bcpt.13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 01/16/2023]
Abstract
Cocaine and heroin cause impairment of neural plasticity in the brain including striatum. This study aimed to identify genes differentially expressed in the striatum of cynomolgus monkeys in response to cocaine and heroin. After chronic administration of cocaine and heroin in the monkeys, we performed large-scale transcriptome profiling in the striatum using RNA-Seq technology and analysed functional annotation. We found that 547 and 1238 transcripts were more than 1.5-fold up- or down-regulated in cocaine- and heroin-treated groups, respectively, compared to the control group, and 3432 transcripts exhibited differential expression between cocaine- and heroin-treated groups. Functional annotation analysis indicated that genes associated with nervous system development (NAGLU, MOBP and TTL7) and stress granule disassembly (KIF5B and KLC1) were differentially expressed in the cocaine-treated group compared to the control group, whereas gene associated with neuron apoptotic process (ERBB3) was differentially expressed in the heroin-treated group. In addition, IPA network analysis indicated that genes (TRAF6 and TRAF3IP2) associated with inflammation were increased by the chronic administration of cocaine and heroin. These results provide insight into the correlated molecular mechanisms as well as the upregulation and down-regulation of genes in the striatum after chronic exposure to cocaine and heroin.
Collapse
Affiliation(s)
- Mi Ran Choi
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Na Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Chang-Nim Im
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Gramlich OW, Brown AJ, Godwin CR, Chimenti MS, Boland LK, Ankrum JA, Kardon RH. Systemic Mesenchymal Stem Cell Treatment Mitigates Structural and Functional Retinal Ganglion Cell Degeneration in a Mouse Model of Multiple Sclerosis. Transl Vis Sci Technol 2020; 9:16. [PMID: 32855863 PMCID: PMC7422913 DOI: 10.1167/tvst.9.8.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose The purpose of this study was to determine mesenchymal stem cell (MSC) therapy efficacy on rescuing the visual system in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) and to provide new mechanistic insights. Methods EAE was induced in female C57BL6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG)35–55, complete Freund's adjuvant, and pertussis toxin. The findings were compared to sham-immunized mice. Half of the EAE mice received intraperitoneally delivered stem cells (EAE + MSC). Clinical progression was monitored according to a five-point EAE scoring scheme. Pattern electroretinogram (PERG) and retinal nerve fiber layer (RNFL) thickness were measured 32 days after induction. Retinas were harvested to determine retinal ganglion cell (RGC) density and prepared for RNA-sequencing. Results EAE animals that received MSC treatment seven days after EAE induction showed significantly lower motor-sensory impairment, improvement in the PERG amplitude, and preserved RNFL. Analysis of RNA-sequencing data demonstrated statistically significant differences in gene expression in the retina of MSC-treated EAE mice. Differentially expressed genes were enriched for pathways involved in endoplasmic reticulum stress, endothelial cell differentiation, HIF-1 signaling, and cholesterol transport in the MSC-treated EAE group. Conclusions Systemic MSC treatment positively affects RGC function and survival in EAE mice. Better cholesterol handling by increased expression of Abca1, the cholesterol efflux regulatory protein, paired with the resolution of HIF-1 signaling activation might explain the improvements seen in PERG of EAE animals after MSC treatment. Translational Relevance Using MSC therapy in a mouse model of MS, we discovered previously unappreciated biochemical pathways associated with RGC neuroprotection, which have the potential to be pharmacologically targeted as a new treatment regimen.
Collapse
Affiliation(s)
- Oliver W Gramlich
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Alexander J Brown
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA.,Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cheyanne R Godwin
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering College, The University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering College, The University of Iowa, Iowa City, IA, USA
| | - Randy H Kardon
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
11
|
Cong Y, Wu H, Bian X, Xie Q, Lyu Q, Cui J, Suo L, Kuang Y. Ptk2b deletion improves mice folliculogenesis and fecundity via inhibiting follicle loss mediated by Erk pathway. J Cell Physiol 2020; 236:1043-1053. [PMID: 32608523 DOI: 10.1002/jcp.29914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/20/2020] [Indexed: 11/09/2022]
Abstract
Ptk2b has been found playing critical roles in oocyte maturation and subsequent fertilization in vitro. But what is the exact in vivo function in reproduction still elusive. Here, by constructing Ptk2b mutant mice, we found Ptk2b was not essential for mice fertility, unexpectedly, contrary to previously reported in vitro findings, we found Ptk2b ablation significantly improved female fecundity. Follicle counting indicated that the number of primordial follicles and growing follicles in matured mice was significantly increased in the absence of Ptk2b, whereas the primordial follicle formation showed no defects. We also found this regulation was in an autophosphorylation independent pathway, as autophosphorylation site mutant mice (PTK2BY402F ) show no phenotype in female fertility. Further biochemistry studies revealed that Ptk2b ablation promotes folliculogenesis via Erk pathway mediate follicle survival. Together, we found a novel biological function of Ptk2b in folliculogenesis, which could be potentially used as a therapeutic target for corresponding infertility.
Collapse
Affiliation(s)
- Yanyan Cong
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejiao Bian
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xie
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Castillo RL, Ibacache M, Cortínez I, Carrasco-Pozo C, Farías JG, Carrasco RA, Vargas-Errázuriz P, Ramos D, Benavente R, Torres DH, Méndez A. Dexmedetomidine Improves Cardiovascular and Ventilatory Outcomes in Critically Ill Patients: Basic and Clinical Approaches. Front Pharmacol 2020; 10:1641. [PMID: 32184718 PMCID: PMC7058802 DOI: 10.3389/fphar.2019.01641] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2-adrenergic agonist with sedative and analgesic properties, with minimal respiratory effects. It is used as a sedative in the intensive care unit and the operating room. The opioid-sparing effect and the absence of respiratory effects make dexmedetomidine an attractive adjuvant drug for anesthesia in obese patients who are at an increased risk for postoperative respiratory complications. The pharmacodynamic effects on the cardiovascular system are known; however the mechanisms that induce cardioprotection are still under study. Regarding the pharmacokinetics properties, this drug is extensively metabolized in the liver by the uridine diphosphate glucuronosyltransferases. It has a relatively high hepatic extraction ratio, and therefore, its metabolism is dependent on liver blood flow. This review shows, from a basic clinical approach, the evidence supporting the use of dexmedetomidine in different settings, from its use in animal models of ischemia-reperfusion, and cardioprotective signaling pathways. In addition, pharmacokinetics and pharmacodynamics studies in obese subjects and the management of patients subjected to mechanical ventilation are described. Moreover, the clinical efficacy of delirium incidence in patients with indication of non-invasive ventilation is shown. Finally, the available evidence from DEX is described by a group of Chilean pharmacologists and clinicians who have worked for more than 10 years on DEX.
Collapse
Affiliation(s)
- Rodrigo L Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Unidad de Paciente Crítico, Hospital del Salvador, Santiago, Chile
| | - Mauricio Ibacache
- Programa de Farmacología y Toxicología & División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Cortínez
- Programa de Farmacología y Toxicología & División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jorge G Farías
- Departmento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar, Chile
| | - Rodrigo A Carrasco
- Departamento de Cardiología, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Patricio Vargas-Errázuriz
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago, Chile.,Unidad de Paciente Crítico Adulto, Clínica Universidad de Los Andes, Santiago, Chile.,Unidad de Paciente Crítico, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Daniel Ramos
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rafael Benavente
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Henríquez Torres
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal Méndez
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Wang W, Jia Y, Pham DT, Palmer LC, Jung KM, Cox CD, Rumbaugh G, Piomelli D, Gall CM, Lynch G. Atypical Endocannabinoid Signaling Initiates a New Form of Memory-Related Plasticity at a Cortical Input to Hippocampus. Cereb Cortex 2019; 28:2253-2266. [PMID: 28520937 DOI: 10.1093/cercor/bhx126] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023] Open
Abstract
Endocannabinoids (ECBs) depress transmitter release at sites throughout the brain. Here, we describe another form of ECB signaling that triggers a novel form of long-term potentiation (LTP) localized to the lateral perforant path (LPP) which conveys semantic information from cortex to hippocampus. Two cannabinoid CB1 receptor (CB1R) signaling cascades were identified in hippocampus. The first is pregnenolone sensitive, targets vesicular protein Munc18-1 and depresses transmitter release; this cascade is engaged by CB1Rs in Schaffer-Commissural afferents to CA1 but not in the LPP, and it does not contribute to LTP. The second cascade is pregnenolone insensitive and LPP specific; it entails co-operative CB1R/β1-integrin signaling to effect synaptic potentiation via stable enhancement of transmitter release. The latter cascade is engaged during LPP-dependent learning. These results link atypical ECB signaling to the encoding of a fundamental component of episodic memory and suggest a novel route whereby endogenous and exogenous cannabinoids affect cognition.
Collapse
Affiliation(s)
- Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Danielle T Pham
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Linda C Palmer
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Pharmacology, University of California, Irvine, CA, USA.,Department of Biological Chemistry, University of California, Irvine, CA, USA.,Drug Discovery and Development, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
14
|
Afonso P, De Luca P, Carvalho RS, Cortes L, Pinheiro P, Oliveiros B, Almeida RD, Mele M, Duarte CB. BDNF increases synaptic NMDA receptor abundance by enhancing the local translation of Pyk2 in cultured hippocampal neurons. Sci Signal 2019; 12:12/586/eaav3577. [PMID: 31213568 DOI: 10.1126/scisignal.aav3577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of brain-derived neurotrophic factor (BDNF) in long-term synaptic potentiation (LTP) are thought to underlie learning and memory formation and are partly mediated by local protein synthesis. Here, we investigated the mechanisms that mediate BDNF-induced alterations in the synaptic proteome that are coupled to synaptic strengthening. BDNF induced the synaptic accumulation of GluN2B-containing NMDA receptors (NMDARs) and increased the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) in cultured rat hippocampal neurons by a mechanism requiring activation of the protein tyrosine kinase Pyk2 and dependent on cellular protein synthesis. Single-particle tracking using quantum dot imaging revealed that the increase in the abundance of synaptic NMDAR currents correlated with their enhanced stability in the synaptic compartment. Furthermore, BDNF increased the local synthesis of Pyk2 at the synapse, and the observed increase in Pyk2 protein abundance along dendrites of cultured hippocampal neurons was mediated by a mechanism dependent on the ribonucleoprotein hnRNP K, which bound to Pyk2 mRNA and dissociated from it upon BDNF application. Knocking down hnRNP K reduced the BDNF-induced synaptic synthesis of Pyk2 protein, whereas its overexpression enhanced it. Together, these findings indicate that hnRNP K mediates the synaptic distribution of Pyk2 synthesis, and hence the synaptic incorporation of GluN2B-containing NMDARs, induced by BDNF, which may affect LTP and synaptic plasticity.
Collapse
Affiliation(s)
- Pedro Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Pasqualino De Luca
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-790 Coimbra, Portugal
| | - Rafael S Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luísa Cortes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-790 Coimbra, Portugal
| | - Paulo Pinheiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-790 Coimbra, Portugal
| | - Barbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ramiro D Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-790 Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
15
|
Guidetti GF, Torti M, Canobbio I. Focal Adhesion Kinases in Platelet Function and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:857-868. [DOI: 10.1161/atvbaha.118.311787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The focal adhesion kinase family includes 2 homolog members, FAK and Pyk2 (proline-rich tyrosine kinase 2), primarily known for their roles in nucleated cells as regulators of cytoskeletal dynamics and cell adhesion. FAK and Pyk2 are also expressed in megakaryocytes and platelets and are activated by soluble agonists and on adhesion to the subendothelial matrix. Despite high sequence homology and similar molecular organization, FAK and Pyk2 play different roles in platelet function. Whereas FAK serves mostly as a traditional focal adhesion kinase activated downstream of integrins, Pyk2 coordinates multiple signals from different receptors. FAK, but not Pyk2, is involved in megakaryocyte maturation and platelet production. In circulating platelets, FAK is recruited by integrin αIIbβ3 to regulate hemostasis, whereas it plays minimal roles in thrombosis. By contrast, Pyk2 is implicated in platelet activation and is an important regulator of thrombosis. The direct activation of Pyk2 by calcium ions provides a connection between GPCRs (G-protein coupled receptors) and Src family kinases. In this review, we provide the comprehensive overview of >20 years of investigations on the role and regulation of focal adhesion kinases in blood platelets, highlighting common and distinctive features of FAK and Pyk2 in hemostasis and thrombosis.
Collapse
Affiliation(s)
| | - Mauro Torti
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
16
|
Pyk2 in the amygdala modulates chronic stress sequelae via PSD-95-related micro-structural changes. Transl Psychiatry 2019; 9:3. [PMID: 30664624 PMCID: PMC6341095 DOI: 10.1038/s41398-018-0352-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a common disorder with a variety of symptoms including mood alterations, anhedonia, sleep and appetite disorders, and cognitive disturbances. Stressful life events are among the strongest risk factors for developing MDD. At the cellular level, chronic stress results in the modification of dendritic spine morphology and density. Here, we study the role of Pyk2 in the development of depressive-like symptoms induced by a model of chronic unpredictable mild stress (CUMS). Pyk2 is a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the forebrain principal neurons and involved in spine structure and density regulation. We show that Pyk2 knockout mice are less affected to anxiety-like and anhedonia-like phenotypes induced by the CUMS paradigm. Using region-specific knockout, we demonstrate that this phenotype is fully recapitulated by selective Pyk2 inactivation in the amygdala. We also show that in the absence of Pyk2 the spine alterations, PSD-95 clustering, and NMDA receptors changes induced by the CUMS paradigm are prevented. Our results reveal a possible role for Pyk2 in the response to stress and in synaptic markers expression and spine density regulation in the amygdala. We suggest that Pyk2 contributes to stress-induced responses through micro-structural changes and that its deficit may contribute to the resilience to chronic stress.
Collapse
|
17
|
Polis B, Gil-Henn H. Commentary on Giralt et al.: PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer's disease. Exp Neurol 2018; 311:313-317. [PMID: 30171866 DOI: 10.1016/j.expneurol.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the most common cause of dementia and the 6th leading cause of death. Although research has revealed significant information about AD, much is yet to be discovered about the precise biological changes that cause AD and how the disease could be prevented, slowed, or stopped. Accumulating evidence suggests the involvement of the non-receptor proline-rich tyrosine kinase 2 (Pyk2) in AD, but the downstream signaling events triggered by this protein and their implications on the pathology of the disease were unclear until recently. A recent paper by Giralt et al. used genetically depleted and overexpression mouse models to elucidate the role of Pyk2 in AD. Here, we discuss the findings presented in this paper in light of previous information and hypotheses, and suggest interpretations and explanations for this surprising and unexpected phenotype.
Collapse
Affiliation(s)
- Baruh Polis
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
18
|
Dourlen P, Chapuis J, Lambert JC. Using High-Throughput Animal or Cell-Based Models to Functionally Characterize GWAS Signals. CURRENT GENETIC MEDICINE REPORTS 2018; 6:107-115. [PMID: 30147999 PMCID: PMC6096908 DOI: 10.1007/s40142-018-0141-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The advent of genome-wide association studies (GWASs) constituted a breakthrough in our understanding of the genetic architecture of multifactorial diseases. For Alzheimer's disease (AD), more than 20 risk loci have been identified. However, we are now facing three new challenges: (i) identifying the functional SNP or SNPs in each locus, (ii) identifying the causal gene(s) in each locus, and (iii) understanding these genes' contribution to pathogenesis. RECENT FINDINGS To address these issues and thus functionally characterize GWAS signals, a number of high-throughput strategies have been implemented in cell-based and whole-animal models. Here, we review high-throughput screening, high-content screening, and the use of the Drosophila model (primarily with reference to AD). SUMMARY We describe how these strategies have been successfully used to functionally characterize the genes in GWAS-defined risk loci. In the future, these strategies should help to translate GWAS data into knowledge and treatments.
Collapse
Affiliation(s)
- Pierre Dourlen
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Julien Chapuis
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Jean-Charles Lambert
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| |
Collapse
|
19
|
PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer's disease. Exp Neurol 2018; 307:62-73. [PMID: 29803828 DOI: 10.1016/j.expneurol.2018.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/31/2022]
Abstract
Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in synaptic regulation. Human genetic studies associated PTK2B, the gene coding Pyk2, with risk for Alzheimer's disease (AD). We previously showed that Pyk2 is important for hippocampal function, plasticity, and spine structure. However, its potential role in AD is unknown. To address this question we used human brain samples and 5XFAD mice, an amyloid mouse model of AD expressing mutated human amyloid precursor protein and presenilin1. In the hippocampus of 5XFAD mice and in human AD patients' cortex and hippocampus, Pyk2 total levels were normal. However, Pyk2 Tyr-402 phosphorylation levels, reflecting its autophosphorylation-dependent activity, were reduced in 5XFAD mice at 8 months of age but not 3 months. We crossed these mice with Pyk2-/- mice to generate 5XFAD animals devoid of Pyk2. At 8 months the phenotype of 5XFAD x Pyk2-/- double mutant mice was not different from that of 5XFAD. In contrast, overexpression of Pyk2 in the hippocampus of 5XFAD mice, using adeno-associated virus, rescued autophosphorylated Pyk2 levels and improved synaptic markers and performance in several behavioral tasks. Both Pyk2-/- and 5XFAD mice showed an increase of potentially neurotoxic Src cleavage product, which was rescued by Pyk2 overexpression. Manipulating Pyk2 levels had only minor effects on Aβ plaques, which were slightly decreased in hippocampus CA3 region of double mutant mice and increased following overexpression. Our results show that Pyk2 is not essential for the pathogenic effects of human amyloidogenic mutations in the 5XFAD mouse model. However, the slight decrease in plaque number observed in these mice in the absence of Pyk2 and their increase following Pyk2 overexpression suggest a contribution of this kinase in plaque formation. Importantly, a decreased function of Pyk2 was observed in 5XFAD mice, indicated by its decreased autophosphorylation and associated Src alterations. Overcoming this deficit by Pyk2 overexpression improved the behavioral and molecular phenotype of 5XFAD mice. Thus, our results in a mouse model of AD suggest that Pyk2 impairment may play a role in the symptoms of the disease.
Collapse
|
20
|
Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel) 2018; 10:cancers10050139. [PMID: 29738483 PMCID: PMC5977112 DOI: 10.3390/cancers10050139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
Focal adhesion kinase (FAK) and its homologous FAK-related proline-rich tyrosine kinase 2 (Pyk2) contain the same domain, exhibit high sequence homology and are defined as a distinct family of non-receptor tyrosine kinases. This group of kinases plays critical roles in cytoskeletal dynamics and cell adhesion by regulating survival and growth signaling. This review summarizes the physiological and pathological functions of Pyk2 in inflammation and cancers. In particular, overexpression of Pyk2 in cancerous tissues is correlated with poor outcomes. Pyk2 stimulates multiple oncogenic signaling pathways, such as Wnt/β-catenin, PI3K/Akt, MAPK/ERK, and TGF-β/EGFR/VEGF, and facilitates carcinogenesis, migration, invasion, epithelial⁻mesenchymal transition and metastasis. Therefore, Pyk2 is a high-value therapeutic target and has clinical significance.
Collapse
|
21
|
Abstract
We previously developed a model of opioid-induced neuroplasticity in the peripheral terminal of the nociceptor that could contribute to opioid-induced hyperalgesia, type II hyperalgesic priming. Repeated administration of mu-opioid receptor (MOR) agonists, such as DAMGO, at the peripheral terminal of the nociceptor, induces long-lasting plasticity expressed, prototypically as opioid-induced hyperalgesia and prolongation of prostaglandin E2-induced hyperalgesia. In this study, we evaluated the mechanisms involved in the maintenance of type II priming. Opioid receptor antagonist, naloxone, induced hyperalgesia in DAMGO-primed paws. When repeatedly injected, naloxone-induced hyperalgesia, and hyperalgesic priming, supporting the suggestion that maintenance of priming involves changes in MOR signaling. However, the knockdown of MOR with oligodeoxynucleotide antisense did not reverse priming. Mitogen-activated protein kinase and focal adhesion kinase, which are involved in the Src signaling pathway, previously implicated in type II priming, also inhibited the expression, but not maintenance of priming. However, when Src and mitogen-activated protein kinase inhibitors were coadministered, type II priming was reversed, in male rats. A second model of priming, latent sensitization, induced by complete Freund's adjuvant was also reversed, in males. In females, the inhibitor combination was only able to inhibit the expression and maintenance of DAMGO-induced priming when knockdown of G-protein-coupled estrogen receptor 30 (GPR30) in the nociceptor was performed. These findings demonstrate that the maintenance of DAMGO-induced type II priming, and latent sensitization is mediated by an interaction between, Src and MAP kinases, which in females is GPR30 dependent.
Collapse
|
22
|
Sustained Gq-Protein Signaling Disrupts Striatal Circuits via JNK. J Neurosci 2017; 36:10611-10624. [PMID: 27733612 DOI: 10.1523/jneurosci.1192-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/25/2016] [Indexed: 11/21/2022] Open
Abstract
The dorsal striatum is a major input structure of the basal ganglia and plays a key role in the control of vital processes such as motor behavior, cognition, and motivation. The functionality of striatal neurons is tightly controlled by various metabotropic receptors. Whereas the Gs/Gi-protein-dependent tuning of striatal neurons is fairly well known, the precise impact and underlying mechanism of Gq-protein-dependent signals remain poorly understood. Here, using different experimental approaches, especially designer receptor exclusively activated by designer drug (DREADD) chemogenetic technology, we found that sustained activation of Gq-protein signaling impairs the functionality of striatal neurons and we unveil the precise molecular mechanism underlying this process: a phospholipase C/Ca2+/proline-rich tyrosine kinase 2/cJun N-terminal kinase pathway. Moreover, engagement of this intracellular signaling route was functionally active in the mouse dorsal striatum in vivo, as proven by the disruption of neuronal integrity and behavioral tasks. To analyze this effect anatomically, we manipulated Gq-protein-dependent signaling selectively in neurons belonging to the direct or indirect striatal pathway. Acute Gq-protein activation in direct-pathway or indirect-pathway neurons produced an enhancement or a decrease, respectively, of activity-dependent parameters. In contrast, sustained Gq-protein activation impaired the functionality of direct-pathway and indirect-pathway neurons and disrupted the behavioral performance and electroencephalography-related activity tasks controlled by either anatomical framework. Collectively, these findings define the molecular mechanism and functional relevance of Gq-protein-driven signals in striatal circuits under normal and overactivated states. SIGNIFICANCE STATEMENT The dorsal striatum is a major input structure of the basal ganglia and plays a key role in the control of vital processes such as motor behavior, cognition, and motivation. Whereas the Gs/Gi-protein-dependent tuning of striatal neurons is fairly well known, the precise impact and underlying mechanism of Gq-protein-dependent signals remain unclear. Here, we show that striatal circuits can be "turned on" by acute Gq-protein signaling or "turned off" by sustained Gq-protein signaling. Specifically, sustained Gq-protein signaling inactivates striatal neurons by an intracellular pathway that relies on cJun N-terminal kinase. Overall, this study sheds new light onto the molecular mechanism and functional relevance of Gq-protein-driven signals in striatal circuits under normal and overactivated states.
Collapse
|
23
|
Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington's disease model. Nat Commun 2017; 8:15592. [PMID: 28555636 PMCID: PMC5459995 DOI: 10.1038/ncomms15592] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
The structure and function of spines and excitatory synapses are under the dynamic control of multiple signalling networks. Although tyrosine phosphorylation is involved, its regulation and importance are not well understood. Here we study the role of Pyk2, a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the hippocampus. Hippocampal-related learning and CA1 long-term potentiation are severely impaired in Pyk2-deficient mice and are associated with alterations in NMDA receptors, PSD-95 and dendritic spines. In cultured hippocampal neurons, Pyk2 has autophosphorylation-dependent and -independent roles in determining PSD-95 enrichment and spines density. Pyk2 levels are decreased in the hippocampus of individuals with Huntington and in the R6/1 mouse model of the disease. Normalizing Pyk2 levels in the hippocampus of R6/1 mice rescues memory deficits, spines pathology and PSD-95 localization. Our results reveal a role for Pyk2 in spine structure and synaptic function, and suggest that its deficit contributes to Huntington's disease cognitive impairments.
Collapse
|
24
|
Rosenberger AFN, Hilhorst R, Coart E, García Barrado L, Naji F, Rozemuller AJM, van der Flier WM, Scheltens P, Hoozemans JJM, van der Vies SM. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer's Disease Pathology. J Alzheimers Dis 2016; 49:927-43. [PMID: 26519433 PMCID: PMC4927853 DOI: 10.3233/jad-150429] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention.
Collapse
Affiliation(s)
- Andrea F N Rosenberger
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Elisabeth Coart
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | | | - Faris Naji
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Saskia M van der Vies
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Zhang Z, Chu SF, Mou Z, Gao Y, Wang ZZ, Wei GN, Chen NH. Ganglioside GQ1b induces dopamine release through the activation of Pyk2. Mol Cell Neurosci 2015; 71:102-13. [PMID: 26704905 DOI: 10.1016/j.mcn.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022] Open
Abstract
Growing evidence indicates that GQ1b, one of the gangliosides members, contributes to synaptic transmission and synapse formation. Previous studies have shown that GQ1b could enhance depolarization induced neurotransmitter release, while the role of GQ1b in asynchronous release is still largely unknown. Here in our result, we found low concentration of GQ1b, but not GT1b or GD1b (which were generated from GQ1b by plasma membrane-associated sialidases), evoked asynchronous dopamine (DA) release from both clonal rat pheochromocytoma PC12 cells and rat striatal slices significantly. The release peaked at 2 min after GQ1b exposure, and lasted for more than 6 min. This effect was caused by the enhancement of intracellular Ca(2+) and the activation of Pyk2. Inhibition of Pyk2 by PF-431396 (a dual inhibitor of Pyk2 and FAK) or Pyk2 siRNA abolished DA release induced by GQ1b. Moreover, Pyk2 Y402, but not other tyrosine site, was phosphorylated at the peaking time. The mutant of Pyk2 Y402 (Pyk2-Y402F) was built to confirm the essential role of Y402 activation. Further studies revealed that activated Pyk2 stimulated ERK1/2 and p-38, while only the ERK1/2 activation was indispensable for GQ1b induced DA release, which interacted with Synapsin I directly and led to its phosphorylation, then depolymerization of F-actin, thus contributed to DA release. In conclusion, low concentration of GQ1b is able to enhance asynchronous DA release through Pyk2/ERK/Synapsin I/actin pathway. Our findings provide new insights into the role of GQ1b in neuronal communication, and implicate the potential application of GQ1b in neurological disorders.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shi-Feng Chu
- Key Laboratory of Diagnostics of Traditional Chinese Medicine, Collaborative Innovation Center of Digital Traditional Chinese Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zheng Mou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Gui-Ning Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
Giralt A, Coura R, Girault JA. Pyk2 is essential for astrocytes mobility following brain lesion. Glia 2015; 64:620-34. [DOI: 10.1002/glia.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/23/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Albert Giralt
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Renata Coura
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Jean-Antoine Girault
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| |
Collapse
|
27
|
Zalewska T, Bielawski A, Stanaszek L, Wieczerzak K, Ziemka-Nałęcz M, Nalepa I. Imipramine administration induces changes in the phosphorylation of FAK and PYK2 and modulates signaling pathways related to their activity. Biochim Biophys Acta Gen Subj 2015; 1860:424-33. [PMID: 26620976 DOI: 10.1016/j.bbagen.2015.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/26/2015] [Accepted: 11/22/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Antidepressants can modify neuronal functioning by affecting many levels of signal transduction pathways that are involved in neuroplasticity. We investigated whether the phosphorylation status of focal adhesion kinase (FAK/PTK2) and its homolog, PYK2/PTK2B, and their complex with the downstream effectors (Src kinase, p130Cas, and paxillin) are affected by administration of the antidepressant drug, imipramine. The treatment influence on the levels of ERK1/2 kinases and their phosphorylated forms (pERK1/2) or the Gαq, Gα11 and Gα12 proteins were also assessed. METHODS Rats were injected with imipramine (10 mg/kg, twice daily) for 21 days. The levels of proteins investigated in their prefrontal cortices were measured by Western blotting. RESULTS Imipramine induced contrasting changes in the phosphorylation of FAK and PYK2 at Tyr397 and Tyr402, respectively. The decreased FAK phosphorylation and increased PYK2 phosphorylation were reflected by changes in the levels of their complex with Src and p130Cas, which was observed predominantly after chronic imipramine treatment. Similarly only chronic imipramine decreased the Gαq expression while Gα11 and Gα12 proteins were untouched. Acute and chronic treatment with imipramine elevated ERK1 and ERK2 total protein levels, whereas only the pERK1 was significantly affected by the drug. CONCLUSION The enhanced activation of PYK2 observed here could function as compensation for FAK inhibition. GENERAL SIGNIFICANCE These data demonstrate that treatment with imipramine, which is a routine in counteracting depressive disorders, enhances the phosphorylation of PYK2, a non-receptor kinase instrumental in promoting synaptic plasticity. This effect documents as yet not considered target in the mechanism of imipramine action.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Bielawski
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Wieczerzak
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Ziemka-Nałęcz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
28
|
Feng J, Mertz B. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase. PLoS One 2015; 10:e0132833. [PMID: 26186725 PMCID: PMC4505859 DOI: 10.1371/journal.pone.0132833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/18/2015] [Indexed: 11/30/2022] Open
Abstract
Focal adhesion kinase (FAK) is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through conformational change, and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2) are known to facilitate this process. PIP2 binding alters the autoinhibited conformation of the FERM and kinase domains and subsequently exposes the activation loop to phosphorylation. However, the detailed molecular mechanism of PIP2 binding and its role in FAK activation remain unclear. In this study, we conducted coarse-grained molecular dynamics simulations to investigate the binding of FAK to PIP2. Our simulations identified novel areas of basic residues in the kinase domain of FAK that potentially undergo transient binding to PIP2 through electrostatic attractions. Our investigation provides a molecular picture of PIP2-initiated FAK activation and introduces promising new pathways for future studies of FAK regulation.
Collapse
Affiliation(s)
- Jun Feng
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Blake Mertz
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
29
|
S-Nitrosylation of proline-rich tyrosine kinase 2 involves its activation induced by oxygen–glucose deprivation. Neurosci Lett 2015; 597:90-6. [DOI: 10.1016/j.neulet.2015.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/22/2022]
|
30
|
Ziemka-Nalecz M, Jaworska J, Sypecka J, Zalewska T. OGD induced modification of FAK- and PYK2-coupled pathways in organotypic hippocampal slice cultures. Brain Res 2015; 1606:21-33. [PMID: 25708150 DOI: 10.1016/j.brainres.2015.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 11/26/2022]
Abstract
Focal adhesion kinase (FAK) and proline-rich tyrosine kinase (PYK2) are two related non-receptor tyrosine kinases which are thought to play a role in transducing extracellular matrix (ECM)-derived survival signals into cells. The functions of FAK and PYK2 are linked to autophosphorylation of their specific tyrosine residues, Tyr-397 in FAK and Tyr-402 in PYK2, and then association with different signalling proteins which mediate activation of downstream targets such as ERK and JNK mitogen-activated kinase cascades. Thus, modulation of FAK as well as PYK2 autophosphorylation may affect several intracellular pathways and may participate in a variety of pathological settings. The present study provides a systematic investigation of the influence of experimental ischemia, induced by oxygen-glucose-deprivation, on the FAK- and PYK2-mediated signalling in organotypic hippocampal slice cultures. OGD induced primary down-regulation of FAK and PYK2 autophosphorylation (at Tyr 397 and Tyr 402, respectively) at 24-48 h of reoxygenation was accompanied by the diminution of phosphorylation/activation of Src and JNK. In contrast, the activity of Akt and ERK1/2 remained on the control level. It indicates that Akt kinase as well as ERK1/2 does not interfere with OGD-induced neuronal damage. The inhibition of the early step of FAK and PYK2 activation demonstrated by the decrease of tyrosine autophosphorylation may comprise an important portion of the response expressed by modulation of some coupled signal transduction pathways.
Collapse
Affiliation(s)
- Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jaworska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
31
|
Ohtake J, Sakurai M, Hoshino Y, Tanemura K, Sato E. Expression of focal adhesion kinase in mouse cumulus-oocyte complexes, and effect of phosphorylation at Tyr397 on cumulus expansion. Mol Reprod Dev 2015; 82:218-31. [PMID: 25692763 DOI: 10.1002/mrd.22464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 01/16/2015] [Indexed: 01/22/2023]
Abstract
We investigated the expression of focal adhesion kinase (FAK) in mouse cumulus-oocyte complexes (COCs), as well as the role of FAK phosphorylation at Tyr397 during oocyte maturation. The effect of inhibiting FAK phosphorylation at Tyr397 during in vitro maturation (IVM) on subsequent fertilization and preimplantation embryo development was also examined. Western blotting analyses revealed that total and Tyr397-phosphorylated FAK were expressed in vivo in both cumulus cells and oocytes. Immunocytochemical studies localized this kinase throughout the cytoplasm of cumulus cells and oocytes; in particular, Tyr397-phosphorylated FAK tended to accumulate in regions where cumulus cells contact each other. Interestingly, the in vivo level of Tyr397 phosphorylation in cumulus cells was significantly lower after compared to before cumulus expansion. Addition of FAK inhibitor 14, which specifically blocks phosphorylation at Tyr397, stimulated oocyte meiotic maturation and cumulus expansion during IVM in the absence of follicle-stimulating hormone (FSH). Reverse-transcriptase PCR showed that the mRNA expression of hyaluronan synthase 2 (Has2), a marker of cumulus expansion, was significantly induced in cumulus cells. Subsequent in vitro fertilization and culture showed that more oocytes developed to the blastocyst stage when they were treated with FAK inhibitor 14 during IVM, although the blastocyst total cell number was lower than in oocytes stimulated with FSH. These results indicate that FAK is involved in the maturation of COCs; specifically, phosphorylation at Tyr397 may regulate cumulus expansion via the expression of Has2 mRNA in cumulus cells, which could affect the developmental competence of oocytes.
Collapse
Affiliation(s)
- Jun Ohtake
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
32
|
Lian X, Wang XT, Wang WT, Yang X, Suo ZW, Hu XD. Peripheral inflammation activated focal adhesion kinase signaling in spinal dorsal horn of mice. J Neurosci Res 2015; 93:873-81. [DOI: 10.1002/jnr.23551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/18/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Xia Lian
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Xin-Tai Wang
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Wen-Tao Wang
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Xian Yang
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| |
Collapse
|
33
|
Bikis C, Moris D, Vasileiou I, Patsouris E, Theocharis S. FAK/Src family of kinases: protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin Ther Targets 2014; 19:539-49. [DOI: 10.1517/14728222.2014.990374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Cai Y, Xu H, Yan J, Zhang L, Lu Y. Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Mol Med Rep 2014; 9:1542-50. [PMID: 24627001 DOI: 10.3892/mmr.2014.2034] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/17/2014] [Indexed: 01/13/2023] Open
Abstract
Dexmedetomidine (DEX), a highly specific α2-adrenergic agonist, which exhibits anaesthetic-sparing, analgesia and sympatholytic properties. DEX modulates gene expression, channel activation, transmitter release, inflammatory processes and apoptotic and necrotic cell death. It has also been demonstrated to have protective effects in a variety of animal models of ischemia/reperfusion (I/R) injury, including the intestine, myocardial, renal, lung, cerebral and liver. The broad spectrum of biological activities associated with DEX continues to expand, and its diverse effects suggest that it may offer a novel therapeutic approach for the treatment of human diseases with I/R involvement.
Collapse
Affiliation(s)
- Ye Cai
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Hui Xu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jia Yan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Lei Zhang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yi Lu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
35
|
Zhang Z, Zhang Y, Mou Z, Chu S, Chen X, He W, Guo X, Yuan Y, Takahashi M, Chen N. Tyrosine 402 phosphorylation of Pyk2 is involved in ionomycin-induced neurotransmitter release. PLoS One 2014; 9:e94574. [PMID: 24718602 PMCID: PMC3981813 DOI: 10.1371/journal.pone.0094574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/17/2014] [Indexed: 11/28/2022] Open
Abstract
Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zheng Mou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin He
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Basic Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Xiaofeng Guo
- Basic Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail: (NC); (MT)
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- * E-mail: (NC); (MT)
| |
Collapse
|
36
|
Focal adhesion dynamics are altered in schizophrenia. Biol Psychiatry 2013; 74:418-26. [PMID: 23482246 DOI: 10.1016/j.biopsych.2013.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Evidence from genetic association studies implicate genes involved in neural migration associated with schizophrenia risk. Neural stem/progenitor cell cultures (neurosphere-derived cells) from olfactory mucosa of schizophrenia patients have significantly dysregulated expression of genes in focal adhesion kinase (FAK) signaling, a key pathway regulating cell adhesion and migration. The aim of this study was to investigate whether olfactory neurosphere-derived cells from schizophrenia patients have altered cell adhesion, cell motility, and focal adhesion dynamics. METHODS Olfactory neurosphere-derived cells from nine male schizophrenia patients and nine male healthy control subjects were used. Cells were assayed for cell adhesion and cell motility and analyzed for integrins and FAK proteins. Focal adhesions were counted and measured in fixed cells, and time-lapse imaging was used to assess cell motility and focal adhesion dynamics. RESULTS Patient-derived cells were less adhesive and more motile than cells derived from healthy control subjects, and their motility was reduced to control cell levels by integrin-blocking antibodies and by inhibition of FAK. Vinculin-stained focal adhesion complexes were significantly smaller and fewer in patient cells. Time-lapse imaging of cells expressing FAK tagged with green fluorescent protein revealed that the disassembly of focal adhesions was significantly faster in patient cells. CONCLUSIONS The evidence for altered motility and focal adhesion dynamics in patient-derived cells is consistent with dysregulated gene expression in the FAK signaling pathway in these cells. Alterations in cell adhesion dynamics and cell motility could bias the trajectory of brain development in schizophrenia.
Collapse
|
37
|
Hyun JH, Eom K, Lee KH, Ho WK, Lee SH. Activity-dependent downregulation of D-type K+ channel subunit Kv1.2 in rat hippocampal CA3 pyramidal neurons. J Physiol 2013; 591:5525-40. [PMID: 23981714 DOI: 10.1113/jphysiol.2013.259002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The intrinsic excitability of neurons plays a critical role in the encoding of memory at Hebbian synapses and in the coupling of synaptic inputs to spike generation. It has not been studied whether somatic firing at a physiologically relevant frequency can induce intrinsic plasticity in hippocampal CA3 pyramidal cells (CA3-PCs). Here, we show that a conditioning train of 20 action potentials (APs) at 10 Hz causes a persistent reduction in the input conductance and an acceleration of the AP onset time in CA3-PCs, but not in CA1-PCs. Induction of such long-term potentiation of intrinsic excitability (LTP-IE) was accompanied by a reduction in the D-type K(+) current, and was abolished by the inhibition of endocytosis or protein tyrosine kinase (PTK). Consistently, the CA3-PCs from Kv1.2 knock-out mice displayed no LTP-IE with the same conditioning. Furthermore, the induction of LTP-IE depended on the back-propagating APs (bAPs) and intact distal apical dendrites. These results indicate that LTP-IE is mediated by the internalization of Kv1.2 channels from the distal regions of apical dendrites, which is triggered by bAP-induced dendritic Ca(2+) signalling and the consequent activation of PTK.
Collapse
Affiliation(s)
- Jung Ho Hyun
- S.-H. Lee: Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea.
| | | | | | | | | |
Collapse
|
38
|
Köhler C, Dinekov M, Götz J. Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging 2013; 34:1369-79. [DOI: 10.1016/j.neurobiolaging.2012.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/05/2012] [Accepted: 11/22/2012] [Indexed: 02/08/2023]
|
39
|
Lee KH, Ho WK, Lee SH. Endocytosis of somatodendritic NCKX2 is regulated by Src family kinase-dependent tyrosine phosphorylation. Front Cell Neurosci 2013; 7:14. [PMID: 23431067 PMCID: PMC3576620 DOI: 10.3389/fncel.2013.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 11/13/2022] Open
Abstract
We have previously reported that the surface expression of K+-dependent Na+/Ca2+ exchanger 2 (NCKX2) in the somatodendritic compartment is kept low by constitutive endocytosis, which results in the polarization of surface NCKX2 to the axon. Clathrin-mediated endocytosis is initiated by interaction of the μ subunit of adaptor protein complex 2 (AP-2) with the canonical tyrosine motif (YxxΦ) of a target molecule. We examined whether endocytosis of NCKX2 involves two putative tyrosine motifs (365YGKL and 371YDTM) in the cytoplasmic loop of NCKX2. Coimmunoprecipitation assay revealed that the 365YGKL motif is essential for the interaction with the μ subunit of AP-2 (AP2M1). Consistently, either overexpression of NCKX2-Y365A mutant or knockdown of AP2M1 in cultured hippocampal neurons significantly reduced the internalization of NCKX2 from the somatodendritic surface and thus abolished the axonal polarization of surface NCKX2. Next, we tested whether the interaction between the tyrosine motif and AP2M1 is regulated by phosphorylation of the 365th tyrosine residue (Tyr-365). Tyrosine phosphorylation of heterologously expressed NCKX2-WT, but not NCKX2-Y365A, was increased by carbachol (CCh) in PC-12 cells. The effect of CCh was inhibited by PP2, a Src family kinase (SFK) inhibitor. Moreover, PP2 facilitated the endocytosis of NCKX2 in both the somatodendritic and axonal compartments, suggesting that tyrosine phosphorylation of NCKX2 by SFK negatively regulates its endocytosis. Supporting this idea, activation of SFK enhanced the NCKX activity in the proximal dendrites of dentate granule cells (GCs). These results suggest that endocytosis of somatodendritic NCKX2 is regulated by SFK-dependent phosphorylation of Tyr-365.
Collapse
Affiliation(s)
- Kyu-Hee Lee
- Department of Physiology, Biomembrane Plasticity Research Center and Neuroscience Research Institute, Seoul National University College of Medicine Seoul, Republic of Korea
| | | | | |
Collapse
|
40
|
Faure C, Ramos M, Girault JA. Pyk2 cytonuclear localization: mechanisms and regulation by serine dephosphorylation. Cell Mol Life Sci 2013; 70:137-52. [PMID: 22802128 PMCID: PMC11113809 DOI: 10.1007/s00018-012-1075-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 06/13/2012] [Accepted: 06/25/2012] [Indexed: 11/25/2022]
Abstract
Cytonuclear signaling is essential for long-term alterations of cellular properties. Several pathways involving regulated nuclear accumulation of Ser/Thr kinases have been described but little is known about cytonuclear trafficking of tyrosine kinases. Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic non-receptor tyrosine kinase enriched in neurons and involved in functions ranging from synaptic plasticity to bone resorption, as well as in cancer. We previously showed the Ca(2+)-induced, calcineurin-dependent, nuclear localization of Pyk2. Here, we characterize the molecular mechanisms of Pyk2 cytonuclear localization in transfected PC12 cells. The 700-841 linker region of Pyk2 recapitulates its depolarization-induced nuclear accumulation. This region includes a nuclear export motif regulated by phosphorylation at residue S778, a substrate of cAMP-dependent protein kinase and calcineurin. Nuclear import is controlled by a previously identified sequence in the N-terminal domain and by a novel nuclear targeting signal in the linker region. Regulation of cytonuclear trafficking is independent of Pyk2 activity. The region regulating nuclear localization is absent from the non-neuronal shorter splice isoform of Pyk2. Our results elucidate the mechanisms of Ca(2+)-induced nuclear accumulation of Pyk2. They also suggest that Pyk2 nuclear accumulation is a novel type of signaling response that may contribute to specific long-term adaptations in neurons.
Collapse
Affiliation(s)
- Camille Faure
- Inserm, UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Mariana Ramos
- Inserm, UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jean-Antoine Girault
- Inserm, UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
41
|
Santos ARC, Corredor RG, Obeso BA, Trakhtenberg EF, Wang Y, Ponmattam J, Dvoriantchikova G, Ivanov D, Shestopalov VI, Goldberg JL, Fini ME, Bajenaru ML. β1 integrin-focal adhesion kinase (FAK) signaling modulates retinal ganglion cell (RGC) survival. PLoS One 2012; 7:e48332. [PMID: 23118988 PMCID: PMC3485184 DOI: 10.1371/journal.pone.0048332] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022] Open
Abstract
Extracellular matrix (ECM) integrity in the central nervous system (CNS) is essential for neuronal homeostasis. Signals from the ECM are transmitted to neurons through integrins, a family of cell surface receptors that mediate cell attachment to ECM. We have previously established a causal link between the activation of the matrix metalloproteinase-9 (MMP-9), degradation of laminin in the ECM of retinal ganglion cells (RGCs), and RGC death in a mouse model of retinal ischemia-reperfusion injury (RIRI). Here we investigated the role of laminin-integrin signaling in RGC survival in vitro, and after ischemia in vivo. In purified primary rat RGCs, stimulation of the β1 integrin receptor with laminin, or agonist antibodies enhanced RGC survival in correlation with activation of β1 integrin’s major downstream regulator, focal adhesion kinase (FAK). Furthermore, β1 integrin binding and FAK activation were required for RGCs’ survival response to laminin. Finally, in vivo after RIRI, we observed an up-regulation of MMP-9, proteolytic degradation of laminin, decreased RGC expression of β1 integrin, FAK and Akt dephosphorylation, and reduced expression of the pro-survival molecule bcl-xL in the period preceding RGC apoptosis. RGC death was prevented, in the context of laminin degradation, by maintaining β1 integrin activation with agonist antibodies. Thus, disruption of homeostatic RGC-laminin interaction and signaling leads to cell death after retinal ischemia, and maintaining integrin activation may be a therapeutic approach to neuroprotection.
Collapse
Affiliation(s)
- Andrea Rachelle C. Santos
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Raul G. Corredor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Betty Albo Obeso
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ephraim F. Trakhtenberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ying Wang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jamie Ponmattam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Galina Dvoriantchikova
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jeffrey L. Goldberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mary Elizabeth Fini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Michaela Livia Bajenaru
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
42
|
Gupta A, Dey CS. PTEN, a widely known negative regulator of insulin/PI3K signaling, positively regulates neuronal insulin resistance. Mol Biol Cell 2012; 23:3882-98. [PMID: 22875989 PMCID: PMC3459864 DOI: 10.1091/mbc.e12-05-0337] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lipid and protein tyrosine phosphatase, phosphatase and tension homologue (PTEN), is a widely known negative regulator of insulin/phosphoinositide 3-kinase signaling. Down-regulation of PTEN is thus widely documented to ameliorate insulin resistance in peripheral tissues such as skeletal muscle and adipose. However, not much is known about its exact role in neuronal insulin signaling and insulin resistance. Moreover, alterations of PTEN in neuronal systems have led to discovery of several unexpected outcomes, including in the neurodegenerative disorder Alzheimer's disease (AD), which is increasingly being recognized as a brain-specific form of diabetes. In addition, contrary to expectations, its neuron-specific deletion in mice resulted in development of diet-sensitive obesity. The present study shows that PTEN, paradoxically, positively regulates neuronal insulin signaling and glucose uptake. Its down-regulation exacerbates neuronal insulin resistance. The positive role of PTEN in neuronal insulin signaling is likely due to its protein phosphatase actions, which prevents the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), the kinases critically involved in neuronal energy impairment and neurodegeneration. Results suggest that PTEN acting through FAK, the direct protein substrate of PTEN, prevents ERK activation. Our findings provide an explanation for unexpected outcomes reported earlier with PTEN alterations in neuronal systems and also suggest a novel molecular pathway linking neuronal insulin resistance and AD, the two pathophysiological states demonstrated to be closely linked.
Collapse
Affiliation(s)
- Amit Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
43
|
Suo L, Lu H, Ying G, Capecchi MR, Wu Q. Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J Mol Cell Biol 2012; 4:362-76. [PMID: 22730554 DOI: 10.1093/jmcb/mjs034] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dendritic patterning and spine morphogenesis are crucial for the assembly of neuronal circuitry to ensure normal brain development and synaptic connectivity as well as for understanding underlying mechanisms of neuropsychiatric diseases and cognitive impairments. The Rho GTPase family is essential for neuronal morphogenesis and synaptic plasticity by modulating and reorganizing the cytoskeleton. Here, we report that protocadherin (Pcdh) clusters and cell adhesion kinases (CAKs) play important roles in dendritic development and spine elaboration. The knockout of the entire Pcdhα cluster results in the dendritic simplification and spine loss in CA1 pyramidal neurons in vivo and in cultured primary hippocampal neurons in vitro. The knockdown of the whole Pcdhγ cluster or in combination with the Pcdhα knockout results in similar dendritic and spine defects in vitro. The overexpression of proline-rich tyrosine kinase 2 (Pyk2, also known as CAKβ, RAFTK, FAK2, and CADTK) recapitulates these defects and its knockdown rescues the phenotype. Moreover, the genetic deletion of the Pcdhα cluster results in phosphorylation and activation of Pyk2 and focal adhesion kinase (Fak) and the inhibition of Rho GTPases in vivo. Finally, the overexpression of Pyk2 leads to inactivation of Rac1 and, conversely, the constitutive active Rac1 rescues the dendritic and spine morphogenesis defects caused by the knockout of the Pcdhα cluster and the knockdown of the Pcdhγ cluster. Thus, the involvement of the Pcdh-CAK-Rho GTPase pathway in the dendritic development and spine morphogenesis has interesting implications for proper assembly of neuronal connections in the brain.
Collapse
Affiliation(s)
- Lun Suo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Medicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
44
|
Gupta A, Bisht B, Dey CS. Focal adhesion kinase negatively regulates neuronal insulin resistance. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1030-7. [DOI: 10.1016/j.bbadis.2012.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/13/2022]
|
45
|
Xu J, Kurup P, Bartos JA, Patriarchi T, Hell JW, Lombroso PJ. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J Biol Chem 2012; 287:20942-56. [PMID: 22544749 DOI: 10.1074/jbc.m112.368654] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
46
|
Apoptosis induced by SRC-family tyrosine kinase inhibitors in cultured rat cortical cells. Neurotox Res 2011; 21:309-16. [PMID: 22006118 DOI: 10.1007/s12640-011-9284-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
In the central nervous system, members of the Src family of tyrosine kinases (SFKs) are widely expressed and are abundant in neurons. The purpose of this study is to examine whether glycogen synthase-3 (GSK-3) is involved in SFK inhibitor-induced apoptosis. PP2 and SU6656, SFK inhibitors, increased apoptotic cell death with morphological changes that were characterized by cell shrinkage, chromatin condensation, or nuclear fragmentation. Moreover, both activation of caspase-9 and caspase-3 were accompanied by the cell death. GSK-3 inhibitors, such as alsterpaullone and SB216763, prevented the PP2-induced apoptosis. In addition, insulin-like growth factor-I prevented the PP2-induced cell death and PP2 inhibited phosphorylation of focal adhesion kinase (FAK). Phosphorylation of FAK on Tyr 576 by Src activates FAK. These results suggest that inhibition of SFK induces apoptosis possibly via blocking of FAK/phosphatidylinositol-3 kinase/Akt signaling pathway and activation of GSK-3 is involved in the cell death in rat cortical neurons.
Collapse
|
47
|
Monje FJ, Kim EJ, Pollak DD, Cabatic M, Li L, Baston A, Lubec G. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory. Neurosignals 2011; 20:1-14. [PMID: 21952616 DOI: 10.1159/000330193] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/20/2011] [Indexed: 01/07/2023] Open
Abstract
The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory.
Collapse
Affiliation(s)
- Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
48
|
Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons. J Neurosci 2011; 31:2361-70. [PMID: 21325503 DOI: 10.1523/jneurosci.5764-10.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.
Collapse
|
49
|
Milatovic D, Jenkins JW, Hood JE, Yu Y, Rongzhu L, Aschner M. Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase. Neurotoxicology 2011; 32:578-85. [PMID: 21241737 DOI: 10.1016/j.neuro.2011.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/21/2010] [Accepted: 01/07/2011] [Indexed: 11/19/2022]
Abstract
Among several available antimalarial drugs, mefloquine has proven to be effective against drug-resistant Plasmodium falciparum and remains the drug of choice for both therapy and chemoprophylaxis. However, mefloquine is known to cause adverse neurological and/or psychiatric symptoms, which offset its therapeutic advantage. The exact mechanisms leading to the adverse neurological effects of mefloquine are poorly defined. Alterations in neurotransmitter release and calcium homeostasis, the inhibition of cholinesterases and the interaction with adenosine A(2A) receptors have been hypothesized to play prominent roles in mediating the deleterious effects of this drug. Our recent data have established that mefloquine can also trigger oxidative damage and subsequent neurodegeneration in rat cortical primary neurons. Furthermore, we have utilized a system biology-centered approach and have constructed a pathway model of cellular responses to mefloquine, identifying non-receptor tyrosine kinase 2 (Pyk2) as a critical target in mediating mefloquine neurotoxicity. In this study, we sought to establish an experimental validation of Pyk2 using gene-silencing techniques (siRNA). We have examined whether the downregulation of Pyk2 in primary rat cortical neurons alters mefloquine neurotoxicity by evaluating cell viability, apoptosis and oxidative stress. Results from our study have confirmed that mefloquine neurotoxicity is associated with apoptotic response and oxidative injury, and we have demonstrated that mefloquine affects primary rat cortical neurons, at least in part, via Pyk2. The implication of these findings may prove beneficial in suppressing the neurological side effects of mefloquine and developing effective therapeutic modalities to offset its adverse effects.
Collapse
Affiliation(s)
- Dejan Milatovic
- Department of Pediatrics, Division of Clinical Pharmacology and Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Ahluwalia M, de Groot J, Liu W(M, Gladson CL. Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett 2010; 298:139-49. [PMID: 20947248 PMCID: PMC3212431 DOI: 10.1016/j.canlet.2010.08.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/22/2010] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is an extremely aggressive, infiltrative tumor with a poor prognosis. The regulatory approval of bevacizumab for recurrent GBM has confirmed that molecularly targeted agents have potential for GBM treatment. Preclinical data showing that SRC and SRC-family kinases (SFKs) mediate intracellular signaling pathways controlling key biologic/oncogenic processes provide a strong rationale for investigating SRC/SFK inhibitors, e.g., dasatinib, in GBM and clinical studies are underway. The activity of these agents against solid tumors suggests that they may also be useful in treating brain metastases. This article reviews the potential for using SRC/SFK inhibitors to treat GBM and brain metastases.
Collapse
Affiliation(s)
- Manmeet Ahluwalia
- Cleveland Clinic Main Campus, Mail Code ND40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-444-6145
| | - John de Groot
- The Brain Tumor Center, The University of Texas, M.D. Anderson Cancer Center, 1515, Holcombe Blvd., Unit 431, Houston, TX 77030, Phone: 713-792-7255
| | - Wei (Michael) Liu
- Lerner Research Institute, Department of Cancer Biology, Cleveland Clinic Mail Code NB40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-636-9494
| | - Candece L Gladson
- Lerner Research Institute, Department of Cancer Biology, Cleveland Clinic Mail Code NB40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-636-9493, Fax: 216-445-6269
| |
Collapse
|