1
|
Canli K, Turu D, Benek A, Bozyel ME, Simsek Ö, Altuner EM. Biochemical and Antioxidant Properties as well as Antimicrobial and Antibiofilm Activities of Allium scorodoprasum subsp. jajlae (Vved.) Stearn. Curr Issues Mol Biol 2023; 45:4970-4984. [PMID: 37367065 DOI: 10.3390/cimb45060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, the chemical composition and biological activity of Allium scorodoprasum subsp. jajlae (Vved.) Stearn were investigated for the first time, focusing on its antimicrobial, antioxidant, and antibiofilm properties. A GC-MS analysis was employed to evaluate the composition of its secondary metabolites, identifying linoleic acid, palmitic acid, and octadecanoic acid 2,3-dihydroxypropyl ester as the major compounds in ethanol extract. The antimicrobial activity of A. scorodoprasum subsp. jajlae was assessed against 26 strains, including standard, food isolate, clinical isolate, and multidrug-resistant ones, as well as three Candida species using the disc diffusion method and the determination of the minimum inhibitory concentration (MIC). The extract showed strong antimicrobial activity against Staphylococcus aureus strains, including methicillin-resistant and multidrug-resistant strains, as well as Candida tropicalis and Candida glabrata. Its antioxidant capacity was evaluated using the DPPH method, revealing a high level of antioxidant activity in the plant. Additionally, the antibiofilm activity of A. scorodoprasum subsp. jajlae was determined, demonstrating a reduction in biofilm formation for the Escherichia coli ATCC 25922 strain and an increase in biofilm formation for the other tested strains. The findings suggest potential applications of A. scorodoprasum subsp. jajlae in the development of novel antimicrobial, antioxidant, and antibiofilm agents.
Collapse
Affiliation(s)
- Kerem Canli
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Turkey
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Izmir 35390, Turkey
| | - Dilay Turu
- Department of Biology, Graduate School of Natural and Applied Science, Dokuz Eylül University, Izmir 35390, Turkey
| | - Atakan Benek
- Department of Biology, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu 37150, Turkey
| | - Mustafa Eray Bozyel
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Turkey
| | - Özcan Simsek
- Department of Forestry, Yenice Vocational School, Çanakkale Onsekiz Mart University, Çanakkale 17950, Turkey
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu 37150, Turkey
| |
Collapse
|
2
|
Rababi D, Nag A. Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study. 3 Biotech 2023; 13:174. [PMID: 37180429 PMCID: PMC10170460 DOI: 10.1007/s13205-023-03595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
The current study attempted to evaluate the potential of fifty-three (53) natural compounds as Nipah virus attachment glycoprotein (NiV G) inhibitors through in silico molecular docking study. Pharmacophore alignment of the four (4) selected compounds (Naringin, Mulberrofuran B, Rutin and Quercetin 3-galactoside) through Principal Component Analysis (PCA) revealed that common pharmacophores, namely four H bond acceptors, one H bond donor and two aromatic groups were responsible for the residual interaction with the target protein. Out of these four compounds, Naringin was found to have the highest inhibitory potential ( - 9.19 kcal mol-1) against the target protein NiV G, when compared to the control drug, Ribavirin ( - 6.95 kcal mol-1). The molecular dynamic simulation revealed that Naringin could make a stable complex with the target protein in the near-native physiological condition. Finally, MM-PBSA (Molecular Mechanics-Poisson-Boltzmann Solvent-Accessible Surface Area) analysis in agreement with our molecular docking result, showed that Naringin ( - 218.664 kJ mol-1) could strongly bind with the target protein NiV G than the control drug Ribavirin ( - 83.812 kJ mol-1). Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03595-y.
Collapse
Affiliation(s)
- Deblina Rababi
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| | - Anish Nag
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
3
|
Anyamele T, Onwuegbuchu PN, Ugbogu EA, Ibe C. Phytochemical composition, bioactive properties, and toxicological profile of Tetrapleura tetraptera. Bioorg Chem 2023; 131:106288. [PMID: 36470194 DOI: 10.1016/j.bioorg.2022.106288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The use of medicinal plants has gained renewed wide popularity in Africa, Asia, and most parts of the world because of the decreasing efficacy of synthetic drugs. Thus, natural products serve as a potent source of alternative remedy. Tetrapleura tetraptera is a medicinal plant with cultural and traditional significance in West Africa. In addition to the plant being commonly used as a spice in the preparation of traditional spicy food for postpartum care it is also widely used to constitute herbal concoctions and decoctions for treatment of diseases. This review aimed to provide an up-to-date information on the ethnomedicinal uses, pharmacological activities and phytoconstituents of T. tetraptera. Preclinical studies regarding the plant's toxicity profile were also reviewed. For this updated review, literature search was done on PubMed, Science Direct, Wiley, and Google Scholar databases using the relevant keywords. The review used a total of 106 papers that met the inclusion criteria from January 1989 - February 2022 and summarised the bioactivities that have been reported for the rich phytoconstituents of T. tetraptera studied using various chemical methods. Considering the huge report, the review focused on the antimicrobial and antiinflammatory activities of the plant extracts and isolated compounds. Aridan, aridanin and several bioactive compounds of T. tetraptera have shown pharmacological activities though their mechanisms of action are yet to be fully understood. This study also highlighted the influence of plant parts and extraction solvents on its biological activities. It also presented data on the toxicological profile of the plant extracts using different models. From cultural uses to modern pharmacological research the bioactive compounds of T. tetraptera have proved effective in infectious disease management. We hope that this paper provided a robust summary of the biological activities and toxicological profile of T. tetraptera, thus calling for more research into the pharmacological and pharmacokinetic activities of natural products to help combat the growing threat of drug resistance and provide guidelines for their ethnomedicinal uses.
Collapse
Affiliation(s)
- ThankGod Anyamele
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | | | - Eziuche Amadike Ugbogu
- Department of Biochemistry, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria.
| |
Collapse
|
4
|
Minadakis G, Tomazou M, Dietis N, Spyrou GM. Vir2Drug: a drug repurposing framework based on protein similarities between pathogens. Brief Bioinform 2022; 24:6895455. [PMID: 36513376 PMCID: PMC9851336 DOI: 10.1093/bib/bbac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
We draw from the assumption that similarities between pathogens at both pathogen protein and host protein level, may provide the appropriate framework to identify and rank candidate drugs to be used against a specific pathogen. Vir2Drug is a drug repurposing tool that uses network-based approaches to identify and rank candidate drugs for a specific pathogen, combining information obtained from: (a) ranked pathogen-to-pathogen networks based on protein similarities between pathogens, (b) taxonomy distance between pathogens and (c) drugs targeting specific pathogen's and host proteins. The underlying pathogen networks are used to screen drugs by means of specific methodologies that account for either the host or pathogen's protein targets. Vir2Drug is a useful and yet informative tool for drug repurposing against known or unknown pathogens especially in periods where the emergence for repurposed drugs plays significant role in handling viral outbreaks, until reaching a vaccine. The web tool is available at: https://bioinformatics.cing.ac.cy/vir2drug, https://vir2drug.cing-big.hpcf.cyi.ac.cy.
Collapse
Affiliation(s)
- George Minadakis
- Corresponding author: George Minadakis, Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus. Tel.: +357-22-392852; Fax: +357-22-358238; E-mail:
| | - Marios Tomazou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus
- PO Box 23462, 1683 Nicosia, Cyprus,The Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus
| | - Nikolas Dietis
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus
- PO Box 23462, 1683 Nicosia, Cyprus,The Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
5
|
Qureshi A, Ouattara LA, El-Sayed NS, Verma A, Doncel GF, Choudhary MI, Siddiqui H, Parang K. Synthesis and Evaluation of Anti-HIV Activity of Mono- and Di-Substituted Phosphonamidate Conjugates of Tenofovir. Molecules 2022; 27:4447. [PMID: 35889320 PMCID: PMC9316519 DOI: 10.3390/molecules27144447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several classes of derivatives were synthesized. The synthesized compounds were characterized by 1H NMR, IR, UV, and mass spectrometry. In addition, several of the synthesized compounds were evaluated as racemic mixtures for anti-HIV activity in vitro in a single round infection assay using TZM-bl cells at 100 ng/mL. TFV (1) was used as a positive control and inhibited HIV infection by 35%. Among all the evaluated compounds, the disubstituted heptanolyl ester alanine phosphonamidate with naphthol oleate (69), pentanolyl ester alanine phosphonamidate with phenol oleate (62), and butanolyl ester alanine phosphonamidate with naphthol oleate (87) ester conjugates of TFV were more potent than parent drug TFV with 79.0%, 76.5%, 71.5% inhibition, respectively, at 100 ng/mL. Furthermore, two fatty acyl amide conjugates of tenofovir alafenamide (TAF) were synthesized and evaluated for comparative studies with TAF and TFV conjugates. Tetradecanoyl TAF conjugate 95 inhibited HIV infection by 99.6% at 100 ng/mL and showed comparable activity to TAF (97-99% inhibition) at 10-100 ng/mL but was more potent than TAF when compared at molar concentration.
Collapse
Affiliation(s)
- Aaminat Qureshi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Louise A. Ouattara
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.A.O.); (G.F.D.)
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
- Cellulose and Paper Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Amita Verma
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.A.O.); (G.F.D.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Biochemistry, King Abdul Aziz University, Jeddah 21452, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Campus C, Surabaya 60115, Indonesia
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
| |
Collapse
|
6
|
Agarwal HK, Chhikara BS, Ye G, Bhavaraju S, Dixit A, Kumar A, Doncel GF, Parang K. Synthesis and Biological Evaluation of 5'- O-Fatty Acyl Ester Derivatives of 3'-Fluoro-2',3'-dideoxythymidine as Potential Anti-HIV Microbicides. Molecules 2022; 27:3352. [PMID: 35630829 PMCID: PMC9143043 DOI: 10.3390/molecules27103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022] Open
Abstract
A number of 5′-O-fatty acyl derivatives of 3′-fluoro-2′,3′-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3′-azido-2′,3′-dideoxythymidine (AZT), 5′-O-(12-azidododecanoyl) (5), 5′-O-myristoyl (6), and 5′-O-(12-thioethyldodecanoyl) (8) derivatives of FLT were found to be more active against both cell-free viruses (lymphocytotropic and monocytotropic strains) with EC50 values of 0.4 μM, 1.1 μM, and <0.2 μM, respectively, as well as cell-associated virus with EC50 values of 12.6, 6.4, and 2.3 μM, respectively. Conjugates 5, 6, and 8 exhibited >4 and >30 times better antiviral index than FLT and AZT, respectively. Conjugates 5 and 8 were significantly more potent than FLT against many multidrug-resistant strains. A comparison of the anti-HIV activity with the corresponding non-hydrolyzable ether conjugates suggested that ester hydrolysis to FLT and fatty acids is critical to enable anti-HIV activity. Cellular uptake studies were conducted using fluorescent derivatives of FLT attached with 5(6)-carboxyfluorescein through either β-alanine (23) or 12-aminododecanoic acid (24) spacers. The lipophilic fluorescent analog with a long chain (24) showed more than 12 times higher cellular uptake profile than the fluorescent analog with a short chain (23). These studies further confirmed that the attachment of fatty acids improved the cellular uptake of nucleoside conjugates. In addition, 5, 6, and 8 were the least cytotoxic and did not alter vaginal cell and sperm viability compared to the positive control, a commercial topical spermicide (N-9), which significantly decreased sperm and vaginal cell viability inducing the generation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Hitesh K. Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, 709 Mall Boulevard, Savannah, GA 31406, USA
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Bhupender S. Chhikara
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Guofeng Ye
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Sitaram Bhavaraju
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Ajay Dixit
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
- ITC Life Science & Technology Center, #3, 1st Main, Peenya Industrial Area, 1st Phase, Bangalore 560058, India
| | - Anil Kumar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
7
|
El-Sayed NS, Jureka AS, Edwards MR, Lohan S, Williams CG, Keiser PT, Davey RA, Totonchy J, Tiwari RK, Basler CF, Parang K. Synthesis and antiviral activity of fatty acyl conjugates of remdesivir against severe acute respiratory syndrome coronavirus 2 and Ebola virus. Eur J Med Chem 2021; 226:113862. [PMID: 34583312 PMCID: PMC8454092 DOI: 10.1016/j.ejmech.2021.113862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/30/2021] [Accepted: 09/18/2021] [Indexed: 01/18/2023]
Abstract
We report here the synthesis, purification, and characterization of mono- and di-fatty acyl conjugates of remdesivir (RDV) and their in vitro antiviral activity against SAR-CoV-2, an Ebola virus transcription- and replication-competent virus-like particle (trVLP) system, and infectious Ebola virus. The most potent monofatty acyl conjugate was 4b, containing a 4-oxatetradecanolyl at the 3' position. Monofatty acyl conjugates, 3'-O-tetradecanoyl (4a) (IC50(VeroE6) = 2.3 μM; IC50(Calu3) = 0.24 μM), 3'-O-4-oxatetradodecanoyl (4b) (IC50(VeroE6) = 2.0 μM; IC50(Calu3) = 0.18 μM), and 3'-O-(12-ethylthiododecanoyl) (4e) (IC50(VeroE6) = 2.4 μM; IC50(Calu3) = 0.25 μM) derivatives exhibited less activity than RDV (IC50(VeroE6) = 0.85 μM; IC50(Calu3) = 0.06 μM) in both VeroE6 and Calu3 cells. Difatty acylation led to a significant reduction in the antiviral activity of RDV (as shown in conjugates 5a and 5b) against SARS-CoV-2 when compared with monofatty acylation (3a-e and 4a-e). About 77.9% of 4c remained intact after 4 h incubation with human plasma while only 47% of parent RDV was observed at the 2 h time point. The results clearly indicate the effectiveness of fatty acylation to improve the half-life of RDV. The antiviral activities of a number of monofatty acyl conjugates of RDV, such as 3b, 3e, and 4b, were comparable with RDV against the Ebola trVLP system. Meanwhile, the corresponding physical mixtures of RDV and fatty acids 6a and 6b showed 1.6 to 2.2 times less antiviral activity than the corresponding conjugates, 4a and 4c, respectively, against SARS-CoV-2 in VeroE6 cells. A significant reduction in viral RNA synthesis was observed for selected compounds 3a and 4b consistent with the IC50 results. These studies indicate the potential of these compounds as long-acting antiviral agents or prodrugs of RDV.
Collapse
Affiliation(s)
- Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA; Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. former (El-Tahrir St.), Dokki, Giza P.O. Box, 12622, Egypt
| | - Alexander S Jureka
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 686 Petit Science Center, Atlanta, GA, 30302, USA
| | - Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 686 Petit Science Center, Atlanta, GA, 30302, USA
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA
| | - Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 686 Petit Science Center, Atlanta, GA, 30302, USA
| | | | - Robert A Davey
- NEIDL, 620 Albany St, Boston University, Boston, MA, 02118, USA
| | - Jennifer Totonchy
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA.
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 686 Petit Science Center, Atlanta, GA, 30302, USA.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA.
| |
Collapse
|
8
|
Kalló G, Kunkli B, Győri Z, Szilvássy Z, Csősz É, Tőzsér J. Compounds with Antiviral, Anti-Inflammatory and Anticancer Activity Identified in Wine from Hungary's Tokaj Region via High Resolution Mass Spectrometry and Bioinformatics Analyses. Int J Mol Sci 2020; 21:E9547. [PMID: 33334025 PMCID: PMC7765363 DOI: 10.3390/ijms21249547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Wine contains a variety of molecules with potential beneficial effects on human health. Our aim was to examine the wine components with high-resolution mass spectrometry including high-resolution tandem mass spectrometry in two wine types made from grapes with or without the fungus Botrytis cinerea, or "noble rot". (2) For LC-MS/MS analysis, 12 wine samples (7 without and 5 with noble rotting) from 4 different wineries were used and wine components were identified and quantified. (3) Results: 288 molecules were identified in the wines and the amount of 169 molecules was statistically significantly different between the two wine types. A database search was carried out to find the molecules, which were examined in functional studies so far, with high emphasis on molecules with antiviral, anti-inflammatory and anticancer activities. (4) Conclusions: A comprehensive functional dataset related to identified wine components is also provided highlighting the importance of components with potential health benefits.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Győri
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 128, 4032 Debrecen, Hungary;
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| |
Collapse
|
9
|
Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Targeting Human Immunodeficiency Virus Type 1 Assembly, Maturation and Budding. Drug Target Insights 2017. [DOI: 10.1177/117739280700200020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Seema Srivastava
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - Miranda Shehu-Xhilaga
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
- Infectious Diseases Unit, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
| |
Collapse
|
10
|
Parang K, Wiebe LI, Knaus EE. Synthesis, in Vitro Anti-Human Immunodeficiency Virus Structure—Activity Relationships and Biological Stability of 5′-O-Myristoyl Analogue Derivatives of 3′-Azido-2′,3′-Dideoxythymidine (AZT) as Potential Prodrugs. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029800900403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
5′- O-Myristoyl analogue derivatives of 3′-azido-2′,3′-dideoxythymidine (AZT), designed as potential double-barrelled prodrugs to AZT and the myristic acid analogues, were synthesized. Their ability to protect CEM cells against human immunodeficiency virus (HIV)-induced cytopathogenicity was determined and structure–activity paradigms were developed. 3′-Azido-2′,3′-dideoxy-5′- O-(4-oxate-tradecanoyl)thymidine (EC50=1.4 nM) and 3′-azido-2′,3′-deoxy-5′- O-(12-bromododecanoyl)thymidine (EC50=3.2 nM) were the most effective anti-HIV-1 agents, relative to AZT (EC50=10 nM). These myristoyl analogue derivatives were more lipophilic (calculated log P=4.5–8.1 range) than the parent compound AZT (log P=0.06), and a linear correlation between their log P and HPLC log retention timeswas observed. The ester cleavage half-lives ( t1/2) for esters upon in vitro incubation with porcine liver esterase, rat plasma or rat brain homogenate was dependent on the steric bulk, and electronegative inductive effect of the α-substituent (H, Br, F), of the 5′- O-myristoyl analogue moiety. 3′-Azido-2′,3′-dideoxy-5′- O-(11-(4-iodophenoxy) undecanoyl)-thymidine exhibited t1/2 values of 80.4, 3.7 and 150.0 min upon incubation with porcine liver esterase, rat plasma and rat brain homogenate, respectively.
Collapse
Affiliation(s)
- K Parang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - LI Wiebe
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - EE Knaus
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| |
Collapse
|
11
|
The (5Z)-5-Pentacosenoic and 5-Pentacosynoic Acids Inhibit the HIV-1 Reverse Transcriptase. Lipids 2015; 50:1043-50. [PMID: 26345647 DOI: 10.1007/s11745-015-4064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
The natural fatty acids (5Z)-5-pentacosenoic and (9Z)-9-pentacosenoic acids were synthesized for the first time in eight steps starting from either 4-bromo-1-butanol or 8-bromo-1-butanol and in 20-58% overall yields, while the novel fatty acids 5-pentacosynoic and 9-pentacosynoic acids were also synthesized in six steps and in 34-43% overall yields. The ∆(5) acids displayed the best IC50's (24-38 µM) against the HIV-1 reverse transcriptase (RT) enzyme, comparable to nervonic acid (IC50 = 12 µM). The ∆(9) acids were not as effective towards HIV-RT with the (9Z)-9-pentacosenoic acid displaying an IC50 = 54 µM and the 9-pentacosynoic acid not inhibiting the enzyme at all. Fatty acid chain length and position of the unsaturation was important for the observed inhibition. None of the synthesized fatty acids were toxic (IC50 > 500 µM) towards peripheral blood mononuclear cells. Molecular modeling studies indicated the structural determinants underlying the biological activity of the most potent compounds. These results provide new insights into the structural requirements that must be present in fatty acids so as to enhance their inhibitory potential towards HIV-RT.
Collapse
|
12
|
Pemmaraju BP, Malekar S, Agarwal HK, Tiwari RK, Oh D, Doncel GF, Worthen DR, Parang K. Design, synthesis, antiviral activity, and pre-formulation development of poly-L-arginine-fatty acyl derivatives of nucleoside reverse transcriptase inhibitors. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:1-15. [PMID: 25513860 DOI: 10.1080/15257770.2014.945649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this work was to design conjugates of anti-HIV nucleosides conjugated with fatty acids and cell-penetrating poly-L-arginine (polyArg) peptides. Three conjugates of polyArg cell-penetrating peptides with fatty acyl derivatives of alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC) were synthesized. In general, the compounds exhibited anti-HIV activity against X4 and R5 cell-free virus with EC50 values of 1.5-16.6 μM. FLT-CO-(CH2)12-CO-(Arg)7 exhibited EC50 values of 2.9 μM and 3.1 μM against X4 and R5 cell-free virus, respectively. The FLT conjugate was selected for further preformulation studies by determination of solution state degradation and lipid solubility. The compound was found to be stable in neutral and oxidative conditions and moderately stable in heated conditions.
Collapse
Affiliation(s)
- Bhanu P Pemmaraju
- a Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy , University of Rhode Island , Kingston , RI , United States
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Landry KA, Sun P, Huang CH, Boyer TH. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. WATER RESEARCH 2015; 68:510-21. [PMID: 25462757 DOI: 10.1016/j.watres.2014.09.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 05/22/2023]
Abstract
This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER.
Collapse
Affiliation(s)
- Kelly A Landry
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA.
| | | | | | | |
Collapse
|
14
|
Pemmaraju B, Agarwal HK, Oh D, Buckheit KW, Buckheit RW, Tiwari R, Parang K. Synthesis and Biological Evaluation of 5'- O-Dicarboxylic Fatty Acyl Monoester Derivatives of Anti-HIV Nucleoside Reverse Transcriptase Inhibitors. Tetrahedron Lett 2014; 55:1983-1986. [PMID: 24791029 PMCID: PMC4001930 DOI: 10.1016/j.tetlet.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of 5'-O-dicarboxylic fatty acyl monoester derivatives of 3'-azido-3'-deoxythymidine (zidovudine, AZT), 2',3'-didehydro-2',3'-dideoxythymidine (stavudine, d4T), and 3'-fluoro-3'-deoxythymidine (alovudine, FLT) were synthesized to improve the lipophilicity and potentially the cellular delivery of parent polar 2', 3'-dideoxynucleoside (ddN) analogues. The compounds were evaluated for their anti-HIV activity. Three different fatty acids with varying chain length of suberic acid (octanedioic acid), sebacic acid (decanedioic acid), and dodecanedioic acid were used for the conjugation with the nucleosides. The compounds were evaluated for anti-HIV activity and cytotoxicity. All dicarboxylic ester conjugates of nucleosides exhibited significantly higher anti-HIV activity than that of the corresponding parent nucleoside analogs. Among all the tested conjugates, 5'-O-suberate derivative of AZT (EC50 = 0.10 nM) was found to be the most potent compound and showed 80-fold higher anti-HIV activity than AZT without any significant toxicity (TC50 > 500 nM).
Collapse
Affiliation(s)
- Bhanu Pemmaraju
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Donghoon Oh
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Karen W. Buckheit
- ImQuest BioSciences Inc. 7340 Executive Way, Suite R, Frederick, MD, 21704, United States
| | - Robert W. Buckheit
- ImQuest BioSciences Inc. 7340 Executive Way, Suite R, Frederick, MD, 21704, United States
| | - Rakesh Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
- School of Pharmacy, Chapman University, Orange, CA, 92618, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
- School of Pharmacy, Chapman University, Orange, CA, 92618, United States
| |
Collapse
|
15
|
Orellano EA, Cartagena MM, Rosado K, Carballeira NM. Synthesis of the novel (±)-2-methoxy-6-icosynoic acid--a fatty acid that induces death of neuroblastoma cells. Chem Phys Lipids 2013; 172-173:14-9. [PMID: 23648411 DOI: 10.1016/j.chemphyslip.2013.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 01/26/2023]
Abstract
The first total synthesis for the novel fatty acid (±)-2-methoxy-6-icosynoic acid was accomplished in seven steps and in a 14% overall yield starting from 2-(4-bromobutoxy)-tetrahydro-2H-pyran. The title compound displayed an EC50=23±1 μM against the human SH-SY5Y neuroblastoma cell line and an EC50=26±1 μM against the human adenocarcinoma cervix cell line (HeLa) after 48 h of exposure. The corresponding non-methoxylated analog 6-icosynoic acid did not display cytotoxicity (EC50>500 μM) toward the studied cell lines as well as the 2-methoxyicosanoic acid (EC50>300 μM). The critical micelle concentration (CMC=20-30 μM) for the (±)-2-methoxy-6-icosynoic acid was also determined. It was found that α-methoxylation decreases the CMC of a fatty acid.
Collapse
Affiliation(s)
- Elsie A Orellano
- Department of Chemistry, University of Puerto Rico, Rio Piedras campus, PO Box 23346, San Juan, PR 00931-3346
| | | | | | | |
Collapse
|
16
|
Agarwal HK, Chhikara BS, Bhavaraju S, Mandal D, Doncel GF, Parang K. Emtricitabine prodrugs with improved anti-HIV activity and cellular uptake. Mol Pharm 2012; 10:467-76. [PMID: 22917277 DOI: 10.1021/mp300361a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three fatty acyl conjugates of (-)-2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC, emtricitabine) were synthesized and evaluated against HIV-1 cell-free and cell-associated virus and compared with the corresponding parent nucleoside and physical mixtures of FTC and fatty acids. Among all the compounds, the myristoylated conjugate of FTC (5, EC(50) = 0.07-3.7 μM) displayed the highest potency. Compound 5 exhibited 10-24 and 3-13-times higher anti-HIV activity than FTC alone (EC(50) = 0.7-88.6 μM) and the corresponding physical mixtures of FTC and myristic acid (14, EC(50) = 0.2-20 μM), respectively. Cellular uptake studies confirmed that compound 5 accumulated intracellularly after 1 h of incubation and underwent intracellular hydrolysis in CCRF-CEM cells. Alternative studies were conducted using the carboxyfluorescein conjugated with FTC though β-alanine (12) and 12-aminododecanoic acid (13). Acylation of FTC with a long-chain fatty acid in 13 improved its cellular uptake by 8.5-20 fold in comparison to 12 with a short-chain β-alanine. Compound 5 (IC(90) = 15.7-16.1 nM) showed 6.6- and 35.2 times higher activity than FTC (IC(90) = 103-567 nM) against multidrug resistant viruses B-NNRTI and B-K65R, indicating that FTC conjugation with myristic acid generates a more potent analogue with a better resistance profile than its parent compound.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | | | | | | | | | |
Collapse
|
17
|
Agarwal HK, Chhikara BS, Hanley MJ, Ye G, Doncel GF, Parang K. Synthesis and Biological Evaluation of Fatty Acyl Ester Derivatives of (−)-2′,3′-Dideoxy-3′-thiacytidine. J Med Chem 2012; 55:4861-71. [PMID: 22533850 DOI: 10.1021/jm300492q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hitesh K. Agarwal
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| | - Bhupender S. Chhikara
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| | - Michael J. Hanley
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| | - Guofeng Ye
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics
and Gynecology, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, Virginia, 23507, United States
| | - Keykavous Parang
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| |
Collapse
|
18
|
Komarasamy TV, Sekaran SD. The anti-proliferative effects of a palm oil-derived product and its mode of actions in human malignant melanoma MeWo cells. J Oleo Sci 2012; 61:227-39. [PMID: 22450124 DOI: 10.5650/jos.61.227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanoma incidence and mortality have risen dramatically in recent years. No effective treatment for metastatic melanoma exists; hence currently, an intense effort for new drug evaluation is being carried out. In this study, we investigated the effects of a palm oil-derived nanopolymer called Bio-12 against human malignant melanoma. The nanopolymers of Bio-12 are lipid esters derived from a range of fatty acids of palm oil. Our study aims to identify the anti-proliferative properties of Bio-12 against human malignant melanoma cell line (MeWo) and to elucidate the mode of actions whereby Bio-12 brings about cell death. Bio-12 significantly inhibited the growth of MeWo cells in a concentration- and time- dependent manner with a median inhibitory concentration (IC₅₀) value of 1/25 dilution after 72 h but was ineffective on human normal skin fibroblasts (CCD-1059sk). We further investigated the mode of actions of Bio-12 on MeWo cells. Cell cycle flow cytometry demonstrated that MeWo cells treated with increasing concentrations of Bio-12 resulted in S-phase arrest, accompanied by the detection of sub-G1 content, indicative of apoptotic cell death. Induction of apoptosis was further confirmed via caspase (substrate) cleavage assay which showed induction of early apoptosis in MeWo cells. In addition, DNA strand breaks which are terminal event in apoptosis were evident through increase of TUNEL positive cells and formation of a characteristic DNA ladder on agarose gel electrophoresis. Moreover, treatment of MeWo cells with Bio-12 induced significant increase in lactate dehydrogenase (LDH) activity. These results show that Bio-12 possesses the ability to suppress proliferation of human malignant melanoma MeWo cells and this suppression is at least partly attributed to the initiation of the S-phase arrest, apoptosis and necrosis, suggesting that it is indeed worth for further investigations.
Collapse
Affiliation(s)
- Thamil Vaani Komarasamy
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
19
|
Agarwal HK, Loethan K, Mandal D, Doncel GF, Parang K. Synthesis and biological evaluation of fatty acyl ester derivatives of 2',3'-didehydro-2',3'-dideoxythymidine. Bioorg Med Chem Lett 2011; 21:1917-21. [PMID: 21382714 DOI: 10.1016/j.bmcl.2011.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
A number of 5'-O-fatty acyl derivatives of 2',3'-didehydro-2',3'-dideoxythymidine (stavudine, d4T) were synthesized and evaluated for anti-HIV activities against cell-free and cell-associated virus, cellular cytotoxicity, and cellular uptake studies. The conjugates were found to be more potent than d4T. Among these conjugates, 5'-O-12-azidododecanoyl derivative of d4T (2), displaying EC(50) = 3.1-22.4 μM, showed 4- to 9-fold higher activities than d4T against cell-free and cell-associated virus. Cellular uptake studies were conducted on CCRF-CEM cell line using 5(6)-carboxyfluorescein derivatives of d4T attached through β-alanine (9) or 12-aminododecanoic acid (10) as linkers. The fluorescein-substituted analog of d4T with long chain length (10) showed 12- to 15-fold higher cellular uptake profile than the corresponding analog with short chain length (9). These studies reveal that conjugation of fatty acids to d4T enhances the cellular uptake and anti-HIV activity of stavudine.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
20
|
García CC, Sepúlveda CS, Damonte EB. Novel therapeutic targets for arenavirus hemorrhagic fevers. Future Virol 2011. [DOI: 10.2217/fvl.10.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Several members of the family Arenaviridae can cause severe hemorrhagic fevers in humans, representing a serious public health problem in endemic areas of Africa and South America. The Lassa virus is the most prevalent and dangerous arenavirus, causing over 300,000 infections per year and several thousand deaths. Furthermore, pathogenic arenaviruses are considered as category A potential agents for bioterrorism. Based on the danger of arenaviruses for human health, the increased emergence of new viral species in recent years and the lack of effective tools for their control or prevention, the search for novel antiviral compounds effective against these pathogenic agents is a continuous demanding effort. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing viral and host proteins essential for virus infection as potential targets for antiviral development.
Collapse
Affiliation(s)
- Cybele C García
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas & Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Claudia S Sepúlveda
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas & Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | | |
Collapse
|
21
|
Agarwal HK, Doncel GF, Parang K. Synthesis and anti-HIV activities of phosphate triester derivatives of 3′-fluoro-2′,3′-dideoxythymidine and 3′-azido-2′,3′-dideoxythymidine. Tetrahedron Lett 2008; 49:4905-4907. [DOI: 10.1016/j.tetlet.2008.05.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Raviolo MA, Sanchez JM, Briñón MC, Perillo MA. Determination of liposome permeability of ionizable carbamates of zidovudine by steady state fluorescence spectroscopy. Colloids Surf B Biointerfaces 2008; 61:188-98. [PMID: 17904827 DOI: 10.1016/j.colsurfb.2007.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/31/2007] [Accepted: 08/08/2007] [Indexed: 11/18/2022]
Abstract
In the present paper the relative permeabilities of AZT-Pyp and AZT-Ethy across a phospholipid bilayer were estimated by the means of fluorescence spectroscopy. The center of spectral mass of both non-encapsulated AZT-derivatives (AZT-der) emission spectra increased as a function of the illumination time inside the spectrofluorimeter cell. This phenomenon was even more evident when drugs were incubated under an UV mercury lamp, suggesting its photolytic origin. AZT-der were protected from photolysis inside liposomes and decomposed upon irradiation when they were free in the aqueous phase. The time-dependent decrease in the fluorescence intensity at a constant wavelength was fitted to a two-exponential equation and the values of rate constants for permeability and photolysis were calculated. It was concluded that AZT-Pyp but not AZT-Ethy diffused across the bilayer. This behavior correlated with the molecular volumes of AZT-Pyp (379.6A(3)) and AZT-Ethy (450.5A(3)), determined from the minimum energy conformations but not with previously reported logP values. These results reinforce the concept that not only lipophilicity but also membrane structure and AZT-der molecular size had a critical influence in passive diffusion across bilayers and may help in future refinements of other AZT-der molecular design.
Collapse
Affiliation(s)
- Mónica A Raviolo
- Departamento de Farmacia, Facultad de Ciencias Químicas, Argentina
| | | | | | | |
Collapse
|
23
|
Strecker T, Maisa A, Daffis S, Eichler R, Lenz O, Garten W. The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 2006; 3:93. [PMID: 17083745 PMCID: PMC1647273 DOI: 10.1186/1743-422x-3-93] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 11/05/2006] [Indexed: 11/10/2022] Open
Abstract
The Z protein is the matrix protein of arenaviruses and has been identified as the main driving force for budding. Both LCMV and Lassa virus Z proteins bud from cells in the absence of other viral proteins as enveloped virus-like particles. Z accumulates near the inner surface of the plasma membrane where budding takes place. Furthermore, biochemical data have shown that Z is strongly membrane associated. The primary sequence of Z lacks a typical transmembrane domain and until now it is not understood by which mechanism Z is able to interact with cellular membranes. In this report, we analyzed the role of N-terminal myristoylation for the membrane binding of Lassa virus Z. We show that disruption of the N-terminal myristoylation signal by substituting the N-terminal glycine with alanine (Z-G2A mutant) resulted in a significant reduction of Z protein association with cellular membranes. Furthermore, removal of the myristoylation site resulted in a relocalization of Z from a punctuate distribution to a more diffuse cellular distribution pattern. Finally, treatment of Lassa virus-infected cells with various myristoylation inhibitors drastically reduced efficient Lassa virus replication. Our data indicate that myristoylation of Z is critical for its binding ability to lipid membranes and thus, for effective virus budding.
Collapse
Affiliation(s)
- Thomas Strecker
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
| | - Anna Maisa
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
| | - Stephane Daffis
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
- Washington University School of Medicine, Department of Infectious Diseases, Box 8051, 660 S. Euclid Avenue, St Louis MO 63110, USA
| | - Robert Eichler
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
- Abbott GmbH & Co KG, Max-Planck-Ring 2, 65205 Wiesbaden, Germany
| | - Oliver Lenz
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
- Tibotec BVBA, Gen De Wittelaan L 11B 3, 2800 Mechelen, Belgium
| | - Wolfgang Garten
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
| |
Collapse
|
24
|
Perez M, Greenwald DL, de la Torre JC. Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 2004; 78:11443-8. [PMID: 15452271 PMCID: PMC521847 DOI: 10.1128/jvi.78.20.11443-11448.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arenavirus small RING finger Z protein is the main driving force of arenavirus budding. The primary structure of Z is devoid of hydrophobic transmembrane domains, but both lymphocytic choriomeningitis virus (LCMV) and Lassa fever virus Z proteins accumulate near the inner surface of the plasma membrane and are strongly membrane associated. All known arenavirus Z proteins contain a glycine (G) at position 2, which is a potential acceptor site for a myristoyl moiety. Metabolic labeling showed incorporation of [(3)H]myristic acid by wild-type Z protein but not by the G2A mutant. The mutation G2A eliminated Z-mediated budding. Likewise, treatment with the myristoylation inhibitor 2-hydroxymyristic acid inhibited Z-mediated budding, eliminated formation of virus-like particles, and caused a dramatic reduction in virus production in LCMV-infected cells. Budding activity was restored in G2A mutant Z proteins by the addition of the myristoylation domain of the tyrosine protein kinase Src to their N termini. These findings indicate N-terminal myristoylation of Z plays a key role in arenavirus budding.
Collapse
Affiliation(s)
- Mar Perez
- The Scripps Research Institute, IMM6, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Sebastian Maurer-Stroh
- IMP-Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| | | |
Collapse
|
26
|
Abstract
Methoxylated lipids have been reviewed emphasizing the alkylglycerol ethers and fatty acids bearing the methoxy group in the alkyl chain. The literature on methoxylated lipids and their derivatives has been divided into four main groups, namely 2-methoxylated alkyl glycerols, omega-methoxylated fatty acids, mid-chain methoxylated fatty acids, and alpha-methoxylated fatty acids. The natural occurrence, biological activity, and synthesis of this interesting group of lipids are discussed. Most of these compounds have been isolated from either bacterial or marine sources, but others are mainly of synthetic origin. Among the interesting biological activities displayed by these compounds the most important are antibacterial, antifungal, antitumor, and antiviral.
Collapse
Affiliation(s)
- N M Carballeira
- Department of Chemistry, University of Puerto Rico, PO Box 23346, San Juan, Puerto Rico 00931-3346.
| |
Collapse
|
27
|
Georgopapadakou NH. Antifungals targeted to protein modification: focus on protein N-myristoyltransferase. Expert Opin Investig Drugs 2002; 11:1117-25. [PMID: 12150705 DOI: 10.1517/13543784.11.8.1117] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Invasive fungal infections have increased dramatically in recent years to become important causes of morbidity and mortality in hospitalised patients. Currently available antifungal drugs for such infections essentially have three molecular targets: 14 alpha demethylase (azoles), ergosterol (polyenes) and beta-1,3-glucan synthase (echinocandins). The first is a fungistatic target vulnerable to resistance development; the second, while a fungicidal target, is not sufficiently different from the host to ensure high selectivity; the third, a fungistatic (Aspergillus) or fungicidal (Candida) target, has limited activity spectrum (gaps: Cryptococcus, emerging fungi) and potential host toxicity that might preclude dose escalation. Drugs aimed at totally new targets are thus needed to increase our chemotherapeutic options and to forestall, alone or in combination chemotherapy, the emergence of drug resistance. Protein N-myristoylation, the cotranslational transfer of the 14-carbon saturated fatty acid myristate from CoA to the amino-terminal glycine of several fungal proteins such as the ADP-ribosylation factor (ARF), presents such an attractive new target. The reaction, catalysed by myristoyl-CoA:protein N-myristoyltransferase (NMT), is essential for viability, is biochemically tractable and has proven potential for selectivity. In the past five years, a number of selective inhibitors of the fungal enzyme, some with potent, broad spectrum antifungal activity, have been reported: myristate analogues, myristoylpeptide derivatives, histidine analogues (peptidomimetics), aminobenzothiazoles, quinolines and benzofurans. A major development has been the publication of the crystal structure of Candida albicans and Saccharomyces cerevisiae NMTs, which has allowed virtual docking of inhibitors on the enzyme and refinement of structure-activity relationships of lead compounds.
Collapse
|
28
|
Staschke KA, Colacino JM. Drug discovery and development of antiviral agents for the treatment of chronic hepatitis B virus infection. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; Spec No:111-83. [PMID: 11548207 DOI: 10.1007/978-3-0348-7784-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A safe and effective vaccine for hepatitis B virus (HBV) has been available for nearly twenty years and currently campaigns to provide universal vaccination in developing countries are underway. Nevertheless, chronic HBV infection remains a leading cause of chronic hepatitis worldwide and there is a strong need for safe and effective antiviral therapies. Attempts to identify and develop antiviral agents to treat chronic HBV infection remains focused on nucleoside analogs such as 3TC (lamivudine), adefovir dipivoxil, (bis-POMPMEA), and others. However, advances in our understanding of the molecular biology of HBV and the development of new assays for HBV polymerase activity, such as the reconstitution of active HBV polymerase in vitro, should facilitate large screening efforts for non-nucleoside reverse transcriptase inhibitors. Recent advances have furthered our understanding of clinical resistance to lamivudine, have provided new approaches to treatment, and have offered new perspectives on the major challenges to the identification and development of antiviral agents for chronic HBV infection. Here, in an update to our previous review article that appeared in this series [59a], we focus on recent advances that have occurred in the areas of virus structure and replication, in vitro viral polymerase assays, cell culture systems, and animal models.
Collapse
Affiliation(s)
- K A Staschke
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN, USA
| | | |
Collapse
|
29
|
Abstract
It is known that infected macrophages play an important role in HIV pathogenesis acting as a reservoir for dissemination of the virus to various organs. Enhanced and/or specific delivery of anti-HIV agents to infected cells is expected to improve their therapeutic index by increasing efficacy and reducing toxicity. Acetylated low density lipoproteins (AcLDL) are known to be taken up by macrophages via scavenger receptors and appear to be good carriers for targeting drug molecules to macrophages. This study investigated the delivery of 3'-azido-3'-deoxythymidine (AZT), an anti-HIV agent, to macrophages using AcLDL. Since the incorporation of AZT into AcLDL was found to be low, several derivatives of AZT including 5'-O-13-oxamyristate-AZT (5'-O-oxaMyr-AZT) have been synthesized as prodrugs. The prodrugs were incorporated into AcLDL using two different methods, namely the contact method and the microemulsion method. Our results demonstrated that the microemulsion method was more effective. The physicochemical properties of the AcLDL/prodrug complex were evaluated by electrophoresis and electron microscopy (EM). Incubation of the complex with plasma resulted in little distribution of the incorporated drug molecules from AcLDL to other components of the plasma, suggesting that the complex was quite stable. Cellular uptake studies using J774.A and U937 demonstrated that AcLDL/prodrug was taken up about 10 times more than AZT. The presence of excess AcLDL was found to inhibit the cellular uptake of AcLDL/5'-O-oxaMyr-AZT by macrophages while excess high density lipoprotein (HDL) or low density lipoprotein (LDL) was found to have little effect, suggesting that the AcLDL/prodrug complex is taken up into macrophages via the scavenger receptor.
Collapse
Affiliation(s)
- J Hu
- School of Pharmacy, Memorial University of Newfoundland, A1B 3V6, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
30
|
Abstract
The role that lipids may play in enveloped viruses is reviewed. Small lipid molecules can influence retrovirus binding to cell receptors, plasma membrane fusion, and transcription. Palmitoylation following myristoylation of viral glycoproteins is required at the transmembrane level for signal transduction as well as for virion budding and maturation. Cholesterol, ether lipids, phospholipids, platelet-activating factor, phosphatidic acids, diacylglycerols, and several analogs and derivatives influence human immunodeficiency virus (HIV) activity; when conjugated with inhibitors of the viral reverse transcriptase (RT) or aspartyl protease these compounds increase drug effectiveness. On the other hand, L-carnitine, in association with the mitochondrial cardiolipins, inhibits myopathy due to continued prescription of drugs [AZT (zidovudine), ddl (didanoside), or ddC (zalcitabine)], and the redox couple of alpha-lipoic-dihydrolipoic acid prevents production of the reactive oxygen species that trigger apoptosis of infected cells, with sphingomyelin breakdown to ceramides. Retroviral infection induces a shift from phospholipid to neutral fat synthesis in host cells, and a long antiviral, i.e., antiprotease, treatment may lead to lipodystrophy. Multitherapy involving lipids and their analogs in association with anti-RT and antiproteases might enhance the inhibition of growth and proliferation of retroviruses.
Collapse
Affiliation(s)
- J Raulin
- Université Denis Diderot (Paris 7), France.
| |
Collapse
|
31
|
Wiebe LI, Knaus EE. Concepts for the design of anti-HIV nucleoside prodrugs for treating cephalic HIV infection. Adv Drug Deliv Rev 1999; 39:63-80. [PMID: 10837768 DOI: 10.1016/s0169-409x(99)00020-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The life cycle of HIV involves nine sequential stages. Of these, the reverse transcription (RT) process is a prime target for drug therapy, using both nucleoside and non-nucleoside inhibitors of RT. There are currently five marketed 2',3'-dideoxynucleoside RT inhibitors, but there is need for drugs with improved therapeutic efficacy, decreased development of resistance and broader spectrum to treat resistant strains.One approach to improve RT inhibitors is through chemical derivatization using metabolically-cleavable linkages that permit timely regeneration of the active nucleoside inside the body at the site of infection (prodrug formation). Four classes of prodrugs are now reviewed: 2',3'-dideoxynucleoside masked phosphates, 5'-O-carboxylic acid esters of 2',3'-dideoxynucleosides, 2',3'-dideoxycytidine N(4)-[(dialkylamino)methylene] prodrugs and 5-halo-6-alkoxy(azido or hydroxy)-5,6-dihydro 2',3'-dideoxynucleosides. Mutually-masking dual action (MMDA) prodrugs that release a nucleoside RT inhibitor and an abnormal N-myristoyl transferase substrate are presented as a special class of anti-HIV prodrugs that have the potential to interact with the life cycle of the virus at two distinct stages.
Collapse
Affiliation(s)
- LI Wiebe
- Noujaim Institute for Pharmaceutical Oncology Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
32
|
Abstract
The effects of two myristic acid analogs on Junin virus (JV) replication were investigated. The compounds chosen for the study were DL-2-hydroxymyristic acid (2OHM), an inhibitor of N-myristoyltransferase (NMT), which binds the enzyme and blocks protein myristoylation, and 13-oxamyristic acid (13OM), a competitive inhibitor of NMT which incorporates into the protein instead of myristic acid. Both types of analogs achieved dose-dependent inhibition of viral multiplication at concentrations not affecting cell viability. The 50% inhibitory concentration values determined by a virus-yield inhibition assay for different strains of JV, including a human pathogenic strain, and for the related arenavirus, Tacaribe, were in the range 1.6 to 20.1 microM, with 13OM as the most active compound. From time of addition and removal experiments, it can be concluded that both analogs inhibit a late stage in the JV replicative cycle, and their effect was partially reversible. The cytoplasmic and surface expression of JV glycoproteins was not affected in the presence of the compounds, as revealed by immunofluorescence staining, suggesting that JV glycoprotein myristoylation would not be essential for the intracellular transport of the envelope proteins, but it may have an important role in their interaction with the plasma membrane during virus budding.
Collapse
Affiliation(s)
- S M Cordo
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
33
|
Colacino JM, Staschke KA. The identification and development of antiviral agents for the treatment of chronic hepatitis B virus infection. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1998; 50:259-322. [PMID: 9670781 DOI: 10.1007/978-3-0348-8833-2_6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hepatitis B virus (HBV) is the leading cause of chronic hepatitis throughout the world. Notwithstanding the availability of a safe and effective vaccine, the world prevalence of HBV has not declined significantly, thus resulting in the need for a selective antiviral agent. HBV is a small, partially double-stranded DNA virus which replicates through an RNA intermediate. Most efforts to develop anti-HBV agents have been targeted to the viral DNA polymerase which possesses reverse transcriptase activity. Currently, the most promising anti-HBV agents are nucleoside analogs which interfere with viral DNA replication. Although earlier nucleoside analogs such as vidarabine (ara-A) and fialuridine (FIAU) have displayed unacceptable toxicities, newer analogs such as lamivudine (3TC), bis-POM PMEA (GS-840), lobucavir, and BMS-200,475 have demonstrated clinical utility. In particular, the use of lamivudine has generated considerable interest in the development of other L-enantiomeric nucleoside analogs for use against HBV. Here, we provide an overview of HBV structure and replication strategy and discuss the use of cell culture systems, in vitro viral polymerase systems, and animal models to identify and evaluate anti-HBV agents. We also discuss the various classes of nucleoside analogs in terms of structure, mechanism of action, status in clinical development, ability to select for resistant HBV variants, and use in combination therapies. Finally, we present a discussion of novel antiviral approaches, including antisense and gene therapy, and address the various challenges to successful anti-HBV chemotherapeutic intervention.
Collapse
Affiliation(s)
- J M Colacino
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN, USA
| | | |
Collapse
|
34
|
Parang K, Knaus EE, Wiebe LI. Synthesis, in vitro anti-HIV activity, and biological stability of 5'-O-myristoyl analogue derivatives of 3'-fluoro-2',3'-dideoxythymidine (FLT) as potential bifunctional prodrugs of FLT. NUCLEOSIDES & NUCLEOTIDES 1998; 17:987-1008. [PMID: 9708320 DOI: 10.1080/07328319808004216] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A group of 5'-O-myristoyl analogue derivatives of FLT (2) were evaluated as potential anti-HIV agents that were designed to serve as prodrugs to FLT. 3'-Fluoro-2',3'-dideoxy-5'-O-(12-methoxydodecanoyl)thymidine (4) (EC50 = 3.8 nM) and 3'-fluoro-2',3'-dideoxy-5'-O-(12-azidododecanoyl)thymidine (8) (EC50 = 2.8 nM) were the most effective anti-HIV-1 agents. There was a linear correlation between Log P and HPLC Log retention time for the 5'-O-FLT esters. The in vitro enzymatic hydrolysis half-life (t1/2), among the group of esters (3-8) in porcine liver esterase, rat plasma and rat brain homogenate was longer for 3'-fluoro-2',3'-dideoxy-5'-O-(myristoyl)thymidine (7), with t1/2 values of 20.3, 4.6 and 17.5 min, respectively.
Collapse
Affiliation(s)
- K Parang
- Faculty of Pharmacy, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
35
|
Parang K, Wiebe LI, Knaus EE. Syntheses and Biological Evaluation of 5′- O-Myristoyl Derivatives of Thymidine against Human Immunodeficiency Virus. Antivir Chem Chemother 1997; 8:417-427. [DOI: 10.1177/095632029700800504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
A series of 5′- Oacyl derivatives of thymidine (dThd) were prepared by direct acylation of thymidine using the Mitsunobu reaction. Further reaction of the bromo analogues with sodium azide gave azido ester analogues. Anti-human immunodeficiency virus type 1 (HIV-1) activities were determined against HIV-infected T4 lymphocytes. 5′- O-(12-Azidododecanoyl)thymidine exhibited moderate activity (EC504.6 μM) against HIV-infected T4 lymphocytes. 5- O-(2-Bromotetradecanoyl)-thymidine was found to be the most stable ester (t1/215.3 min) to hydrolysis by porcine liver esterase in vitro. Partition coefficients (P) in n-octanol-phosphate buffer were determined (log10P range 4.15–6.72) and compared with the theoretical values calculated (log10P 3.96–6.53) using the PALLAS program. Anti-HIV structure-activity data suggest that the experimental partition coefficient should be in the log10P 4.6–4.8 range for optimum anti-HIV activity. The structures of these thymidine analogues were optimized using molecular mechanics (MM+force field) and semi-empirical quantum mechanics PM3 calculations. The moderately active compounds adopted a similar C-2′ endo sugar conformation and exhibited similar energies for the lowest energy conformer. A quantitative structure-activity relationship (QSAR) regression equation was developed, based on the optimized structures and anti-HIV data using the SciQSAR program, which showed that log P was a determinant of anti-HIV activity.
Collapse
Affiliation(s)
- K Parang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - LI Wiebe
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - EE Knaus
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|