1
|
Llopis-Lorente A, Díez P, de la Torre C, Sánchez A, Sancenón F, Aznar E, Marcos MD, Martínez-Ruíz P, Martínez-Máñez R, Villalonga R. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry 2017; 23:4276-4281. [DOI: 10.1002/chem.201700603] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Paula Díez
- Department of Analytical Chemistry; Faculty of Chemistry, Complutense University of Madrid; 28040 Madrid Spain
| | - Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Alfredo Sánchez
- Department of Analytical Chemistry; Faculty of Chemistry, Complutense University of Madrid; 28040 Madrid Spain
- IMDEA Nanoscience Cantoblanco University City; 28049 Madrid Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - María D. Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Paloma Martínez-Ruíz
- Department of Organic Chemistry I, Faculty of Chemistry; Complutense University of Madrid; 28040 Madrid Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry; Faculty of Chemistry, Complutense University of Madrid; 28040 Madrid Spain
- IMDEA Nanoscience Cantoblanco University City; 28049 Madrid Spain
| |
Collapse
|
2
|
Burk JA. Roles of cholinergic receptors during attentional modulation of cue detection. World J Pharmacol 2013; 2:84-91. [DOI: 10.5497/wjp.v2.i4.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/17/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
Basal forebrain corticopetal cholinergic neurons are known to be necessary for normal attentional processing. Alterations of cholinergic system functioning have been associated with several neuropsychiatric diseases, such as Alzheimer’s disease and schizophrenia, in which attentional dysfunction is thought to be a key contributing factor. Loss of cortical cholinergic inputs impairs performance in attention-demanding tasks. Moreover, measures of acetylcholine with microdialysis and, more recently, of choline with enzyme-coated microelectrodes have begun to elucidate the precise cognitive demands that activate the cholinergic system on distinct time scales. However, the receptor actions following acetylcholine release under attentionally-challenging conditions are only beginning to be understood. The present review is designed to summarize the evidence regarding the actions of acetylcholine at muscarinic and nicotinic receptors under cognitively challenging conditions in order to evaluate the functions mediated by these two different cholinergic receptor classes. Moreover, evidence that supports beneficial effects of muscarinic muscarinic-1 receptor agonists and selective nicotinic receptor subtype agonists for cognitive processing will be discussed. Finally, some challenges and limitations of targeting the cholinergic system for treating cognitive deficits along with future research directions will be mentioned. In conclusion, multiple aspects of cholinergic neurotransmission must be considered when attempting to restore function of this neuromodulatory system.
Collapse
|
3
|
Shi Z, Chen L, Li S, Chen S, Sun X, Sun L, Li Y, Zeng J, He Y, Liu X. Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rat is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology (Berl) 2013; 230:245-60. [PMID: 23722831 DOI: 10.1007/s00213-013-3149-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/12/2013] [Indexed: 12/19/2022]
Abstract
RATIONALE Scopolamine, a nonselective muscarinic receptor antagonist, has been used in experimental animal models of dementia. It has been demonstrated to disrupt performances in a battery of behavioral tests. However, no attempt has been made to determine how scopolamine-treated animals would respond to a series of reward-directed instrumental learning (RDIL) tasks. OBJECTIVES The present study was designed to investigate the effects of chronic intraperitoneal injection of scopolamine in Wistar rats on RDIL, as well as on the expression of memory-related molecules in the dorsal hippocampus (DH) and cerebral cortex (CCx). METHODS The effects of the pretraining injection of scopolamine on the acquisition of instrumental response (experiment 1) were first investigated. Then, the effects of post-training manipulation on the maintenance of instrumental response and the responses to changes in contingency degradation and signal discrimination were assessed (experiment 2). Finally, the expression of cyclic AMP response element-binding protein (CREB), phosphorylated CREB, and brain-derived neurotrophic factor in the DH and CCx were examined using Western blotting and enzyme-linked immunosorbent assay. RESULTS The acquisition of instrumental conditioning is more vulnerable than its maintenance. The 3.0-mg/kg dose of scopolamine rendered rats unable to make adaptive changes in facing contingency degradation and correct responses in signal discrimination tasks. Furthermore, CREB signaling was inactivated by pretraining scopolamine treatment in both the DH and CCx. Nevertheless, this pathway was selectively suppressed by post-training treatment only in the CCx during memory reconsolidation. CONCLUSIONS The results suggest that scopolamine-induced cognitive deficits on RDIL are related to the distinguishing alteration of CREB signaling in the DH and CCx.
Collapse
Affiliation(s)
- Zhe Shi
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Malianwa North Road No. 151, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom;
| |
Collapse
|
5
|
Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res 2011; 221:389-411. [DOI: 10.1016/j.bbr.2010.11.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
|
6
|
Klinkenberg I, Blokland A. A comparison of scopolamine and biperiden as a rodent model for cholinergic cognitive impairment. Psychopharmacology (Berl) 2011; 215:549-66. [PMID: 21336581 PMCID: PMC3090581 DOI: 10.1007/s00213-011-2171-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/09/2011] [Indexed: 10/26/2022]
Abstract
RATIONALE The nonselective muscarinic antagonist scopolamine hydrobromide (SCOP) is employed as the gold standard for inducing memory impairments in healthy humans and animals. However, its use remains controversial due to the wide spectrum of behavioral effects of this drug. OBJECTIVE The present study investigated whether biperiden (BIP), a muscarinic m1 receptor antagonist, is to be preferred over SCOP as a pharmacological model for cholinergic memory deficits in rats. This was done by comparing the effects of SCOP and BIP using a battery of operant tasks: fixed ratio (FR5) and progressive ratio (PR10) schedules of reinforcement, an attention paradigm and delayed nonmatching to position task. RESULTS SCOP induced diffuse behavioral disruption, which included sensorimotor responding (FR5, 0.3 and 1 mg/kg), food motivation (PR10, 1 mg/kg), attention (0.3 mg/kg, independent of stimulus duration), and short-term memory (delayed nonmatching to position (DNMTP), 0.1 and 0.3 mg/kg, delay-dependent but also impairment at the zero second delay). BIP induced relatively more selective deficits, as it slowed sensorimotor responding (FR5, 10 mg/kg) and disrupted short-term memory (DNMTP, 3 mg/kg, delay-dependent but no impairment at the zero second delay). BIP had no effect on food motivation (PR10) or attention. CONCLUSION Muscarinic m1 antagonists should be considered an interesting alternative for SCOP as a pharmacological model for cholinergic mnemonic deficits in animals.
Collapse
Affiliation(s)
- Inge Klinkenberg
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands.
| | - Arjan Blokland
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience (EURON), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci Biobehav Rev 2010; 34:1307-50. [DOI: 10.1016/j.neubiorev.2010.04.001] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 01/06/2023]
|
8
|
Coccini T, Crevani A, Rossi G, Assandri F, Balottin U, Nardo RD, Manzo L. Reduced platelet monoamine oxidase type B activity and lymphocyte muscarinic receptor binding in unmedicated children with attention deficit hyperactivity disorder. Biomarkers 2010; 14:513-22. [PMID: 19863190 DOI: 10.3109/13547500903144436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Several lines of evidence support the role of monoaminergic and cholinergic dysregulation in attention deficit hyperactivity disorder (ADHD) and the concept that peripheral blood neurotransmission indices may represent valuable surrogate CNS markers. We determined platelet MAO-B activity (p-MAO-B) and lymphocyte muscarinic cholinergic receptor binding (l-MR) in 44 unmedicated ADHD children (aged 9.1 +/- 2.87 years) and in 26 age-matched controls for comparison. Lower levels of p-MAO-B (approximately 35%) and l-MR (approximately 55%) in ADHD were observed compared with controls. Differences were gender-dependent: p-MAO-B was reduced in males only (5.20 +/- 2.99 vs 8.46 +/- 5.1 nmol mg(-1) protein h(-1) in ADHD and controls, respectively) and l-MR in females only (ADHD vs control: 6.63 +/- 1.75 and 15.30 +/- 8.35 fmol 10(-6) cells). The clinical significance was corroborated by the correlation between these markers and severity of specific symptoms: lower p-MAO-B associated with increased inattention scores (Conners' teacher-rating scale); lower l-MR associated with increased score for oppositional-defiant disorder (ODD) (SNAP-IV); and trend towards correlation between increased inattention (SNAP-IV) and lower l-MR.
Collapse
Affiliation(s)
- Teresa Coccini
- IRCCS Salvatore Maugeri Foundation, Toxicology Division, Institute of Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Coccini T, Manzo L, Debes F, Steuerwald U, Weihe P, Grandjean P. No changes in lymphocyte muscarinic receptors and platelet monoamine oxidase-B examined as surrogate central nervous system biomarkers in a Faroese children cohort prenatally exposed to methylmercury and polychlorinated biphenyls. Biomarkers 2009; 14:67-76. [PMID: 19330584 DOI: 10.1080/13547500902783739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Experimental evidence suggests that monoamine oxidase B (MAO-B) and muscarinic cholinergic receptors (mAChRs) are involved in the pathogenesis of neurotoxicity caused by methylmercury and polychlorinated biphenyls (PCBs). Blood samples from 7-year-old exposed children were analyzed for platelet MAO-B and lymphocyte mAChRs as potential markers of exposure to these neurotoxicants. The blood neurotoxicity biomarkers were compared with prenatal and current exposures and with neuropsychological test results. Both biomarkers showed homogeneous distributions within this cohort (mAChR, range 0.04-36.78 fmol/million cells; MAO-B, 0.95-14.95 nmol mg(-1) protein h(-1)). No correlation was found between the two biomarkers and either blood neurotoxicant concentrations or clinical findings. MAO-B and mAChR sensitivity may not be sufficiently high to assess early, subclinical responses to low/moderate methylmercury and/or PCB exposure, whereas these markers are significantly altered in sustained exposure scenarios, as shown by clinical studies in drug addicts or patients treated with psychopharmacological agents.
Collapse
Affiliation(s)
- Teresa Coccini
- IRCCS Salvatore Maugeri Foundation, Toxicology Division, Institute of Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Original nootropic drug Noopept prevents memory deficit in rats with muscarinic and nicotinic receptor blockade. Bull Exp Biol Med 2008; 146:59-62. [DOI: 10.1007/s10517-008-0209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
McQuail JA, Burk JA. Evaluation of muscarinic and nicotinic receptor antagonists on attention and working memory. Pharmacol Biochem Behav 2006; 85:796-803. [PMID: 17196638 DOI: 10.1016/j.pbb.2006.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/09/2006] [Accepted: 11/21/2006] [Indexed: 02/05/2023]
Abstract
Cholinergic receptor antagonists are commonly used to model attentional and mnemonic impairments associated with neuropsychiatric disorders such as Alzheimer's disease. However, few studies have systematically assessed the effects of these drugs following manipulations that affect attention or working memory within the same task. In the present experiment, rats were trained to discriminate visual signals from "blank" trials when no signal was presented. This task was modified to include retention intervals on some trials to tax working memory. During standard task performance, rats received systemic injections of the muscarinic receptor antagonist, scopolamine, or of the nicotinic receptor antagonist, mecamylamine. A second experiment tested the effects on this task of co-administering doses of scopolamine and mecamylamine that, when administered alone, did not significantly affect task performance. Scopolamine (0.3 and 1.0 mg/kg) decreased detection of 500 ms signals but did not affect accurate identification of non-signals. Scopolamine did not differentially affect performance across the retention interval. Elevated omission rates were associated with high doses of scopolamine or mecamylamine. Combination drug treatment was associated with decreased signal detection and elevated omission rates. Collectively, the data suggest that muscarinic and nicotinic receptor antagonists do not exclusively impair working memory.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Psychology, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | | |
Collapse
|
12
|
Brooks SP, Pask T, Jones L, Dunnett SB. Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. GENES BRAIN AND BEHAVIOR 2005; 4:307-17. [PMID: 16011577 DOI: 10.1111/j.1601-183x.2004.00109.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the characteristic manifestations of several neurodegenerative diseases is the progressive decline in cognitive ability. In order to determine the suitability of six mouse strains (129S2/Sv, BALB/c, C3H/He, C57BL/6j, CBA/Ca and DBA/2) as transgenic background strains, we investigated the performance on a variety of tasks designed to identify subtle changes in cognition. In addition, a test of exploratory behaviour was used to probe the level of underlying anxiety in these mouse strains, as anxiety can be a confounding factor on behavioural performance generally. The C3H/He mice exhibited the least anxiogenic behavioural profile spending most time on the open arms of the maze, in contrast to the 129S2/Sv mice which spent the least amount of time in this location and were the quickest to move into a closed arm. The C3H/He mouse strain failed to acquire a visual discrimination task and failed to demonstrate learning on a water maze spatial learning task, in contrast to the CBA/Ca, DBA/2 and C57BL/6j strains which demonstrated a degree of learning in both tasks. No significant strain differences were identified on the object recognition task. These data, taken together, suggest that care must be taken when choosing cognitive tasks to be used with particular mouse strains and that task sensitivity must be considered as a critical element to research protocols with regard to these mouse strains.
Collapse
Affiliation(s)
- S P Brooks
- School of Biosciences, Cardiff University, and UWCM, Cardiff, UK.
| | | | | | | |
Collapse
|
13
|
Feiro O, Gould TJ. The interactive effects of nicotinic and muscarinic cholinergic receptor inhibition on fear conditioning in young and aged C57BL/6 mice. Pharmacol Biochem Behav 2004; 80:251-62. [PMID: 15680178 DOI: 10.1016/j.pbb.2004.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 11/05/2004] [Accepted: 11/16/2004] [Indexed: 10/26/2022]
Abstract
Both normal aging and age-related disease, such as Alzheimer's disease, have diverse effects on forebrain-dependent cognitive tasks as well as the underlying neurobiological substrates. The purpose of the current study was to investigate if age-related alterations in the function of the cholinergic system are associated with memory impairments in auditory-cued and contextual fear conditioning. Young (2-3 months) and aged (19-20 months) C57BL/6 mice were administered scopolamine (0.1, 0.3, 0.5, or 1.0 mg/kg), a muscarinic cholinergic receptor antagonist, mecamylamine (1.0 and 2.0 mg/kg), a nicotinic cholinergic receptor antagonist, both scopolamine and mecamylamine (0.1 and 1.0 mg/kg, respectively), or saline prior to training. Training consisted of two white-noise CS (85 dB, 30 s)-footshock US (0.57 mA, 2 s) presentations. Testing occurred 48 h post-training. Scopolamine administration impaired contextual and cued fear conditioning in young and aged mice, although the aged mice were less sensitive to disruption by scopolamine. Mecamylamine did not disrupt conditioned fear in the young or aged mice. Scopolamine and mecamylamine co-administration, at doses sub-threshold for disrupting fear conditioning with separate administration, disrupted contextual and auditory-cued fear conditioning in the young mice, indicating that in the young mice the muscarinic and nicotinic cholinergic processes interact in the formation and maintenance of long-term memories for conditioned fear. Co-administration of both antagonists did not disrupt fear conditioning in the aged mice, indicating that age-related alterations in the cholinergic receptor subtypes may occur.
Collapse
Affiliation(s)
- Olivia Feiro
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
14
|
Wolff M, Benhassine N, Costet P, Hen R, Segu L, Buhot MC. Delay-dependent working memory impairment in young-adult and aged 5-HT1BKO mice as assessed in a radial-arm water maze. Learn Mem 2003; 10:401-9. [PMID: 14557613 PMCID: PMC218006 DOI: 10.1101/lm.60103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Serotonin (5-HT) plays a modulatory role in mnemonic functions, especially by interacting with the cholinergic system. The 5-HT1B receptor is a key target of this interaction. The 5-HT1B receptor knockout mice were found previously to exhibit a facilitation in hippocampal-dependent spatial reference memory learning. In the present study, we submitted mice to a delayed spatial working memory task, allowing the introduction of various delays between an exposure trial and a test trial. The 5-HT1BKO and wild-type mice learned the task in a radial-arm water maze (returning to the most recent presented arm containing the escape platform), and exhibited a high level of performance at delays of 0 and 5 min. However, at the delay of 60 min, only 5-HT1BKO mice exhibited an impairment. At a delay of 90 min, all mice were impaired. Treatment by scopolamine (0.8 mg/kg) induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. The 22-month-old wild-type and knockout mice exhibited an impairment at short delays (5 and 15 min). The effect of the mutation affected both young-adult and aged mice at delays of 15, 30, and 60 min. Neurobiological data show that stimulation of the 5-HT1B receptor inhibits the release of acetylcholine in the hippocampus, but stimulates this in the frontal cortex. This dual function might, at least in part, explain the opposite effect of the mutation on reference memory (facilitation) and delay-dependent working memory (impairment). These results support the idea that cholinergic-serotonergic interactions play an important role in memory processes.
Collapse
Affiliation(s)
- Mathieu Wolff
- Centre National de la Recherche Scientifique-UMR 5106, Laboratoire de Neurosciences Cognitives, Universitéde Bordeaux 1, 33405 Talence cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Maviel T, Durkin TP. Role of central cholinergic receptor sub-types in spatial working memory: a five-arm maze task in mice provides evidence for a functional role of nicotinic receptors in mediating trace access processes. Neuroscience 2003; 120:1049-59. [PMID: 12927210 DOI: 10.1016/s0306-4522(03)00403-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A delayed-matching spatial working memory protocol in a 5-arm maze was used to test the hypothesis of differential roles for central nicotinic and muscarinic cholinergic receptors in mediating task performance. In experiment 1, using a within subjects-repeated design, groups of C57Bl/6 mice, previously trained to criterion with a 4 h retention interval separating presentation and test phases, received i.p. injections of either saline, scopolamine (0.8 mg/kg), mecamylamine (8.0 mg/kg), or the combination of scopolamine and mecamylamine before re-testing. Injections were given either, a) 15 min pre-presentation or, b) 30 s, c) 15 min, d) 3 h 45 min post-presentation in order to differentially affect the acquisition, trace maintenance and recall phases. Significant decreases in correct responses were observed for each drug treatment but the effects were a function of the time of treatment. Results of condition d), (i.e.15 min before retention test) confirm previous reports of severe disruption by each antagonist and their combination on retention. However, conditions a-c) show a constant disruption by scopolamine, increasing disruption by mecamylamine, whereas the combined treatment was without effect. Although the data show that central nicotinic and muscarinic antagonists both modulate working memory performance, they indicate first, that scopolamine-induced "amnesia" results, not from selective post-synaptic M1 muscarinic blockade but from indirect over-activation of nicotinic receptors. Second, the observation of high levels of retention although nicotinic and muscarinic receptors had undergone combined blockade during a large part of the retention interval is incompatible with the concept that test-induced activation of central cholinergic neurones mediates memory trace maintenance. Finally, taken with data from experiment 2, using a short (20 min) treatment-to-test interval, we conclude that central nicotinic receptors play a key role in attentional processes enabling working memory trace access during retrieval.
Collapse
Affiliation(s)
- T Maviel
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Université de Bordeaux 1, Avenue des Facultés, 33405, Talence, France
| | | |
Collapse
|