1
|
Gao G, Zhang X, Cui Z, Fan M, Yan Y, Huang Y, Shi Y, Ma H, Wang Z, Su Y, Zhang Z, Xie Z. Shenghui decoction inhibits neuronal cell apoptosis to improve Alzheimer's disease through the PDE4B/cAMP/CREB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156366. [PMID: 39787692 DOI: 10.1016/j.phymed.2025.156366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Shenghui Decoction (SHD) is a frequently utilized traditional Chinese medicine formula in clinical settings for addressing cognitive impairment in elderly individuals. Nevertheless, the precise mechanism by which SHD exerts its effects on the most prevalent form of dementia, Alzheimer's disease (AD), remains to be elucidated. METHODS Temperature-induced transgenic C. elegans assess Aβ deposition and toxicity. Behavioral experiments are utilized to assess learning and memory capabilities as well as cognitive impairment in APP/PS1 mice. Immunofluorescence and immunohistochemistry are employed to identify Aβ deposits, while UHPLCOE/MS combine network pharmacology is utilized to characterize chemical composition, predict target and analyze the biological processes and signaling pathways modulated by SHD. Molecular biology methodologies confirm the functionality of regulatory pathways. Molecular docking, molecular dynamic simulations (MD) and ultrafiltration-liquid chromatography/mass spectrometry (LC/MS) are employed for the assessment of the binding interactions between active ingredients of SHD and target proteins. RESULTS SHD effectively reduced the deposition of Aβ in the head of C. elegans and mitigated its toxicity, as well as improved the learning deficits and cognitive impairment in APP/PS1 mice. Network pharmacology analyses revealed that G protein-coupled receptors (GPCRs) and cell apoptosis are the primary biological processes modulated by SHD, with KEEG results indicating that SHD regulated the cAMP signaling pathway. Subsequent experimental investigations demonstrated that SHD attenuated the loss of neurons in APP/PS1 mice, upregulated the expression of anti-apoptotic protein Bcl-2 and downregulated the expression of pro-apoptotic proteins like cleave-Caspase-3 both in vivo and in vitro. Additionally, SHD decreased intracellular AMP levels while increasing cAMP levels, leading to the phosphorylation of PKA to activate CREB. This process ultimately regulated the expression of Bcl-2, Bdnf, among others, to prevent cell apoptosis and safeguard neurons. Molecular docking, MD, and ultrafiltration-LC/MS revealed that the active constituents of SHD formed stable interactions with the cAMP hydrolysis enzyme phosphodiesterase 4B (PDE4B). CONCLUSION SHD regulated the cAMP/CREB signaling pathway to inhibit neuronal cell apoptosis and improve AD. Furthermore, it is worth noting that this mechanism may be associated with the specific and consistent binding of SHD active ingredients to PDE4B, potentially offering promising candidates for drug development aimed at addressing AD.
Collapse
Affiliation(s)
- Gai Gao
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Xiaowei Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhenghao Cui
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Mingyue Fan
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yibing Yan
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yanli Huang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yiting Shi
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Huifen Ma
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhenzhen Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yunfang Su
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| |
Collapse
|
2
|
Kim SK, Kwon YJ, Seo EB, Lee HS, Sohn JO, Shin HM, Kim SJ, Ye SK. Neuroprotective Effects of STAT3 Inhibitor on Hydrogen Peroxide-Induced Neuronal Cell Death via the ERK/CREB Signaling Pathway. Neurochem Res 2024; 50:52. [PMID: 39648181 PMCID: PMC11625690 DOI: 10.1007/s11064-024-04252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/23/2024] [Indexed: 12/10/2024]
Abstract
This study investigates the neuroprotective potential of STAT3 inhibition in reducing oxidative stress-induced neuronal damage and apoptosis, a major factor contributing to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD). Our findings demonstrate that STAT3 inhibitors significantly enhance cell survival and reduce apoptosis in SH-SY5Y cells exposed to hydrogen peroxide. These protective effects are mediated through the ERK/CREB signaling pathway rather than direct suppression of STAT3 phosphorylation. Further analysis revealed that the ERK pathway is a critical mediator of CREB activation following STAT3 inhibition. The protective effects of STAT3 inhibitors were significantly reduced in the presence of the ERK inhibitor PD98059, underscoring the importance of the ERK/CREB axis in neuroprotection. We observed that STAT3 inhibitors promote CREB phosphorylation, leading to the upregulation of immediate early genes such as c-Fos, c-Jun, Arc, Egr-1, NR4A1, and Homer1a, as well as BDNF. These genes are crucial for synaptic plasticity and long-term memory formation, suggesting that STAT3 inhibition may ameliorate cognitive impairments in neurodegenerative conditions. Our results highlight the potential of STAT3 inhibitors to counteract oxidative stress and enhance cognitive functions by modulating the ERK/CREB signaling pathway. These findings provide valuable insights into the molecular mechanisms of STAT3 inhibition and support its therapeutic potential for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyun-Seung Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jie Ohn Sohn
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
| | - Sung Joon Kim
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Chen B, Sun Y, Sun H, Cong N, Ma R, Qian X, Lyu J, Fu X, Chi F, Li H, Liu Y, Ren D, Bu W. Ultrasound-Triggered NO Release to Promote Axonal Regeneration for Noise-Induced Hearing Loss Therapy. ACS NANO 2024. [PMID: 39561026 DOI: 10.1021/acsnano.4c12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Intense noise poses a threat to spiral ganglion neurons (SGNs) in the inner ear, often resulting in limited axonal regeneration during noise injury and leading to noise-induced hearing loss (NIHL). Here, we propose an ultrasound-triggered nitric oxide (NO) release to enhance the sprouting and regeneration of injured axons in SGNs. We developed hollow silicon nanoparticles to load nitrosylated N-acetylcysteine, producing HMSN-SNO, which effectively protects NO from external interferences. Utilizing low-intensity ultrasound stimulation with bone penetration, we achieve the controlled release of NO from HMSN-SNO within the cochlea. In mice with NIHL, a rapid and extensive loss of synaptic connections between hair cells and SGNs is observed within 24 h after exposure to excessive noise. However, this loss could be reversed with the combined treatment, resulting in a hearing functional recovery from 83.57 to 65.00 dB SPL. This positive outcome is attributed to the multifunctional effects of HMSN-SNO, wherein they scavenge reactive oxygen species (ROS) to reverse the pathological microenvironment and simultaneously upregulate the CREB/BDNF/EGR1 signaling pathway, thereby enhancing neuroplasticity and promoting the regeneration of neuronal axons. These findings underscore the potential of nanomedicine for neuroplasticity modulation, which holds promise for advancing both basic research and the further treatment of neurological diseases.
Collapse
Affiliation(s)
- Binjun Chen
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Yanhong Sun
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200438, China
| | - Haojie Sun
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Ning Cong
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Rui Ma
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Xiaoqing Qian
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Jihan Lyu
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Xiao Fu
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Fanglu Chi
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200438, China
| | - Dongdong Ren
- ENT institute and Department of Otorhinolaryngology, NHC Key Laboratory of Hearing Medicine. Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200438, China
| |
Collapse
|
4
|
Sun Z, Liu J, Chen Z, So K, Hu Y, Chiu K. Lycium barbarum Extract Enhanced Neuroplasticity and Functional Recovery in 5xFAD Mice via Modulating Microglial Status of the Central Nervous System. CNS Neurosci Ther 2024; 30:e70123. [PMID: 39564756 PMCID: PMC11576918 DOI: 10.1111/cns.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most prevalent neurodegenerative disease with limited treatment options. This study aimed to investigate the effects of Lycium barbarum extract (LBE), a Chinese herb, on the central nervous system (CNS)-including the retina, brain, and spinal cord-in 5xFAD transgenic mice after the onset of AD. METHODS Starting at 6 months of age, 5xFAD mice received daily intragastric gavage of LBE (2 g/kg) for 2 months. At 8 months, behavioral tests were conducted to assess cognition, motor function, and visual function. These included the Morris water maze, novel object recognition, and Y-maze tests for cognition; the beam walking balance and clasping tests for motor function; and electroretinogram (ERG) for visual function. Immunohistochemistry, western blotting, and ELISA were used to evaluate Aβ deposition, microglial morphology, neuroinflammation, and neuroprotective signaling pathways. Primary microglia and the IMG cell line were used to study LBE's effects on Aβ uptake and degradation in vitro. RESULTS After 2 months of LBE treatment, the decline in cognition, motor, and visual functions in 5xFAD mice was significantly slowed. Microglia in the brain, spinal cord, and retina exhibited a neuroprotective state, with reduced Aβ deposition, decreased inflammatory cytokine levels (e.g., TNF-α, IL-1β, IL-6), increased Arg-1/iNOS ratio, and enhanced phagocytic capacity. LBE also promoted Aβ uptake and degradation in primary microglia and the IMG cell line. Neuroprotective signals such as p-Akt, p-Erk1/2, and p-CREB were elevated. Additionally, LBE treatment restored synaptic protein expression and enhanced neuroplasticity. CONCLUSION The findings suggest that LBE treatment can enhance neuroplasticity, reduce systemic inflammation, and improve phagocyte clearance of Aβ deposition via inducing a neuroprotective microglial phenotype throughout CNS. As an upper-class Chinese medicine, appropriate intake of LBE may serve as a beneficial antiaging strategy for AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Innovation Research Institute, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jinfeng Liu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
| | - Zihang Chen
- Department of PsychologyThe University of Hong KongHong KongSARChina
- Department of Sports Medicine, the First Affiliated HospitalJinan UniversityChina
| | - Kwok‐Fai So
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Key Laboratory of CNS Regeneration, Guangdong‐Hongkong‐Macau CNS Regeneration Institute, Ministry of EducationJinan UniversityGuangzhouChina
| | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Orthopedics CenterThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of PsychologyThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| |
Collapse
|
5
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
6
|
Chen M, Lin Y, Guo W, Chen L. BMSC-Derived Exosomes Carrying miR-26a-5p Ameliorate Spinal Cord Injury via Negatively Regulating EZH2 and Activating the BDNF-TrkB-CREB Signaling. Mol Neurobiol 2024; 61:8156-8174. [PMID: 38478142 DOI: 10.1007/s12035-024-04082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes show great therapeutic potential for SCI. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration following SCI. Our study aims to uncover the mechanisms by which BMSC-derived exosomes carrying miR-26a-5p regulate SCI. METHODS BMSCs and BMSC-derived exosomes were isolated and characterized by Oil Red O and alizarin red staining, transmission electron microscopy, flow cytometry, nanoparticle tracking analysis and Western blotting. PC12 cells were treated with lipopolysaccharides (LPS), and SCI was established through laminectomy with contusion injury in rats. Annexin-V staining, CCK-8 and EdU incorporation were applied to determine cell apoptosis, viability, and proliferation. Hematoxylin and Eosin, Nissl and TUNEL staining was used to evaluate SCI injury and apoptosis in the spinal cord. Luciferase and chromatin immunoprecipitation assays were applied to evaluate gene interaction. RESULTS BMSC-derived exosomes facilitated LPS-treated PC12 cell proliferation and inhibited apoptosis by delivering miR-26a-5p. Moreover, BMSC-derived exosomal miR-26a-5p alleviated SCI. Furthermore, miR-26a-5p inhibited EZH2 expression by directly binding to EZH2, and EZH2 inhibited BDNF expression via promoting H3K27me3. Increased phosphorylated CREB enhanced KCC2 transcription and expression by binding to its promoter. Knockdown of miR-26a-5p abrogated BMSC-derived exosome-mediated protection in LPS-treated PC12 cells, but it was reversed by KCC2 overexpression. CONCLUSION BMSC-derived exosomes carrying miR-26a-5p repressed EZH2 expression to promote BDNF and TrkB expression and CREB phosphorylation and subsequently increase KCC2 expression, thus protecting PC12 cells and ameliorating SCI.
Collapse
Affiliation(s)
- Min Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wenbin Guo
- Department of Pathology, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, China
| | - Lihui Chen
- Laboratory Medicine, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, China.
| |
Collapse
|
7
|
Pandarangga P, Doan PTK, Tearle R, Low WY, Ren Y, Nguyen HTH, Dharmayanti NI, Hemmatzadeh F. mRNA Profiling and Transcriptomics Analysis of Chickens Received Newcastle Disease Virus Genotype II and Genotype VII Vaccines. Pathogens 2024; 13:638. [PMID: 39204239 PMCID: PMC11357267 DOI: 10.3390/pathogens13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Newcastle Disease Virus (NDV) genotype VII (GVII) is becoming the predominant strain of NDV in the poultry industry. It causes high mortality even in vaccinated chickens with a common NDV genotype II vaccine (GII-vacc). To overcome this, the killed GVII vaccine has been used to prevent NDV outbreaks. However, the debate about vaccine differences remains ongoing. Hence, this study investigated the difference in chickens' responses to the two vaccines at the molecular level. The spleen transcriptomes from vaccinated chickens reveal that GVII-vacc affected the immune response by downregulating neuroinflammation. It also enhanced a synaptogenesis pathway that operates typically in the nervous system, suggesting a mechanism for the neurotrophic effect of this strain. We speculated that the down-regulated immune system regulation correlated with protecting the nervous system from excess leukocytes and cytokine activity. In contrast, GII-vacc inhibited apoptosis by downregulating PERK/ATF4/CHOP as part of the unfolded protein response pathway but did not affect the expression of the same synaptogenesis pathway. Thus, the application of GVII-vacc needs to be considered in countries where GVII is the leading cause of NDV outbreaks. The predicted molecular signatures may also be used in developing new vaccines that trigger specific genes in the immune system in combating NDV outbreaks.
Collapse
Affiliation(s)
- Putri Pandarangga
- Departemen Klinik, Reproduksi, dan Patologi, Fakultas Kedokteran dan Kedokteran Hewan, Universitas Nusa Cendana, Kupang 85001, Indonesia;
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| | - Phuong Thi Kim Doan
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
- Department of Veterinary Medicine, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Rick Tearle
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Wai Yee Low
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Yan Ren
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Hanh Thi Hong Nguyen
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| | | | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| |
Collapse
|
8
|
Johnson GA, Kodati B, Nahomi RB, Pham JH, Krishnamoorthy VR, Phillips NR, Krishnamoorthy RR, Nagaraj RH, Stankowska DL. Mechanisms contributing to inhibition of retinal ganglion cell death by cell permeable peptain-1 under glaucomatous stress. Cell Death Discov 2024; 10:305. [PMID: 38942762 PMCID: PMC11213865 DOI: 10.1038/s41420-024-02070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
This study assesses the neuroprotective potential of CPP-P1, a conjugate of an anti-apoptotic peptain-1 (P1) and a cell-penetrating peptide (CPP) in in vitro, in vivo, and ex vivo glaucoma models. Primary retinal ganglion cells (RGCs) were subjected to either neurotrophic factor (NF) deprivation for 48 h or endothelin-3 (ET-3) treatment for 24 h and received either CPP-P1 or vehicle. RGC survival was analyzed using a Live/Dead assay. Axotomized human retinal explants were treated with CPP-P1 or vehicle for seven days, stained with RGC marker RBPMS, and RGC survival was analyzed. Brown Norway (BN) rats with elevated intraocular pressure (IOP) received weekly intravitreal injections of CPP-P1 or vehicle for six weeks. RGC function was evaluated using a pattern electroretinogram (PERG). RGC and axonal damage were also assessed. RGCs from ocular hypertensive rats treated with CPP-P1 or vehicle for seven days were isolated for transcriptomic analysis. RGCs subjected to 48 h of NF deprivation were used for qPCR target confirmation. NF deprivation led to a significant loss of RGCs, which was markedly reduced by CPP-P1 treatment. CPP-P1 also decreased ET-3-mediated RGC death. In ex vivo human retinal explants, CPP-P1 decreased RGC loss. IOP elevation resulted in significant RGC loss in mid-peripheral and peripheral retinas compared to that in naive rats, which was significantly reduced by CPP-P1 treatment. PERG amplitude decline in IOP-elevated rats was mitigated by CPP-P1 treatment. Following IOP elevation in BN rats, the transcriptomic analysis showed over 6,000 differentially expressed genes in the CPP-P1 group compared to the vehicle-treated group. Upregulated pathways included CREB signaling and synaptogenesis. A significant increase in Creb1 mRNA and elevated phosphorylated Creb were observed in CPP-P1-treated RGCs. Our study showed that CPP-P1 is neuroprotective through CREB signaling enhancement in several settings that mimic glaucomatous conditions. The findings from this study are significant as they address the pressing need for the development of efficacious therapeutic strategies to maintain RGC viability and functionality associated with glaucoma.
Collapse
Affiliation(s)
- Gretchen A Johnson
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bindu Kodati
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rooban B Nahomi
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Jennifer H Pham
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Nicole R Phillips
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ram H Nagaraj
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Dorota L Stankowska
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Estevez I, Buckley BD, Panzera N, Lindman M, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during CNS viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591333. [PMID: 38712188 PMCID: PMC11071512 DOI: 10.1101/2024.04.26.591333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While recent work has identified roles for immune mediators in the regulation of neural activity, the capacity for cell intrinsic innate immune signaling within neurons to influence neurotransmission remains poorly understood. However, the existing evidence linking immune signaling with neuronal function suggests that modulation of neurotransmission may serve previously undefined roles in host protection during infection of the central nervous system. Here, we identify a specialized function for RIPK3, a kinase traditionally associated with necroptotic cell death, in preserving neuronal survival during neurotropic flavivirus infection through the suppression of excitatory neurotransmission. We show that RIPK3 coordinates transcriptomic changes in neurons that suppress neuronal glutamate signaling, thereby desensitizing neurons to excitotoxic cell death. These effects occur independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promotes phosphorylation of the key neuronal regulatory kinase CaMKII, which in turn activates the transcription factor CREB to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting new mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D. Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J. Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
10
|
Kim SK, Lee GY, Kim SK, Kwon YJ, Seo EB, Lee H, Lee SH, Kim SJ, Lee S, Ye SK. Protective Effects of Repetitive Transcranial Magnetic Stimulation Against Streptozotocin-Induced Alzheimer's Disease. Mol Neurobiol 2024; 61:1687-1703. [PMID: 37755583 PMCID: PMC10896897 DOI: 10.1007/s12035-023-03573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation under investigation for treatment of a wide range of neurological disorders. In particular, the therapeutic application of rTMS for neurodegenerative diseases such as Alzheimer's disease (AD) is attracting attention. However, the mechanisms underlying the therapeutic efficacy of rTMS have not yet been elucidated, and few studies have systematically analyzed the stimulation parameters. In this study, we found that treatment with rTMS contributed to restoration of memory deficits by activating genes involved in synaptic plasticity and long-term memory. We evaluated changes in several intracellular signaling pathways in response to rTMS stimulation; rTMS treatment activated STAT, MAPK, Akt/p70S6K, and CREB signaling. We also systematically investigated the influence of rTMS parameters. We found an effective range of applications for rTMS and determined the optimal combination to achieve the highest efficiency. Moreover, application of rTMS inhibited the increase in cell death induced by hydrogen peroxide. These results suggest that rTMS treatment exerts a neuroprotective effect on cellular damage induced by oxidative stress, which plays an important role in the pathogenesis of neurological disorders. rTMS treatment attenuated streptozotocin (STZ)-mediated cell death and AD-like pathology in neuronal cells. In an animal model of sporadic AD caused by intracerebroventricular STZ injection, rTMS application improved cognitive decline and showed neuroprotective effects on hippocampal histology. Overall, this study will help in the design of stimulation protocols for rTMS application and presents a novel mechanism that may explain the therapeutic effects of rTMS in neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Geun Yong Lee
- Remed Co. Ltd., 21-7, Weeleseoilo 1, Seongnam, Korea
| | - Su Kang Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Korea
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Song-Hee Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Joon Kim
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sangsik Lee
- Department of Biomedical Engineering, Catholic Kwandong University College of Medical Convergence, Gangneung, 25601, Republic of Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
11
|
Lin S, Chen Z, Wu Z, Fei F, Xu Z, Tong Y, Sun W, Wang P. Involvement of PI3K/AKT Pathway in the Rapid Antidepressant Effects of Crocetin in Mice with Depression-Like Phenotypes. Neurochem Res 2024; 49:477-491. [PMID: 37935859 DOI: 10.1007/s11064-023-04051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The current first-line antidepressants have the drawback of slow onset, which greatly affects the treatment of depression. Crocetin, one of the main active ingredients in saffron (Crocus sativus L.), has been demonstrated to have antidepressant activities, but whether it has a rapid antidepressant effect remains unclear. This study aimed to investigate the onset, duration, and mechanisms of the rapid antidepressant activity of crocetin (20, 40 and 80 mg/kg, intraperitoneal injection) in male mice subjected to chronic restraint stress (CRS). The results of behavioral tests showed that crocetin exerted rapid antidepressant-like effect in mice with depression-like phenotypes, including rapid normalization of depressive-like behaviors within 3 h, and the effects could be maintained for 2 days. Hematoxylin-eosin (HE) and Nissl staining showed that crocetin ameliorated hippocampal neuroinflammation and nerve injuries in mice with depression-like phenotypes. The levels of inflammatory factors, corticosterone and pro brain-derived neurotrophic factor in crocetin-administrated mice serum were significantly reduced compared with those in the CRS group, as well as the levels of inflammatory factors in hippocampus. What's more, Western blot analyses showed that, compared to CRS-induced mice, the relative levels of mitogen-activated kinase phosphatase 1 and toll-like receptor 4 were significantly reduced after the administration of crocetin, and the relative expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP-response element binding protein, phosphorylated phosphoinositide 3 kinase (p-PI3K)/PI3K, phosphorylated protein kinase B (p-AKT)/AKT, phosphorylated glycogen synthase kinase 3β (p-GSK3β)/GSK3β, phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR were markedly upregulated. In conclusion, crocetin exerted rapid antidepressant effects via suppressing the expression of inflammatory cytokines and the apoptosis of neuronal cells through PI3K/AKT signaling pathways. The rapid antidepressant effect of crocetin (40 mg/kg) could be maintained for at least 2 days after single treatment.
Collapse
Affiliation(s)
- Susu Lin
- The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhaoruncheng Wu
- School of Biomedical engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Fei Fei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- College of Pharmacy, Jiangxi Medical College, Shangrao, 334000, Jiangxi, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Product, School of Advanced Study, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Wenyu Sun
- The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
12
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
13
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
14
|
Zernov N, Popugaeva E. Role of Neuronal TRPC6 Channels in Synapse Development, Memory Formation and Animal Behavior. Int J Mol Sci 2023; 24:15415. [PMID: 37895105 PMCID: PMC10607207 DOI: 10.3390/ijms242015415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The transient receptor potential cation channel, subfamily C, member 6 (TRPC6), has been believed to adjust the formation of an excitatory synapse. The positive regulation of TRPC6 engenders synapse enlargement and improved learning and memory in animal models. TRPC6 is involved in different synaptoprotective signaling pathways, including antagonism of N-methyl-D-aspartate receptor (NMDAR), activation of brain-derived neurotrophic factor (BDNF) and postsynaptic store-operated calcium entry. Positive regulation of TRPC6 channels has been repeatedly shown to be good for memory formation and storage. TRPC6 is mainly expressed in the hippocampus, particularly in the dentate granule cells, cornu Ammonis 3 (CA3) pyramidal cells and gamma-aminobutyric acid (GABA)ergic interneurons. It has been observed that TRPC6 agonists have a great influence on animal behavior including memory formation and storage The purpose of this review is to collect the available information on the role of TRPC6 in memory formation in various parts of the brain to understand how TRPC6-specific pharmaceutical agents will affect memory in distinct parts of the central nervous system (CNS).
Collapse
Affiliation(s)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
15
|
Wong W, Sari Y. Effects of Chronic Hydrocodone Exposure and Ceftriaxone on the Expression of Astrocytic Glutamate Transporters in Mesocorticolimbic Brain Regions of C57/BL Mice. TOXICS 2023; 11:870. [PMID: 37888720 PMCID: PMC10611114 DOI: 10.3390/toxics11100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Exposure to opioids can lead to the alteration of several neurotransmitters. Among these neurotransmitters, glutamate is thought to be involved in opioid dependence. Glutamate neurotransmission is mainly regulated by astrocytic glutamate transporters such as glutamate transporter 1 (GLT-1) and cystine/glutamate antiporter (xCT). Our laboratory has shown that exposure to lower doses of hydrocodone reduced the expression of xCT in the nucleus accumbens (NAc) and the hippocampus. In the present study, we investigated the effects of chronic exposure to hydrocodone, and tested ceftriaxone as a GLT-1 upregulator in mesocorticolimbic brain regions such as the NAc, the amygdala (AMY), and the dorsomedial prefrontal cortex (dmPFC). Eight-week-old male mice were divided into three groups: (1) the saline vehicle control group; (2) the hydrocodone group; and (3) the hydrocodone + ceftriaxone group. Mice were injected with hydrocodone (10 mg/kg, i.p.) or saline for 14 days. On day seven, the hydrocodone/ceftriaxone group was injected with ceftriaxone (200 mg/kg, i.p.) for last seven days. Chronic exposure to hydrocodone reduced the expression of GLT-1, xCT, protein kinase B (AKT), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal Kinase (JNK) in NAc, AMY, and dmPFC. However, hydrocodone exposure increased the expression of G-protein-coupled metabotropic glutamate receptors (mGluR5) in the NAc, AMY, and dmPFC. Importantly, ceftriaxone treatment normalized the expression of mGluR5, GLT-1, and xCT in all these brain regions, except for xCT in the AMY. Importantly, ceftriaxone treatment attenuated hydrocodone-induced downregulation of signaling pathways such as AKT, ERK, and JNK expression in the NAc, AMY, and dmPFC. These findings demonstrate that ceftriaxone has potential therapeutic effects in reversing hydrocodone-induced downregulation of GLT-1 and xCT in selected reward brain regions, and this might be mediated through the downstream kinase signaling pathways such as AKT, ERK, and JNK.
Collapse
Affiliation(s)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
16
|
Iwasa K, Yagishita S, Yagishita-Kyo N, Yamagishi A, Yamamoto S, Yamashina K, Haruta C, Asai M, Maruyama K, Shimizu K, Yoshikawa K. Long term administration of loquat leaves and their major component, ursolic acid, attenuated endogenous amyloid-β burden and memory impairment. Sci Rep 2023; 13:16770. [PMID: 37798424 PMCID: PMC10556093 DOI: 10.1038/s41598-023-44098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Loquat (Eriobotrya japonica) leaves contain many bioactive components such as ursolic acid (UA) and amygdalin. We investigated the effects of loquat leaf powder and methanol extract in human neuroglioma H4 cells stably expressing the Swedish-type APP695 (APPNL-H4 cells) and C57BL/6 J mice. Surprisingly, the extract greatly enhanced cellular amyloid-beta peptide (Aβ) 42 productions in APPNL-H4 cells. Administration of leaf powder increased Aβ42 levels after 3 months and decreased levels after 12 months compared to control mice. Leaf powder had no effect on working memory after 3 months, but improved working memory after 12 months. Administration of UA decreased Aβ42 and P-tau levels and improved working memory after 12 months, similar to the administration of leave powder for 12 months. Amygdalin enhanced cellular Aβ42 production in APPNL-H4 cells, which was the same as the extract. Three-month administration of amygdalin increased Aβ42 levels slightly but did not significantly increase them, which is similar to the trend observed with the administration of leaf powder for 3 months. UA was likely the main compound contained in loquat leaves responsible for the decrease in intracerebral Aβ42 and P-tau levels. Also, amygdalin might be one of the compounds responsible for the transiently increased intracerebral Aβ42 levels.
Collapse
Affiliation(s)
- Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Sosuke Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Nan Yagishita-Kyo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Anzu Yamagishi
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Kota Yamashina
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Chikara Haruta
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Masashi Asai
- Laboratory of Kampo Pharmacology, Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, Kanagawa, 245-0066, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Kuniyoshi Shimizu
- Laboratory of Systematic Forest and Forest Products Sciences, Division of Sustainable Bioresources Science, Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan.
| |
Collapse
|
17
|
Tabrizian N, Nouruzi S, Cui CJ, Kobelev M, Namekawa T, Lodhia I, Talal A, Sivak O, Ganguli D, Zoubeidi A. ASCL1 is activated downstream of the ROR2/CREB signaling pathway to support lineage plasticity in prostate cancer. Cell Rep 2023; 42:112937. [PMID: 37552603 DOI: 10.1016/j.celrep.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.
Collapse
Affiliation(s)
- Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Ishana Lodhia
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Amina Talal
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
18
|
Li H, Gao M, Chen Z, Zhou Z, Li W, Zhang X, Jiang X, Luo L, Li F, Wang G, Zhang Y, Huang X, Zhu J, Fan S, Wu X, Huang C. Hordenine improves Parkinsonian-like motor deficits in mice and nematodes by activating dopamine D2 receptor-mediated signaling. Phytother Res 2023; 37:3296-3308. [PMID: 36883794 DOI: 10.1002/ptr.7790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the striatum, leading to dopamine (DA) deficiency in the striatum and typical motor symptoms. A small molecule as a dietary supplement for PD would be ideal for practical reasons. Hordenine (HOR) is a phenolic phytochemical marketed as a dietary supplement found in cereals and germinated barley, as well as in beer, a widely consumed beverage. This study was aimed to identify HOR as a dopamine D2 receptor (DRD2) agonist in living cells, and investigate the alleviative effect and mechanism of HOR on PD-like motor deficits in mice and nematodes. Our results firstly showed that HOR is an agonist of DRD2, but not DRD1, in living cells. Moreover, HOR could improve the locomotor dysfunction, gait, and postural imbalance in MPTP- or 6-OHDA-induced mice or Caenorhabditis elegans, and prevent α-synuclein accumulation via the DRD2 pathway in C. elegans. Our results suggested that HOR could activate DRD2 to attenuate the PD-like motor deficits, and provide scientific evidence for the safety and reliability of HOR as a dietary supplement.
Collapse
Affiliation(s)
- Hongli Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Gao
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Jiang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Luo
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengjie Fan
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Nakayama H, Ihara D, Fukuchi M, Toume K, Yuri C, Tsuda M, Shibahara N, Tabuchi A. The extract based on the Kampo formula daikenchuto (Da Jian Zhong Tang) induces Bdnf expression and has neurotrophic effects in cultured cortical neurons. J Nat Med 2023; 77:584-595. [PMID: 37148454 DOI: 10.1007/s11418-023-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Reductions in brain-derived neurotrophic factor (BDNF) expression levels have been reported in the brains of patients with neurological disorders such as Alzheimer's disease. Therefore, upregulating BDNF and preventing its decline in the diseased brain could help ameliorate neurological dysfunctions. Accordingly, we sought to discover agents that increase Bdnf expression in neurons. Here, we screened a library of 42 Kampo extracts to identify those with the ability to induce Bdnf expression in cultured cortical neurons. Among the active extracts identified in the screen, we focused on the extract based on the Kampo formula daikenchuto. The extract of daikenchuto in the library used in this study was prepared using the mixture of Zingiberis Rhizoma Processum (ZIN), Zanthoxyli Piperiti Pericarpium (ZAN), and Ginseng Radix (GIN) without Koi. In this study, we defined DKT as the mixture of ZIN, ZAN, and GIN without Koi (DKT extract means the extract prepared from the mixture of ZIN, ZAN, and GIN without Koi). DKT extract significantly increased endogenous Bdnf expression by mediated, at least in part, via Ca2+ signaling involving L-type voltage-dependent Ca2+ channels in cultured cortical neurons. Furthermore, DKT extract significantly improved the survival of cultured cortical neurons and increased neurite complexity in immature neurons. Taken together, our findings suggest that DKT extract induces Bdnf expression and has a neurotrophic effect in neurons. Because BDNF inducers are expected to have therapeutic potential for neurological disorders, re-positioning of Kampo formulations such as daikenchuto may lead to clinical application in diseases associated with reduced BDNF in the brain.
Collapse
Affiliation(s)
- Hironori Nakayama
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan.
| | - Kazufumi Toume
- Department of Medicinal Resources Management, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Chisato Yuri
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Naotoshi Shibahara
- Kampo Education and Training Center, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
20
|
Athaide Rocha KM, Machado FR, Poetini M, Giacomeli R, Boeira SP, Jesse CR, Gomes de Gomes M. Assessment of suberoylanilide hydroxamic acid on a Alzheimer's disease model induced by β-amyloid (1-42) in aged female mice: Neuromodulatory and epigenetic effect. Chem Biol Interact 2023; 375:110429. [PMID: 36870467 DOI: 10.1016/j.cbi.2023.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects several elderly people per years. AD is a pathology of multifactorial etiology, resulting from multiple environmental and genetic determinants. However, there is no effective pharmacological alternative for the treatment of this illness. In this sense, the purpose of current study was to characterize the mechanisms by which Aβ1-42 injection via intracerebroventricular induces neurobehavioral changes in a time-course curve. In addition, suberoylanilide hydroxamic acid (SAHA) inhibitor of histone deacetylase (HDAC) was used to investigate the involvement of epigenetic modifications Aβ1-42-caused in aged female mice. In general manner, Aβ1-42 injection induced a major neurochemical disturbance in hippocampus and prefrontal cortex of animals and a serious impairment of memory. Overall, SAHA treatment attenuated neurobehavioral changes caused by Aβ1-42 injection in aged female mice. The subchronic effects presented of SAHA were through modulation of HDAC activity, regulation of brain-derived neurotrophic factor (BDNF) levels and expression of BDNF mRNA, accompanied by unlocking cAMP/PKA/pCREB pathway in hippocampus and prefrontal cortex of animals.
Collapse
Affiliation(s)
- Kellen Mariane Athaide Rocha
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Franciele Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Márcia Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Renata Giacomeli
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Cristiano Ricardo Jesse
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Marcelo Gomes de Gomes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil.
| |
Collapse
|
21
|
Loan A, Leung JWH, Cook DP, Ko C, Vanderhyden BC, Wang J, Chan HM. Prenatal low-dose methylmercury exposure causes premature neuronal differentiation and autism-like behaviors in a rodent model. iScience 2023; 26:106093. [PMID: 36843845 PMCID: PMC9947313 DOI: 10.1016/j.isci.2023.106093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Aberrant neurodevelopment is a core deficit of autism spectrum disorder (ASD). Here we ask whether a non-genetic factor, prenatal exposure to the environmental pollutant methylmercury (MeHg), is a contributing factor in ASD onset. We showed that adult mice prenatally exposed to non-apoptotic MeHg exhibited key ASD characteristics, including impaired communication, reduced sociability, and increased restrictive repetitive behaviors, whereas in the embryonic cortex, prenatal MeHg exposure caused premature neuronal differentiation. Further single-cell RNA sequencing (scRNA-seq) analysis disclosed that prenatal exposure to MeHg resulted in cortical radial glial precursors (RGPs) favoring asymmetric differentiation to directly generate cortical neurons, omitting the intermediate progenitor stage. In addition, MeHg exposure in cultured RGPs increased CREB phosphorylation and enhanced the interaction between CREB and CREB binding protein (CBP). Intriguingly, metformin, an FDA-approved drug, can reverse MeHg-induced premature neuronal differentiation via CREB/CBP repulsion. These findings provide insights into ASD etiology, its underlying mechanism, and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joseph Wai-Hin Leung
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Chelsea Ko
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Hing Man Chan
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
22
|
Zhen W, Zhen H, Wang Y, Chen L, Niu X, Zhang B, Yang Z, Peng D. Mechanism of ERK/CREB pathway in pain and analgesia. Front Mol Neurosci 2023; 16:1156674. [PMID: 37008781 PMCID: PMC10060514 DOI: 10.3389/fnmol.2023.1156674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Research has long centered on the pathophysiology of pain. The Transient Receiver Potential (TRP) protein family is well known for its function in the pathophysiology of pain, and extensive study has been done in this area. One of the significant mechanisms of pain etiology and analgesia that lacks a systematic synthesis and review is the ERK/CREB (Extracellular Signal-Regulated Kinase/CAMP Response Element Binding Protein) pathway. The ERK/CREB pathway-targeting analgesics may also cause a variety of adverse effects that call for specialized medical care. In this review, we systematically compiled the mechanism of the ERK/CREB pathway in the process of pain and analgesia, as well as the potential adverse effects on the nervous system brought on by the inhibition of the ERK/CREB pathway in analgesic drugs, and we suggested the corresponding solutions.
Collapse
Affiliation(s)
- Weizhe Zhen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Hongjun Zhen
- Department of Orthopaedics, Handan Chinese Medicine Hospital, Handan, Hebei Province, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leian Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Niu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyuan Yang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dantao Peng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dantao Peng,
| |
Collapse
|
23
|
Neuroprotective Effects of Ethanol Extract of Polyscias fruticosa (EEPF) against Glutamate-Mediated Neuronal Toxicity in HT22 Cells. Int J Mol Sci 2023; 24:ijms24043969. [PMID: 36835378 PMCID: PMC9959701 DOI: 10.3390/ijms24043969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
In traditional herbal medicine, the Polyscias fruticosa has been frequently used for the treatment of ischemia and inflammation. Oxidative stress mediated by elevated glutamate levels cause neuronal cell death in ischemia and various neurodegenerative diseases. However, so far, the neuroprotective effects of this plant extract against glutamate-mediated cell death have not been investigated in cell models. The current study investigates the neuroprotective effects of ethanol extracts of Polyscias fruticosa (EEPF) and elucidates the underlying molecular mechanisms of EEPFs relevant to neuroprotection against glutamate-mediated cell death. The oxidative stress-mediated cell death was induced by 5 mM glutamate treatment in HT22 cells. The cell viability was measured by a tetrazolium-based EZ-Cytox reagent and Calcein-AM fluorescent dye. Intracellular Ca2+ and ROS levels were measured by fluorescent dyes, fluo-3 AM and 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA), respectively. Protein expressions of p-AKT, BDNF, p-CREB, Bax, Bcl-2, and apoptosis-inducing factor (AIF) were determined by western blot analysis. The apoptotic cell death was measured by flow cytometry. The in vivo efficacy of EEPF was evaluated using the Mongolian gerbil mouse by surgery-induced brain ischemia. EEPF treatment showed a neuroprotective effect against glutamate-induced cell death. The EEPF co-treatment reduced the intracellular Ca2+ and ROS and apoptotic cell death. Furthermore, it recovered the p-AKT, p-CREB, BDNF, and Bcl-2 levels decreased by glutamate. The EEPF co-treatment suppressed the activation of apoptotic Bax, the nuclear translocation of AIF, and mitogen-activated protein kinase (MAPK) pathway proteins (ERK1/2, p38, JNK). Further, EEPF treatment significantly rescued the degenerative neurons in the ischemia-induced Mongolian gerbil in vivo model. EEPF exhibited neuroprotective properties that suppress glutamate-mediated neurotoxicity. The underlying mechanism of EEPF is increasing the level of p-AKT, p-CREB, BDNF, and Bcl-2 associated with cell survival. It has therapeutic potential for the treatment of glutamate-mediated neuropathology.
Collapse
|
24
|
Study on Neuroprotective Mechanism of Houshiheisan in Ischemic Stroke Based on Transcriptomics and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:8673136. [PMID: 36793760 PMCID: PMC9925249 DOI: 10.1155/2023/8673136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023]
Abstract
Houshiheisan (HSHS), a classic prescription in traditional Chinese medicine (TCM), has shown outstanding efficacy in treating stroke. This study investigated various therapeutic targets of HSHS for ischemic stroke using mRNA transcriptomics. Herein, rats were randomly separated into the sham, model, HSHS 5.25 g/kg (HSHS5.25), and HSHS 10.5 g/kg (HSHS10.5) groups. Rats suffering from stroke were induced by permanent middle cerebral artery occlusion (pMCAO). After seven days of HSHS treatment, behavioral tests were conducted, and histological damage was examined with hematoxylin-eosin (HE). The mRNA expression profiles were identified using microarray analysis and quantitative real-time PCR (qRT-PCR) validated gene expression changes. An analysis of gene ontology and pathway enrichment was conducted to analyze potential mechanisms confirmed using immunofluorescence and western blotting. HSHS5.25 and HSHS10.5 improved neurological deficits and pathological injury in pMCAO rats. The intersections of 666 differentially expressed genes (DEGs) were chosen using transcriptomics analysis in the sham, model, and HSHS10.5 groups. The enrichment analysis suggested that the therapeutic targets of HSHS might regulate the apoptotic process and ERK1/2 signaling pathway, which was related to neuronal survival. Moreover, TUNEL and immunofluorescence analysis indicated that HSHS inhibited apoptosis and enhanced neuronal survival in the ischemic lesion. Western blot and immunofluorescence assay indicated that HSHS10.5 decreased Bax/Bcl-2 ratio and suppressed caspase-3 activation, while the phosphorylation of ERK1/2 and CREB was upregulated in a stroke rat model after HSHS treatment. Effective inhibition of neuronal apoptosis by activating the ERK1/2-CREB signaling pathway may be a potential mechanism for HSHS in the treatment of ischemic stroke.
Collapse
|
25
|
Gupta VS, Kale PP. Combinatory Approaches Targeting Cognitive Impairments and Memory Enhancement: A Review. Curr Drug Targets 2023; 24:55-70. [PMID: 36173073 DOI: 10.2174/1389450123666220928152743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
The objective of this paper is to look at how natural medicines can improve cognition and memory when used with sildenafil, a popular erectile dysfunction medicine that also has nootropic properties. Newer treatment strategies to treat the early stages of these diseases need to be developed. Multiple factors lead to complex pathophysiological conditions, which are responsible for various long-term complications. In this review, a combination of treatments targeting these pathologies is discussed. These combinations may help manage early and later phases of cognitive impairments. The purpose of this article is to discuss a link between these pathologies and a combinational approach with the objective of considering newer therapeutic strategies in the treatment of cognitive impairments. The natural drugs and their ingredients play a major role in the management of disease progression. Additionally, their combination with sildenafil allows for more efficacy and better response. Studies showing the effectiveness of natural drugs and sildenafil are mentioned, and how these combinations could be beneficial for the treatment of cognitive impairments and amnesia are summarised. Furthermore, preclinical and clinical trials are required to explore the medicinal potential of these drug combinations.
Collapse
Affiliation(s)
- Varun Santosh Gupta
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| |
Collapse
|
26
|
Yue Z, Hu B, Chen Z, Zheng G, Wang Y, Yang C, Cao P, Wu X, Liang L, Zang F, Wang J, Li J, Zhang T, Wu J, Chen H. Continuous release of mefloquine featured in electrospun fiber membranes alleviates epidural fibrosis and aids in sensory neurological function after lumbar laminectomy. Mater Today Bio 2022; 17:100469. [PMID: 36340590 PMCID: PMC9633751 DOI: 10.1016/j.mtbio.2022.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Recurrent low back pain after spinal surgeries, such as lumbar laminectomy, is a major complication of excessive epidural fibrosis. Although multiple preclinical and clinical methods have been aimed at ameliorating epidural fibrosis, their safety and efficacy remain largely unclear. Single implanted electrospun fibrous membranes provide physical barriers that can decrease tissue fibrosis after surgery; however, they also trigger local inflammation due to the implantation of a foreign body, thus subsequently attenuating their anti-fibrosis properties. Here, we designed a strategy that permits easy incorporation of mefloquine into polylactic acid membranes, and stable long-term mefloquine release, to potentially improve anti-fibrosis effects and relieve or prevent low back pain. The electrospun fibrous membranes grafted with mefloquine showed a well-controlled early temporary peak release, and secondary drug release occurred smoothly over several weeks. Histopathological and histomorphometric results indicated that the drug-loaded membranes had excellent anti-fibrosis effects after laminectomy in rats. Inflammation and neovascularization at the surgical site indicated that the mefloquine-grafted electrospun fibrous membranes provided sustained anti-inflammatory outcomes while effectively alleviating associated neuropathic pain hypersensitivity. In summary, our study indicated that polylactic acid-mefloquine grafted electrospun fibrous membranes may be a potential local agent to mitigate epidural fibrosis and support sensory neurological function after laminectomy, thereby potentially improving patients' postoperative outcomes.
Collapse
Affiliation(s)
- Zhihao Yue
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhe Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Genjiang Zheng
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen Yang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Cao
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaodong Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Liang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fazhi Zang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianxi Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Li
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai, 200433, China
| | - Tao Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, 200030, Shanghai, China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
Neuroprotective Action of Coumarin Derivatives through Activation of TRKB-CREB-BDNF Pathway and Reduction of Caspase Activity in Neuronal Cells Expressing Pro-Aggregated Tau Protein. Int J Mol Sci 2022; 23:ijms232112734. [PMID: 36361524 PMCID: PMC9654711 DOI: 10.3390/ijms232112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Hyperphosphorylation and aggregation of the microtubule binding protein tau is a neuropathological hallmark of Alzheimer’s disease/tauopathies. Tau neurotoxicity provokes alterations in brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB)/cAMP-response-element binding protein (CREB) signaling to contribute to neurodegeneration. Compounds activating TRKB may therefore provide beneficial effects in tauopathies. LM-031, a coumarin derivative, has demonstrated the potential to improve BDNF signaling in neuronal cells expressing pro-aggregated ΔK280 tau mutant. In this study, we investigated if LM-031 analogous compounds provide neuroprotection effects through interaction with TRKB in SH-SY5Y cells expressing ΔK280 tauRD-DsRed folding reporter. All four LMDS compounds reduced tau aggregation and reactive oxygen species. Among them, LMDS-1 and -2 reduced caspase-1, caspase-6 and caspase-3 activities and promoted neurite outgrowth, and the effect was significantly reversed by knockdown of TRKB. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in these cells, implying that the neuroprotective effects of LMDS-1/2 are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. Furthermore, LMDS-1/2 demonstrated their ability to quench the intrinsic fluorescence of tryptophan residues within the extracellular domain of TRKB, thereby consolidating their interaction with TRKB. Our results suggest that LMDS-1/2 exert neuroprotection through activating TRKB signaling, and shed light on their potential application in therapeutics of Alzheimer’s disease/tauopathies.
Collapse
|
28
|
Jurek B, Denk L, Schäfer N, Salehi MS, Pandamooz S, Haerteis S. Oxytocin accelerates tight junction formation and impairs cellular migration in 3D spheroids: evidence from Gapmer-induced exon skipping. Front Cell Neurosci 2022; 16:1000538. [PMID: 36263085 PMCID: PMC9574052 DOI: 10.3389/fncel.2022.1000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (OXT) is a neuropeptide that has been associated with neurological diseases like autism, a strong regulating activity on anxiety and stress-related behavior, physiological effects during pregnancy and parenting, and various cellular effects in neoplastic tissue. In this study, we aimed to unravel the underlying mechanism that OXT employs to regulate cell-cell contacts, spheroid formation, and cellular migration in a 3D culture model of human MLS-402 cells. We have generated a labeled OXT receptor (OXTR) overexpressing cell line cultivated in spheroids that were treated with the OXTR agonists OXT, Atosiban, and Thr4-Gly7-oxytocin (TGOT); with or without a pre-treatment of antisense oligos (Gapmers) that induce exon skipping in the human OXTR gene. This exon skipping leads to the exclusion of exon 4 and therefore a receptor that lost its intracellular G-protein-binding domain. Sensitive digital PCR (dPCR) provided us with the means to differentiate between wild type and truncated OXTR in our cellular model. OXTR truncation differentially activated intracellular signaling cascades related to cell-cell attachment and proliferation like Akt, ERK1/2-RSK1/2, HSP27, STAT1/5, and CREB, as assessed by a Kinase Profiler Assay. Digital and transmission electron microscopy revealed increased tight junction formation and well-organized cellular protrusions into an enlarged extracellular space after OXT treatment, resulting in increased cellular survival. In summary, OXT decreases cellular migration but increases cell-cell contacts and therefore improves nutrient supply. These data reveal a novel cellular effect of OXT that might have implications for degenerating CNS diseases and tumor formation in various tissues.
Collapse
Affiliation(s)
- Benjamin Jurek
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lucia Denk
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Nicole Schäfer
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Regensburg, Germany
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- *Correspondence: Silke Haerteis
| |
Collapse
|
29
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
30
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
31
|
Chrysanthemum boreale Makino Inhibits Oxidative Stress-Induced Neuronal Damage in Human Neuroblastoma SH-SY5Y Cells by Suppressing MAPK-Regulated Apoptosis. Molecules 2022; 27:molecules27175498. [PMID: 36080264 PMCID: PMC9457777 DOI: 10.3390/molecules27175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress has been demonstrated to play a pivotal role in the pathological processes of many neurodegenerative diseases. In the present study, we demonstrated that Chrysanthemum boreale Makino extract (CBME) suppresses oxidative stress-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanism. Our observations revealed that CBME effectively protected neuronal cells against H2O2-induced cell death by preventing caspase-3 activation, Bax upregulation, Bcl-2 downregulation, activation of three mitogen-activated protein kinases (MAPKs), cAMP response element-binding protein (CREB) and NF-κB phosphorylation, and iNOS induction. These results provide evidence that CBME has remarkable neuroprotective properties in SH-SY5Y cells against oxidative damage, suggesting that the complementary or even alternative role of CBME in preventing and treating neurodegenerative diseases is worth further studies.
Collapse
|
32
|
Cui Z, Liao K, Li S, Gu J, Wang Y, Ding C, Guo Y, Chan HF, Ma JH, Tang S, Chen J. LM22B-10 promotes corneal nerve regeneration through in vitro 3D co-culture model and in vivo corneal injury model. Acta Biomater 2022; 146:159-176. [PMID: 35562005 DOI: 10.1016/j.actbio.2022.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/01/2022]
Abstract
Corneal nerve wounding often causes abnormalities in the cornea and even blindness in severe cases. In this study, we construct a dorsal root ganglion-corneal stromal cell (DRG-CSC, DS) co-culture 3D model to explore the mechanism of corneal nerve regeneration. Firstly, this model consists of DRG collagen grafts sandwiched by orthogonally stacked and orderly arranged CSC-laden plastic compressed collagen. Nerve bundles extend into the entire corneal stroma within 14 days, and they also have orthogonal patterns. This nerve prevents CSCs from apoptosis in the serum withdrawal medium. The conditioned medium (CM) for CSCs in collagen scaffolds contains NT-3, IL-6, and other factors. Among them, NT-3 notably promotes the activation of ERK-CREB in the DRG, leading to the growth of nerve bundles, and IL-6 induces the upregulation of anti-apoptotic genes. Then, LM22B-10, an activator of the NT-3 receptor TrkB/TrkC, can also activate ERK-CREB to enhance nerve growth. After administering LM22B-10 eye drops to regular and diabetic mice with corneal wounding, LM22B-10 significantly improves the healing speed of the corneal epithelium, corneal sensitivity, and corneal nerve density. Overall, the DS co-culture model provides a promising platform and tools for the exploration of corneal physiological and pathological mechanisms, as well as the verification of drug effects in vitro. Meanwhile, we confirm that LM22B-10, as a non-peptide small molecule, has future potential in nerve wound repair. STATEMENT OF SIGNIFICANCE: The cornea accounts for most of the refractive power of the eye. Corneal nerves play an important role in maintaining corneal homeostasis. Once the corneal nerves are damaged, the corneal epithelium and stroma develop lesions. However, the mechanism of the interaction between corneal nerves and corneal cells is still not fully understood. Here, we construct a corneal stroma-nerve co-culture in vitro model and reveal that NT-3 expressed by stromal cells promotes nerve growth by activating the ERK-CREB pathway in nerves. LM22B-10, an activator of NT-3 receptors, can also induce nerve growth in vitro. Moreover, it is used as eye drops to enhance corneal epithelial wound healing, corneal nerve sensitivity and density of nerve plexus in corneal nerve wounding model in vivo.
Collapse
|
33
|
Fritzsche S, Strauss C, Scheller C, Leisz S. Nimodipine Treatment Protects Auditory Hair Cells from Cisplatin-Induced Cell Death Accompanied by Upregulation of LMO4. Int J Mol Sci 2022; 23:ijms23105780. [PMID: 35628594 PMCID: PMC9145067 DOI: 10.3390/ijms23105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Ototoxicity is one of the main dose-limiting side effects of cisplatin chemotherapy and impairs the quality of life of tumor patients dramatically. Since there is currently no established standard therapy targeting hearing loss in cisplatin treatment, the aim of this study was to investigate the effect of nimodipine and its role in cell survival in cisplatin-associated hearing cell damage. To determine the cytotoxic effect, the cell death rate was measured using undifferentiated and differentiated UB/OC−1 and UB/OC−2 cells, after nimodipine pre-treatment and stress induction by cisplatin. Furthermore, immunoblot analysis and intracellular calcium measurement were performed to investigate anti-apoptotic signaling, which was associated with a reduced cytotoxic effect after nimodipine pre-treatment. Cisplatin’s cytotoxic effect was significantly attenuated by nimodipine up to 61%. In addition, nimodipine pre-treatment counteracted the reduction in LIM Domain Only 4 (LMO4) by cisplatin, which was associated with increased activation of Ak strain transforming/protein kinase B (Akt), cAMP response element-binding protein (CREB), and signal transducers and activators of transcription 3 (Stat3). Thus, nimodipine presents a potentially well-tolerated substance against the ototoxicity of cisplatin, which could result in a significant improvement in patients’ quality of life.
Collapse
|
34
|
Modulation of CREB and its associated upstream signaling pathways in pesticide-induced neurotoxicity. Mol Cell Biochem 2022; 477:2581-2593. [PMID: 35596844 PMCID: PMC9618525 DOI: 10.1007/s11010-022-04472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022]
Abstract
Human beings are exposed to various environmental xenobiotics throughout their life consisting of a broad range of physical and chemical agents that impart bodily harm. Among these, pesticide exposure that destroys insects mainly by damaging their central nervous system also exerts neurotoxic effects on humans and is implicated in the etiology of several degenerative disorders. The connectivity between CREB (cAMP Response Element Binding Protein) signaling activation and neuronal activity is of broad interest and has been thoroughly studied in various diseased states. Several genes, as well as protein kinases, are involved in the phosphorylation of CREB, including BDNF (Brain-derived neurotrophic factor), Pi3K (phosphoinositide 3-kinase), AKT (Protein kinase B), RAS (Rat Sarcoma), MEK (Mitogen-activated protein kinase), PLC (Phospholipase C), and PKC (Protein kinase C) that play an essential role in neuronal plasticity, long-term potentiation, neuronal survival, learning, and memory formation, cognitive function, synaptic transmission, and suppressing apoptosis. These elements, either singularly or in a cascade, can result in the modulation of CREB, making it a vulnerable target for various neurotoxic agents, including pesticides. This review provides insight into how these various intracellular signaling pathways converge to bring about CREB activation and how the activated or deactivated CREB levels can affect the gene expression of the upstream molecules. We also discuss the various target genes within the cascade vulnerable to different types of pesticides. Thus, this review will facilitate future investigations associated with pesticide neurotoxicity and identify valuable therapeutic targets.
Collapse
|
35
|
A Flavonoid on the Brain: Quercetin as a Potential Therapeutic Agent in Central Nervous System Disorders. Life (Basel) 2022; 12:life12040591. [PMID: 35455082 PMCID: PMC9027262 DOI: 10.3390/life12040591] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Quercetin is one of the most common, naturally occurring flavonoids, structurally classified to the flavonol subfamily. This compound, found in many edible and medicinal plants either as a free or glycosidated form, has been scientifically exploited for many years, and one could hardly expect it could be a hero of some additional story. Commonly recognized as an anti-inflammatory agent, quercetin not only limits capillary vessel permeability by inhibiting hyaluronidase but also blocks cyclooxygenases and lipoxygenases. As a typical flavonoid, it is also known for its antioxidant effect, which was confirmed by many in vitro and in vivo studies. Throughout the years, numerous other activities were reported for quercetin, including antidiabetic, anti-proliferative, or anti-viral. Of note, recent data have revealed its potential role as a therapeutic agent for several central nervous system disorders. This review provides an overview of available experimental data on quercetin and its complexes with respect to central nervous system diseases, with a main focus on some aspects that were not discussed previously, such as anti-anxiolytic effects, anti-Huntington’s disease activity, or therapeutic potential in brain cancer. Moreover, quercetin’s protective role in some of these diseases is discussed, especially as an anti-neuroinflammatory agent. Bearing in mind the poor bioavailability of this compound, possible options that would enhance its delivery to the site of action are also presented.
Collapse
|
36
|
Strogulski NR, Kopczynski A, de Oliveira VG, Carteri RB, Hansel G, Venturin GT, Greggio S, DaCosta JC, De Bastiani MA, Rodolphi MS, Portela LV. Nandrolone Supplementation Promotes AMPK Activation and Divergent 18[FDG] PET Brain Connectivity in Adult and Aged Mice. Neurochem Res 2022; 47:2032-2042. [PMID: 35415802 DOI: 10.1007/s11064-022-03592-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Decreased anabolic androgen levels are followed by impaired brain energy support and sensing with loss of neural connectivity during physiological aging, providing a neurobiological basis for hormone supplementation. Here, we investigated whether nandrolone decanoate (ND) administration mediates hypothalamic AMPK activation and glucose metabolism, thus affecting metabolic connectivity in brain areas of adult and aged mice. Metabolic interconnected brain areas of rodents can be detected by positron emission tomography using 18FDG-mPET. Albino CF1 mice at 3 and 18 months of age were separated into 4 groups that received daily subcutaneous injections of either ND (15 mg/kg) or vehicle for 15 days. At the in vivo baseline and on the 14th day, brain 18FDG-microPET scans were performed. Hypothalamic pAMPKT172/AMPK protein levels were assessed, and basal mitochondrial respiratory states were evaluated in synaptosomes. A metabolic connectivity network between brain areas was estimated based on 18FDG uptake. We found that ND increased the pAMPKT172/AMPK ratio in both adult and aged mice but increased 18FDG uptake and mitochondrial basal respiration only in adult mice. Furthermore, ND triggered rearrangement in the metabolic connectivity of adult mice and aged mice compared to age-matched controls. Altogether, our findings suggest that ND promotes hypothalamic AMPK activation, and distinct glucose metabolism and metabolic connectivity rearrangements in the brains of adult and aged mice.
Collapse
Affiliation(s)
- N R Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - A Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - V G de Oliveira
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - R B Carteri
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - G Hansel
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - G T Venturin
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - S Greggio
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - J C DaCosta
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - M A De Bastiani
- Zimmer Neuroimaging Lab, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - M S Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - L V Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
37
|
Khonacha SE, Mirbehbahani SH, Rahdar M, Davoudi S, Borjkhani M, Khodaghli F, Motamedi F, Janahmadia M. Kisspeptin-13 prevented the electrophysiological alterations induced by Amyloid-Beta pathology in rat: Possible involvement of stromal interaction molecules and pCREB. Brain Res Bull 2022; 184:13-23. [PMID: 35272006 DOI: 10.1016/j.brainresbull.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease that slowly causing memory impairments with no effective treatment. We have recently reported that kisspeptin-13 (KP-13) ameliorates Aβ toxicity-induced memory deficit in rats. Here, the possible cellular impact of kisspeptin receptor activation in a rat model of the early stage AD was assessed using whole-cell patch-clamp recording from CA1 pyramidal neurons and molecular approaches. Compared to neurons from the control group, cells from the Aβ-treated group displayed spontaneous and evoked hyperexcitability with lower spike frequency adaptation. These cells had also a lower sag ratio in response to hyperpolarizing prepulse current delivered before a depolarizing current injection. Neurons from the Aβ-treated group exhibited short spike onset latency, lower rheobase and short utilization time compared with those in the control group. Furthermore, phase plot analysis of action potential showed that Aβ treatment affected the action potential features. These electrophysiological changes induced by Aβ were associated with increased expression of stromal interaction molecules (STIMs), particularly (STIM2) and decreased pCREB/CREB ratio. Treatment with KP-13 following Aβ injection into the entorhinal cortex, however, prevented the excitatory effect of Aβ on spontaneous and evoked neuronal activity, increased the latency of onset, enhanced the sag ratio, increased the rheobase and utilization time, and prevented the changes induced Aβ on spike parameters. In addition, the KP-13 application after Aβ treatment reduced the expression of STIMs and increased the pCREB/CREB ratio compared to those receiving Aβ treatment alone. In summary, these results provide evidence that activation of kisspeptin receptor may be effective against pathology of Aβ.
Collapse
Affiliation(s)
- Shima Ebrahimi Khonacha
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Fariba Khodaghli
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadia
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Fujisawa M, Takeshita Y, Fujikawa S, Matsuo K, Okamoto M, Tamada M, Shimizu F, Sano Y, Koga M, Kanda T. Exploring lipophilic compounds that induce BDNF secretion in astrocytes beyond the BBB using a new multi-cultured human in vitro BBB model. J Neuroimmunol 2022; 362:577783. [PMID: 34902709 DOI: 10.1016/j.jneuroim.2021.577783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) cannot cross the blood-brain barrier (BBB) when administered peripherally, which hinders its therapeutic potential. We utilized an in vitro BBB model-a tri-culture of a human endothelial cell line, a pericyte cell line, and an astrocyte cell line-to study the effect of twenty candidate lipophilic compounds on stimulating BDNF secretion in pericytes and astrocytes. The prostaglandin E2 receptor 4 agonist and sphingosine-1-phosphate receptor 5 agonist facilitated secretion of BDNF in the astrocyte, but did not decrease the transendothelial electrical resistance. These compounds may be promising agents for neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Miwako Fujisawa
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Susumu Fujikawa
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Kinya Matsuo
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Masashi Okamoto
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Masaya Tamada
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Michiaki Koga
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| |
Collapse
|
39
|
Rhynchosia volubilis Promotes Cell Survival via cAMP-PKA/ERK-CREB Pathway. Pharmaceuticals (Basel) 2022; 15:ph15010073. [PMID: 35056130 PMCID: PMC8778899 DOI: 10.3390/ph15010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Rhynchosia volubilis, a small black bean, has been used as a traditional remedy to treat diseases and maintain health in East Asia, but its cellular effects and molecular mechanisms are not fully understood. The purpose of this study was to investigate the effect of ethanol extract from Rhynchosia volubilis (EERV) on cell survival and to elucidate the biochemical signaling pathways. Our results showed that EERV stimulated the cyclic AMP (cAMP) signal revealed by a fluorescent protein (FP)-based intensiometric sensor. Using a Förster resonance energy transfer (FRET)-based sensor, we further revealed that EERV could activate PKA and ERK signals, which are downstream effectors of cAMP. In addition, we reported that EERV could induce the phosphorylation of CREB, a key signal for cell survival. Thus, our results suggested that EERV protects against apoptosis by activating the cell survival pathway through the cAMP-PKA/ERK-CREB pathway.
Collapse
|
40
|
Chiang NN, Lin TH, Teng YS, Sun YC, Chang KH, Lin CY, Hsieh-Li HM, Su MT, Chen CM, Lee-Chen GJ. Flavones 7,8-DHF, Quercetin, and Apigenin Against Tau Toxicity via Activation of TRKB Signaling in ΔK280 Tau RD-DsRed SH-SY5Y Cells. Front Aging Neurosci 2022; 13:758895. [PMID: 34975454 PMCID: PMC8714935 DOI: 10.3389/fnagi.2021.758895] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with memory loss and cognitive decline. Neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein are one of the pathological hallmarks of several neurodegenerative diseases including AD. Heat shock protein family B (small) member 1 (HSPB1) is a molecular chaperone that promotes the correct folding of other proteins in response to environmental stress. Nuclear factor erythroid 2-like 2 (NRF2), a redox-regulated transcription factor, is the master regulator of the cellular response to excess reactive oxygen species. Tropomyosin-related kinase B (TRKB) is a membrane-bound receptor that, upon binding brain-derived neurotrophic factor (BDNF), phosphorylates itself to initiate downstream signaling for neuronal survival and axonal growth. In this study, four natural flavones such as 7,8-dihydroxyflavone (7,8-DHF), wogonin, quercetin, and apigenin were evaluated for Tau aggregation inhibitory activity and neuroprotection in SH-SY5Y neuroblastoma. Among the tested flavones, 7,8-DHF, quercetin, and apigenin reduced Tau aggregation, oxidative stress, and caspase-1 activity as well as improved neurite outgrowth in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. Treatments with 7,8-DHF, quercetin, and apigenin rescued the reduced HSPB1 and NRF2 and activated TRKB-mediated extracellular signal-regulated kinase (ERK) signaling to upregulate cAMP-response element binding protein (CREB) and its downstream antiapoptotic BCL2 apoptosis regulator (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of these three flavones. Our results suggest 7,8-DHF, quercetin, and apigenin targeting HSPB1, NRF2, and TRKB to reduce Tau aggregation and protect cells against Tau neurotoxicity and may provide new treatment strategies for AD.
Collapse
Affiliation(s)
- Ni-Ni Chiang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Shan Teng
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
41
|
Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177:106099. [DOI: 10.1016/j.phrs.2022.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/15/2022]
|
42
|
Hernandez-Sapiens MA, Reza-Zaldívar EE, Márquez-Aguirre AL, Gómez-Pinedo U, Matias-Guiu J, Cevallos RR, Mateos-Díaz JC, Sánchez-González VJ, Canales-Aguirre AA. Presenilin mutations and their impact on neuronal differentiation in Alzheimer's disease. Neural Regen Res 2022; 17:31-37. [PMID: 34100423 PMCID: PMC8451546 DOI: 10.4103/1673-5374.313016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The presenilin genes (PSEN1 and PSEN2) are mainly responsible for causing early-onset familial Alzheimer's disease, harboring ~300 causative mutations, and representing ~90% of all mutations associated with a very aggressive disease form. Presenilin 1 is the catalytic core of the γ-secretase complex that conducts the intramembranous proteolytic excision of multiple transmembrane proteins like the amyloid precursor protein, Notch-1, N- and E-cadherin, LRP, Syndecan, Delta, Jagged, CD44, ErbB4, and Nectin1a. Presenilin 1 plays an essential role in neural progenitor maintenance, neurogenesis, neurite outgrowth, synaptic function, neuronal function, myelination, and plasticity. Therefore, an imbalance caused by mutations in presenilin 1/γ-secretase might cause aberrant signaling, synaptic dysfunction, memory impairment, and increased Aβ42/Aβ40 ratio, contributing to neurodegeneration during the initial stages of Alzheimer's disease pathogenesis. This review focuses on the neuronal differentiation dysregulation mediated by PSEN1 mutations in Alzheimer's disease. Furthermore, we emphasize the importance of Alzheimer's disease-induced pluripotent stem cells models in analyzing PSEN1 mutations implication over the early stages of the Alzheimer's disease pathogenesis throughout neuronal differentiation impairment.
Collapse
Affiliation(s)
- Mercedes A Hernandez-Sapiens
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Edwin E Reza-Zaldívar
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Ana L Márquez-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Ulises Gómez-Pinedo
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Madrid, España
| | - Jorge Matias-Guiu
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Madrid, España
| | - Ricardo R Cevallos
- Biochemistry and Molecular Genetics Department, University of Alabama, Birmingham, Alabama
| | - Juan C Mateos-Díaz
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
43
|
Banhasasim-Tang Ameliorates Spatial Memory by Suppressing Oxidative Stress through Regulation of ERK/p38 Signaling in Hippocampus of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6970578. [PMID: 34900088 PMCID: PMC8660254 DOI: 10.1155/2021/6970578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Since ancient times, Banhasasim-tang (BHS) has been used to treat functional dyspepsia in East Asia. Here, we aimed to determine the protective action of BHS on hippocampal neurons against oxidative stress. We investigated the functional effect of BHS on a scopolamine-induced mouse model, and molecular analysis was performed in glutamate-induced HT22 cells. We observed that BHS administration ameliorated memory dysfunction in scopolamine-treated mice. BHS administration also increased neuronal survival and acetylcholine activity and phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus of mice. In hippocampal cells, BHS treatment rescued glutamate-induced cytotoxicity, apoptosis, and oxidative stress. We observed an increase of HO-1 and a decrease of Nrf2 protein expression in glutamate-induced oxidative stress; however, the expression level of these proteins was significantly rescued by BHS treatment. BHS treatment also regulated phosphorylation of p38, p53, ERK, and CREB. Therefore, our data indicated that BHS may reduce oxidative stress through regulation of ERK-CREB and p38-p53 signaling in the hippocampus, resulting in decreased neuronal damage and improved memory in rodent models of neurodegenerative disease.
Collapse
|
44
|
Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2 H-Chromen-2-One Activates CREB-Mediated Neuroprotection in A β and Tau Cell Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3058861. [PMID: 34812274 PMCID: PMC8605905 DOI: 10.1155/2021/3058861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Abnormal accumulations of misfolded Aβ and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aβ and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.
Collapse
|
45
|
Multi-Target Effects of Novel Synthetic Coumarin Derivatives Protecting Aβ-GFP SH-SY5Y Cells against Aβ Toxicity. Cells 2021; 10:cells10113095. [PMID: 34831318 PMCID: PMC8619673 DOI: 10.3390/cells10113095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease presenting with progressive memory and cognitive impairments. One of the pathogenic mechanisms of AD is attributed to the aggregation of misfolded amyloid β (Aβ), which induces neurotoxicity by reducing the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TRKB) and increasing oxidative stress, caspase-1, and acetylcholinesterase (AChE) activities. Here, we have found the potential of two novel synthetic coumarin derivatives, ZN014 and ZN015, for the inhibition of Aβ and neuroprotection in SH-SY5Y neuroblastoma cell models for AD. In SH-SY5Y cells expressing the GFP-tagged Aβ-folding reporter, both ZN compounds reduced Aβ aggregation, oxidative stress, activities of caspase-1 and AChE, as well as increased neurite outgrowth. By activating TRKB-mediated extracellular signal-regulated kinase (ERK) and AKT serine/threonine kinase 1 (AKT) signaling, these two ZN compounds also upregulated the cAMP-response-element binding protein (CREB) and its downstream BDNF and anti-apoptotic B-cell lymphoma 2 (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of ZN014 and ZN015. A parallel artificial membrane permeability assay showed that ZN014 and ZN015 could be characterized as blood-brain barrier permeable. Our results suggest ZN014 and ZN015 as novel therapeutic candidates for AD and demonstrate that ZN014 and ZN015 reduce Aβ neurotoxicity via pleiotropic mechanisms.
Collapse
|
46
|
Alghamdi BS, Alshehri FS. Melatonin Blocks Morphine-Induced Place Preference: Involvement of GLT-1, NF-κB, BDNF, and CREB in the Nucleus Accumbens. Front Behav Neurosci 2021; 15:762297. [PMID: 34720901 PMCID: PMC8551802 DOI: 10.3389/fnbeh.2021.762297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Opioid addiction remains a widespread issue despite continuous attempts by the FDA to help maintain abstinence. Melatonin is a neurohormone considered to be involved only in the neuroendocrine and reproductive systems; however, recent reports have demonstrated its potential to attenuate drug addiction and dependence. Cumulative studies have suggested that melatonin can attenuate the rewarding effects of several drugs of abuse, including opioids. This study aimed to investigate the effect of melatonin (50 mg/kg) on morphine (5 mg/kg) to produce place preference. We also investigated the effect of melatonin and morphine on the expression of GLT-1, BDNF, NF-κB, and CREB within the nucleus accumbens. Male Wistar rats were divided into control, morphine, melatonin, and the morphine + melatonin groups. The study involved a two-phase habituation phase from day 1 to day 3 and an acquisition phase from day 5 to day 14. The conditioned place preference (CPP) score, distance traveled, resting time, ambulatory count, and total activity count were measured for all animals. Rats that received morphine showed a significant increase in CPP score compared to those in the control group. Morphine treatment reduced the mRNA expression of GLT-1, BDNF, and CREB and increased that of NF-κB. However, melatonin treatment administered 30 min before morphine treatment attenuated morphine place preference and reversed GLT-1, BDNF, NF-κB, and CREB expression levels. In conclusion, the study results indicate, for the first time, the new potential targets of melatonin in modulating morphine-induced CPP.
Collapse
Affiliation(s)
- Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
47
|
Ahn YJ, Shin HJ, Jeong EA, An HS, Lee JY, Jang HM, Kim KE, Lee J, Shin MC, Roh GS. Exendin-4 Pretreatment Attenuates Kainic Acid-Induced Hippocampal Neuronal Death. Cells 2021; 10:cells10102527. [PMID: 34685508 PMCID: PMC8534217 DOI: 10.3390/cells10102527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Exendin-4 (Ex-4) is a glucagon-like peptide-1 receptor (GLP-1R) agonist that protects against brain injury. However, little is known about the effect of Ex-4 on kainic acid (KA)-induced seizures and hippocampal cell death. Therefore, this study evaluated the neuroprotective effects of Ex-4 pretreatment in a mouse model of KA-induced seizures. Three days before KA treatment, mice were intraperitoneally injected with Ex-4. We found that Ex-4 pretreatment reversed KA-induced reduction of GLP-1R expression in the hippocampus and attenuated KA-induced seizure score, hippocampal neuronal death, and neuroinflammation. Ex-4 pretreatment also dramatically reduced hippocampal lipocalin-2 protein in KA-treated mice. Furthermore, immunohistochemical studies showed that Ex-4 pretreatment significantly alleviated blood–brain barrier leakage. Finally, Ex-4 pretreatment stimulated hippocampal expression of phosphorylated cyclic adenosine monophosphate (cAMP) response element-binding protein (p-CREB), a known target of GLP-1/GLP-1R signaling. These findings indicate that Ex-4 pretreatment may protect against KA-induced neuronal damage by regulating GLP-1R/CREB-mediated signaling pathways.
Collapse
Affiliation(s)
- Yu-Jeong Ahn
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Hyun-Joo Shin
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Eun-Ae Jeong
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Hyeong-Seok An
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Jong-Youl Lee
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Hye-Min Jang
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Kyung-Eun Kim
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Jaewoong Lee
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Meong-Cheol Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea;
| | - Gu-Seob Roh
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
- Correspondence: ; Tel.: +82-55-772-8035; Fax: +82-55-772-8039
| |
Collapse
|
48
|
Lee M, Ban JJ, Won BH, Im W, Kim M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington's disease. In Vitro Cell Dev Biol Anim 2021; 57:641-648. [PMID: 34128157 DOI: 10.1007/s11626-021-00595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington's disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Bo Hee Won
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Institute of Women's Life Medical Science, Gangnam Severance Hospital, Seoul, South Korea.
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Neuroscience Research Institute, College of Medicine, Seoul National University , Seoul, South Korea. .,Protein Metabolism and Neuroscience Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
49
|
Adu-Nti F, Gao X, Wu JM, Li J, Iqbal J, Ahmad R, Ma XM. Osthole Ameliorates Estrogen Deficiency-Induced Cognitive Impairment in Female Mice. Front Pharmacol 2021; 12:641909. [PMID: 34025413 PMCID: PMC8134730 DOI: 10.3389/fphar.2021.641909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
Loss of endogenous estrogen and dysregulation of the estrogen receptor signaling pathways are associated with an increase in risk for cognitive deficit and depression in women after menopause. Estrogen therapy for menopause increases the risk of breast and ovarian cancers, and stroke. Therefore, it is critical to find an alternate treatment for menopausal women. Osthole (OST), a coumarin, has been reported to have neuroprotective effects. This study examined whether OST improves ovariectomy (OVX)-induced cognitive impairment, and alleviates anxiety- and depression-like behaviors induced by OVX in mice. Adult female C57BL/6J mice were ovariectomized and then treated with OST at a dose of 30 mg/kg for 14 days. At the end of the treatment period, behavioral tests were used to evaluate spatial learning and memory, recognition memory, anxiety- and depression-like behaviors. A cohort of the mice were sacrificed after 14 days of OST treatment and their hippocampi were collected for measurement of the proteins of interest using western blot. OVX-induced alteration in the levels of proteins was accompanied by cognitive deficit, anxiety- and depression-like behaviors. OST treatment improved cognitive deficit, alleviated anxiety- and depression-like behaviors induced by OVX, and reversed OVX-induced alterations in the levels of synaptic proteins and ERα, BDNF, TrKB, p-CREB, p-Akt and Rac1 in the hippocampus. Therefore, reversal of OVX-induced decrease in the levels of hippocampal proteins by OST might contribute to the effects of OST on improving cognitive deficit and alleviating anxiety- and depression-like behaviors induced by OVX.
Collapse
Affiliation(s)
- Frank Adu-Nti
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Gao
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jia-Min Wu
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jing Li
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Javed Iqbal
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Riaz Ahmad
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States
| |
Collapse
|
50
|
Oh SY, Jang MJ, Choi YH, Hwang H, Rhim H, Lee B, Choi CW, Kim MS. Central administration of afzelin extracted from Ribes fasciculatum improves cognitive and memory function in a mouse model of dementia. Sci Rep 2021; 11:9182. [PMID: 33911138 PMCID: PMC8080596 DOI: 10.1038/s41598-021-88463-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders are characterized by the decline of cognitive function and the progressive loss of memory. The dysfunctions of the cognitive and memory system are closely related to the decreases in brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) signalings. Ribes fasciculatum, a medicinal plant grown in diverse countries, has been reported to pharmacological effects for autoimmune diseases and aging recently. Here we found that afzelin is a major compound in Ribes fasciculatum. To further examine its neuroprotective effect, the afzelin (100 ng/µl, three times a week) was administered into the third ventricle of the hypothalamus of C57BL/6 mice for one month and scopolamine was injected (i.p.) to these mice to impair cognition and memory before each behavior experiment. The electrophysiology to measure long-term potentiation and behavior tests for cognitive and memory functions were performed followed by investigating related molecular signaling pathways. Chronic administration of afzelin into the brain ameliorated synaptic plasticity and cognitive/memory behaviors in mice given scopolamine. Studies of mice's hippocampi revealed that the response of afzelin was accountable for the restoration of the cholinergic systems and molecular signal transduction via CREB-BDNF pathways. In conclusion, the central administration of afzelin leads to improved neurocognitive and neuroprotective effects on synaptic plasticity and behaviors partly through the increase in CREB-BDNF signaling.
Collapse
Affiliation(s)
- So-Young Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| | - Min Jun Jang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yun-Hyeok Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do, Republic of Korea
| | - Hongik Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology KIST School, Seoul, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- Division of Bio-Medical Science & Technology, University of Science and Technology KIST School, Seoul, Republic of Korea.
| |
Collapse
|