1
|
Bontempi B, Lévêque P, Dubreuil D, Jay TM, Edeline JM. Effects of Head-Only Exposure to 900 MHz GSM Electromagnetic Fields in Rats: Changes in Neuronal Activity as Revealed by c-Fos Imaging without Concomitant Cognitive Impairments. Biomedicines 2024; 12:1954. [PMID: 39335468 PMCID: PMC11428239 DOI: 10.3390/biomedicines12091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Over the last two decades, animal models have been used to evaluate the physiological and cognitive effects of mobile phone exposure. Here, we used a head-only exposure system in rats to determine whether exposure to 900 MHz GSM electromagnetic fields (EMFs) induces regional changes in neuronal activation as revealed by c-Fos imaging. In a first study, rats were exposed for 2 h to brain average specific absorption rates (BASARs) ranging from 0.5 to 6 W/kg. Changes in neuronal activation were found to be dose-dependent, with significant increases in c-Fos expression occurring at BASAR of 1 W/kg in prelimbic, infralimbic, frontal, and cingulate cortices. In a second study, rats were submitted to either a spatial working memory (WM) task in a radial maze or a spatial reference memory (RM) task in an open field arena. Exposures (45 min) were conducted before each daily training session (BASARs of 1 and 3.5 W/kg). Control groups included sham-exposed and control cage animals. In both tasks, behavioral performance evolved similarly in the four groups over testing days. However, c-Fos staining was significantly reduced in cortical areas (prelimbic, infralimbic, frontal, cingulate, and visual cortices) and in the hippocampus of animals engaged in the WM task (BASARs of 1 and 3.5 W/kg). In the RM task, EMF exposure-induced decreases were limited to temporal and visual cortices (BASAR of 1 W/kg). These results demonstrate that both acute and subchronic exposures to 900 MHz EMFs can produce region-specific changes in brain activity patterns, which are, however, insufficient to induce detectable cognitive deficits in the behavioral paradigms used here.
Collapse
Affiliation(s)
- Bruno Bontempi
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux et Ecole Pratique des Hautes Etudes, 33000 Bordeaux, France
| | - Philippe Lévêque
- XLIM, CNRS UMR 6172, Université de Limoges, 87060 Limoges, France
| | - Diane Dubreuil
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| | - Thérèse M Jay
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S 1266 INSERM, Université Paris Cité, 75014 Paris, France
| | - Jean-Marc Edeline
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| |
Collapse
|
2
|
Hasan I, Rubayet Jahan M, Nabiul Islam M, Rafiqul Islam M. Effect of 2400 MHz mobile phone radiation exposure on the behavior and hippocampus morphology in Swiss mouse model. Saudi J Biol Sci 2022; 29:102-110. [PMID: 35002399 PMCID: PMC8716897 DOI: 10.1016/j.sjbs.2021.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Electromagnetic field exposure to the nervous system can cause neurological changes. The effects of extremely low-frequency electromagnetic fields, such as second-generation and third-generation radiation, have been studied in most studies. The current study aimed to explore fourth-generation cellular phone radiation on hippocampal morphology and behavior in mice. Swiss albino male mice (n = 30) were randomly categorized into 3 groups; control, 40 min, and 60 min exposure to 2400 MHz radiofrequency electromagnetic radiation (RF-EMR) daily for 60 days. The control mice were housed in the same environments but were not exposed to anything. Anxiety-like behaviors were tested using the elevated plus-maze. For histological and stereological examination, the brain was dissected from the cranial cavity. On Cresyl violet stained brain slices, the number of pyramidal neurons in the cornu ammonis of the hippocampus were counted. In exposed mice compared to control mice, a significant increase in anxiety-like behavior has been observed. Histological observations have shown many black and dark blue cytoplasmic cells with shrunken morphology degenerative alterations in the neuronal hippocampus in the radiation exposed mice. In the RF-EMR mouse hippocampus, stereological analyses revealed a significant decrease in pyramidal and granule neurons compared to controls. Our findings suggest that 2400-MHz RF-EMR cell phone radiation affects the structural integrity of the hippocampus, which would lead to behavioral changes such as anxiety. However, it alerts us to the possible long-term detrimental effects of exposure to RF-EMR.
Collapse
Affiliation(s)
- Imam Hasan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mir Rubayet Jahan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Mohammad Rafiqul Islam
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
3
|
Bouji M, Lecomte A, Gamez C, Blazy K, Villégier AS. Impact of Cerebral Radiofrequency Exposures on Oxidative Stress and Corticosterone in a Rat Model of Alzheimer's Disease. J Alzheimers Dis 2020; 73:467-476. [PMID: 31796670 DOI: 10.3233/jad-190593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of neurodegenerative disease leading to dementia. Several studies suggested that mobile phone radiofrequency electromagnetic field (RF-EMF) exposures modified AD memory deficits in rodent models. OBJECTIVE Here we aimed to test the hypothesis that RF-EMF exposure may modify memory through corticosterone and oxidative stress in the Samaritan rat model of AD. METHODS Long-Evans male rats received intracerebroventricular infusion with ferrous sulphate, amyloid-beta 1-42 peptide, and buthionine-sufloximine (AD rats) or with vehicle (control rats). To mimic cell phone use, RF-EMF were exposed to the head for 1 month (5 days/week, in restraint). To look for hazard thresholds, high brain averaged specific absorption rates (BASAR) were tested: 1.5 W/Kg (15 min), 6 W/Kg (15 min), and 6 W/Kg (45 min). The sham group was in restraint for 45 min. Endpoints were spatial memory in the radial maze, plasmatic corticosterone, heme oxygenase-1 (HO1), and amyloid plaques. RESULTS Results indicated similar corticosterone levels but impaired memory performances and increased cerebral staining of thioflavine and of HO1 in the sham AD rats compared to the controls. A correlative increase of cortical HO1 staining was the only effect of RF-EMF in control rats. In AD rats, RF-EMF exposures induced a correlative increase of hippocampal HO1 staining and reduced corticosterone. DISCUSSION According to our data, neither AD nor control rats showed modified memory after RF-EMF exposures. Unlike control rats, AD rats showed higher hippocampal oxidative stress and reduced corticosterone with the higher BASAR. This data suggests more fragility related to neurodegenerative disease toward RF-EMF exposures.
Collapse
Affiliation(s)
- Marc Bouji
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France
| | - Anthony Lecomte
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Christelle Gamez
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Kelly Blazy
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Anne-Sophie Villégier
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| |
Collapse
|
4
|
Sienkiewicz Z, van Rongen E. Can Low-Level Exposure to Radiofrequency Fields Effect Cognitive Behaviour in Laboratory Animals? A Systematic Review of the Literature Related to Spatial Learning and Place Memory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1607. [PMID: 31071933 PMCID: PMC6539921 DOI: 10.3390/ijerph16091607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
This review considers whether exposure to low-level radiofrequency (RF) fields, mostly associated with mobile phone technology, can influence cognitive behaviour of laboratory animals. Studies were nominated for inclusion using an a priori defined protocol with preselected criteria, and studies were excluded from analysis if they did not include sufficient details about the exposure, dosimetry or experimental protocol, or if they lacked a sham-exposed group. Overall, 62 studies were identified that have investigated the effects of RF fields on spatial memory and place learning and have been published since 1993. Of these, 17 studies were excluded, 20 studies reported no significant field-related effects, 21 studies reported significant impairments or deficits, and four studies reported beneficial consequences. The data do not suggest whether these outcomes are related to specific differences in exposure or testing conditions, or simply represent chance. However, some studies have suggested possible molecular mechanisms for the observed effects, but none of these has been substantiated through independent replication. Further behavioural studies could prove useful to resolve this situation, and it is suggested that these studies should use a consistent animal model with standardized exposure and testing protocols, and with detailed dosimetry provided by heterogeneous, anatomically-realistic animal models.
Collapse
Affiliation(s)
- Zenon Sienkiewicz
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, UK.
| | - Eric van Rongen
- Health Council of the Netherlands, P.O. Box 16052, 2500 BB The Hague, The Netherlands.
| |
Collapse
|
5
|
Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol Ther (Seoul) 2019; 27:265-275. [PMID: 30481957 PMCID: PMC6513191 DOI: 10.4062/biomolther.2018.152] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Technological advances of mankind, through the development of electrical and communication technologies, have resulted in the exposure to artificial electromagnetic fields (EMF). Technological growth is expected to continue; as such, the amount of EMF exposure will continue to increase steadily. In particular, the use-time of smart phones, that have become a necessity for modern people, is steadily increasing. Social concerns and interest in the impact on the cranial nervous system are increased when considering the area where the mobile phone is used. However, before discussing possible effects of radiofrequency-electromagnetic field (RF-EMF) on the human body, several factors must be investigated about the influence of EMFs at the level of research using in vitro or animal models. Scientific studies on the mechanism of biological effects are also required. It has been found that RF-EMF can induce changes in central nervous system nerve cells, including neuronal cell apoptosis, changes in the function of the nerve myelin and ion channels; furthermore, RF-EMF act as a stress source in living creatures. The possible biological effects of RF-EMF exposure have not yet been proven, and there are insufficient data on biological hazards to provide a clear answer to possible health risks. Therefore, it is necessary to study the biological response to RF-EMF in consideration of the comprehensive exposure with regard to the use of various devices by individuals. In this review, we summarize the possible biological effects of RF-EMF exposure.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
6
|
Occelli F, Lameth J, Adenis V, Huetz C, Lévêque P, Jay TM, Edeline JM, Mallat M. A Single Exposure to GSM-1800 MHz Signals in the Course of an Acute Neuroinflammatory Reaction can Alter Neuronal Responses and Microglial Morphology in the Rat Primary Auditory Cortex. Neuroscience 2018; 385:11-24. [DOI: 10.1016/j.neuroscience.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
|
7
|
Kim JH, Yu DH, Kim HJ, Huh YH, Cho SW, Lee JK, Kim HG, Kim HR. Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice. Toxicol Ind Health 2017; 34:23-35. [DOI: 10.1177/0748233717740066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The exploding popularity of mobile phones and their close proximity to the brain when in use has raised public concern regarding possible adverse effects from exposure to radiofrequency electromagnetic fields (RF-EMF) on the central nervous system. Numerous studies have suggested that RF-EMF emitted by mobile phones can influence neuronal functions in the brain. Currently, there is still very limited information on what biological mechanisms influence neuronal cells of the brain. In the present study, we explored whether autophagy is triggered in the hippocampus or brain stem after RF-EMF exposure. C57BL/6 mice were exposed to 835 MHz RF-EMF with specific absorption rates (SAR) of 4.0 W/kg for 12 weeks; afterward, the hippocampus and brain stem of mice were dissected and analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that several autophagic genes, which play key roles in autophagy regulation, were significantly upregulated only in the hippocampus and not in the brain stem. Expression levels of LC3B-II protein and p62, crucial autophagic regulatory proteins, were significantly changed only in the hippocampus. In parallel, transmission electron microscopy (TEM) revealed an increase in the number of autophagosomes and autolysosomes in the hippocampal neurons of RF-EMF-exposed mice. The present study revealed that autophagy was induced in the hippocampus, not in the brain stem, in 835 MHz RF-EMF with an SAR of 4.0 W/kg for 12 weeks. These results could suggest that among the various adaptation processes to the RF-EMF exposure environment, autophagic degradation is one possible mechanism in specific brain regions.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Da-Hyeon Yu
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hyo-Jeong Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
| | - Seong-Wan Cho
- Department of Pharmaceutical Engineering, Konyang University, Nonsan, Chungnam, South Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| |
Collapse
|
8
|
Wang H, Tan S, Xu X, Zhao L, Zhang J, Yao B, Gao Y, Zhou H, Peng R. Long term impairment of cognitive functions and alterations of NMDAR subunits after continuous microwave exposure. Physiol Behav 2017; 181:1-9. [PMID: 28866028 DOI: 10.1016/j.physbeh.2017.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 08/25/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. METHODS In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. RESULTS Results found that the rats in the 10mW/cm2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. CONCLUSIONS Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Shengzhi Tan
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Hongmei Zhou
- Division of Radiation Protection and Health Physics, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China.
| |
Collapse
|
9
|
Aslan A, İkinci A, Baş O, Sönmez OF, Kaya H, Odacı E. Long-term exposure to a continuous 900 MHz electromagnetic field disrupts cerebellar morphology in young adult male rats. Biotech Histochem 2017; 92:324-330. [DOI: 10.1080/10520295.2017.1310295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- A Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu
| | - A İkinci
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon
| | - O Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu
| | - OF Sönmez
- Department of Neurosurgery, Tepecik Education and Research Hospital, İzmir
| | - H Kaya
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - E Odacı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon
| |
Collapse
|
10
|
The Effects of Acute Mobile Phone Radiation on the Anxiety Level of Male Rats. ACTA ACUST UNITED AC 2017. [DOI: 10.5812/mejrh.43478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Barthélémy A, Mouchard A, Bouji M, Blazy K, Puigsegur R, Villégier AS. Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25343-25355. [PMID: 27696165 DOI: 10.1007/s11356-016-7758-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The widespread mobile phone use raises concerns on the possible cerebral effects of radiofrequency electromagnetic fields (RF EMF). Reactive astrogliosis was reported in neuroanatomical structures of adaptive behaviors after a single RF EMF exposure at high specific absorption rate (SAR, 6 W/kg). Here, we aimed to assess if neuronal injury and functional impairments were related to high SAR-induced astrogliosis. In addition, the level of beta amyloid 1-40 (Aβ 1-40) peptide was explored as a possible toxicity marker. Sprague Dawley male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for 45 min at 6 W/kg. Memory, emotionality, and locomotion were tested in the fear conditioning, the elevated plus maze, and the open field. Glial fibrillary acidic protein (GFAP, total and cytosolic fractions), myelin basic protein (MBP), and Aβ1-40 were quantified in six brain areas using enzyme-linked immunosorbent assay. According to our data, total GFAP was increased in the striatum (+114 %) at 1.5 W/kg. Long-term memory was reduced, and cytosolic GFAP was increased in the hippocampus (+119 %) and in the olfactory bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1-40 expression modification was shown. Our data corroborates previous studies indicating RF EMF-induced astrogliosis. This study suggests that RF EMF-induced astrogliosis had functional consequences on memory but did not demonstrate that it was secondary to neuronal damage.
Collapse
Affiliation(s)
- Amélie Barthélémy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Amandine Mouchard
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Maladies Neurodégénératives CNRS UMR5293 Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Bouji
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Campus des sciences et technologies, Université Saint-Joseph, Dekwaneh, Mar Roukos, Lebanon
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France
| | - Renaud Puigsegur
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Sous-direction de la police technique et scientifique, 31 Avenue Franklin Roosevelt, 69130, Ecully, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France.
| |
Collapse
|
12
|
Kerimoğlu G, Hancı H, Baş O, Aslan A, Erol HS, Turgut A, Kaya H, Çankaya S, Sönmez OF, Odacı E. Pernicious effects of long-term, continuous 900-MHz electromagnetic field throughout adolescence on hippocampus morphology, biochemistry and pyramidal neuron numbers in 60-day-old Sprague Dawley male rats. J Chem Neuroanat 2016; 77:169-175. [PMID: 27430379 DOI: 10.1016/j.jchemneu.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Abstract
The central nervous system (CNS) begins developing in the intrauterine period, a process that continues until adulthood. Contact with chemical substances, drugs or environmental agents such as electromagnetic field (EMF) during adolescence therefore has the potential to disturb the development of the morphological architecture of components of the CNS (such as the hippocampus). The hippocampus is essential to such diverse functions as memory acquisition and integration and spatial maneuvering. EMF can result in severe damage to both the morphology of the hippocampus and its principal functions during adolescence. Although children and adolescents undergo greater exposure to EMF than adults, the information currently available regarding the effects of exposure to EMF during this period is as yet insufficient. This study investigated the 60-day-old male rat hippocampus following exposure to 900 megahertz (MHz) EMF throughout the adolescent period using stereological, histopathological and biochemical analysis techniques. Eighteen male Sprague Dawley rats aged 21days were assigned into control, sham and EMF groups on a random basis. No procedure was performed on the control group rats. The EMF group (EMFGr) was exposed to a 900-MHz EMF for 1h daily from beginning to end of adolescence. The sham group rats were held in the EMF cage but were not exposed to EMF. All rats were sacrificed at 60days of age. Their brains were extracted and halved. The left hemispheres were set aside for biochemical analyses and the right hemispheres were subjected to stereological and histopathological evaluation. Histopathological examination revealed increased numbers of pyknotic neurons with black or dark blue cytoplasm on EMFGr slides stained with cresyl violet. Stereological analyses revealed fewer pyramidal neurons in EMFGr than in the other two groups. Biochemical analyses showed an increase in malondialdehyde and glutathione levels, but a decrease in catalase levels in EMFGr. Our results indicate that oxidative stress-related morphological damage and pyramidal neuron loss may be observed in the rat hippocampus following exposure to 900-MHz EMF throughout the adolescent period.
Collapse
Affiliation(s)
- Gökçen Kerimoğlu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Hancı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Orhan Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Ali Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Hüseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Alpgiray Turgut
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Haydar Kaya
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Soner Çankaya
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Osman Fikret Sönmez
- Department of Neurosurgery, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Ersan Odacı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
13
|
Petitdant N, Lecomte A, Robidel F, Gamez C, Blazy K, Villégier AS. Cerebral radiofrequency exposures during adolescence: Impact on astrocytes and brain functions in healthy and pathologic rat models. Bioelectromagnetics 2016; 37:338-50. [PMID: 27272062 DOI: 10.1002/bem.21986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 05/20/2016] [Indexed: 11/07/2022]
Abstract
The widespread use of mobile phones by adolescents raises concerns about possible health effects of radiofrequency electromagnetic fields (RF EMF 900 MHz) on the immature brain. Neuro-development is a period of particular sensitivity to repeated environmental challenges such as pro-inflammatory insults. Here, we used rats to assess whether astrocyte reactivity, perception, and emotionality were affected by RF EMF exposures during adolescence. We also investigated if adolescent brains were more sensitive to RF EMF exposures after neurodevelopmental inflammation. To do so, we either performed 80 μg/kg intra-peritoneal injections of lipopolysaccharides during gestation or 1.25 μg/h intra-cerebro-ventricular infusions during adolescence. From postnatal day (P)32 to 62, rats were subjected to 45 min RF EMF exposures to the brain (specific absorption rates: 0, 1.5, or 6 W/kg, 5 days/week). From P56, they were tested for perception of novelty, anxiety-like behaviors, and emotional memory. To assess astrocytic reactivity, Glial Fibrillary Acidic Protein was measured at P64. Our results did not show any neurobiological impairment in healthy and vulnerable RF EMF-exposed rats compared to their sham-exposed controls. These data did not support the hypothesis of a specific cerebral sensitivity to RF EMF of adolescents, even after a neurodevelopmental inflammation. Bioelectromagnetics. 37:338-350, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicolas Petitdant
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Anthony Lecomte
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Franck Robidel
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Christelle Gamez
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Kelly Blazy
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Anne-Sophie Villégier
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| |
Collapse
|
14
|
Neurobiological effects of repeated radiofrequency exposures in male senescent rats. Biogerontology 2016; 17:841-857. [DOI: 10.1007/s10522-016-9654-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022]
|
15
|
Arendash GW. Review of the Evidence that Transcranial Electromagnetic Treatment will be a Safe and Effective Therapeutic Against Alzheimer's Disease. J Alzheimers Dis 2016; 53:753-71. [PMID: 27258417 PMCID: PMC4981900 DOI: 10.3233/jad-160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
We have demonstrated in multiple studies that daily, long-term electromagnetic field (EMF) treatment in the ultra-high frequency range not only protects Alzheimer's disease (AD) transgenic mice from cognitive impairment, but also reverses such impairment in aged AD mice. Moreover, these beneficial cognitive effects appear to be through direct actions on the AD process. Based on a large array of pre-clinical data, we have initiated a pilot clinical trial to determine the safety and efficacy of EMF treatment to mild-moderate AD subjects. Since it is important to establish the safety of this new neuromodulatory approach, the main purpose of this review is to provide a comprehensive assessment of evidence supporting the safety of EMFs, particularly through transcranial electromagnetic treatment (TEMT). In addition to our own pre-clinical studies, a rich variety of both animal and cell culture studies performed by others have underscored the anticipated safety of TEMT in clinical AD trials. Moreover, numerous clinical studies have determined that short- or long-term human exposure to EMFs similar to those to be provided clinically by TEMT do not have deleterious effects on general health, cognitive function, or a variety of physiologic measures-to the contrary, beneficial effects on brain function/activity have been reported. Importantly, such EMF exposure has not been shown to increase the risk of any type of cancer in human epidemiologic studies, as well as animal and cell culture studies. In view of all the above, clinical trials of safety/efficacy with TEMT to AD subjects are clearly warranted and now in progress.
Collapse
|
16
|
Kim JH, Huh YH, Kim HR. Induction of Autophagy in the Striatum and Hypothalamus of Mice after 835 MHz Radiofrequency Exposure. PLoS One 2016; 11:e0153308. [PMID: 27073885 PMCID: PMC4830612 DOI: 10.1371/journal.pone.0153308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/28/2016] [Indexed: 12/19/2022] Open
Abstract
The extensive use of wireless mobile phones and associated communication devices has led to increasing public concern about potential biological health-related effects of the exposure to electromagnetic fields (EMFs). EMFs emitted by a mobile phone have been suggested to influence neuronal functions in the brain and affect behavior. However, the affects and phenotype of EMFs exposure are unclear. We applied radiofrequency (RF) of 835 MHz at a specific absorption rate (SAR) of 4.0 W/kg for 5 hours/day for 4 and 12 weeks to clarify the biological effects on mouse brain. Interestingly, microarray data indicated that a variety of autophagic related genes showed fold-change within small range after 835 MHz RF exposure. qRT-PCR revealed significant up-regulation of the autophagic genes Atg5, LC3A and LC3B in the striatum and hypothalamus after a 12-week RF. In parallel, protein expression of LC3B-II was also increased in both brain regions. Autophagosomes were observed in the striatum and hypothalamus of RF-exposed mice, based on neuronal transmission electron microscopy. Taken together, the results indicate that RF exposure of the brain can induce autophagy in neuronal tissues, providing insight into the protective mechanism or adaptation to RF stress.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Yang Hoon Huh
- Nano-Bio EM Research Group, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Klose M, Grote K, Spathmann O, Streckert J, Clemens M, Hansen VW, Lerchl A. Effects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in rats. Radiat Res 2014; 182:435-47. [PMID: 25251701 DOI: 10.1667/rr13695.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Female Wistar rats, from an age of 14 days to 19 months, were exposed in the head region for 2 h per day, 5 days per week, to a GSM-modulated 900 MHz radiofrequency electromagnetic field (RF-EMF). The average specific absorption rates (SAR) in the brain were 0 (sham), 0.7, 2.5 and 10 W/kg. To ensure a primary exposure of the head region, rats were fixed in restraining tubes of different sizes according to their increasing body weight. During the experiment, a set of 4 behavioral and learning tests (rotarod, Morris water maze, 8-arm radial maze, open field) were performed 3 times in juvenile, adult and presenile rats. In these tests, no profound differences could be identified between the groups. Only presenile rats of the cage control group showed a lower activity in two of these tests compared to the other groups presumably due to the lack of daily handling. The rotarod data revealed on some testing days significantly longer holding times for the sham-exposed rat vs. the exposed rat, but these findings were not consistent. During the first year, body weights of sham-exposed and exposed rats were not different from those of the cage controls, and thereafter only marginally lower, so that the effect of stress as confounder was probably negligible. The results of this study do not indicate harmful effects of long-term RF-EMF exposure even when begun at an early age on subsequent development, learning skills and behavior in rats, even at relatively high SAR values.
Collapse
Affiliation(s)
- Melanie Klose
- a School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
RKIP Regulates Neural Cell Apoptosis Induced by Exposure to Microwave Radiation Partly Through the MEK/ERK/CREB Pathway. Mol Neurobiol 2014; 51:1520-9. [DOI: 10.1007/s12035-014-8831-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
|
19
|
Zuo H, Lin T, Wang D, Peng R, Wang S, Gao Y, Xu X, Li Y, Wang S, Zhao L, Wang L, Zhou H. Neural cell apoptosis induced by microwave exposure through mitochondria-dependent caspase-3 pathway. Int J Med Sci 2014; 11:426-35. [PMID: 24688304 PMCID: PMC3970093 DOI: 10.7150/ijms.6540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 02/20/2014] [Indexed: 11/24/2022] Open
Abstract
To determine whether microwave (MW) radiation induces neural cell apoptosis, differentiated PC12 cells and Wistar rats were exposed to 2.856 GHz for 5 min and 15 min, respectively, at an average power density of 30 mW/cm². JC-1 and TUNEL staining detected significant apoptotic events, such as the loss of mitochondria membrane potential and DNA fragmentation, respectively. Transmission electron microscopy and Hoechst staining were used to observe chromatin ultrastructure and apoptotic body formation. Annexin V-FITC/PI double staining was used to quantify the level of apoptosis. The expressions of Bax, Bcl-2, cytochrome c, cleaved caspase-3 and PARP were examined by immunoblotting or immunocytochemistry. Caspase-3 activity was measured using an enzyme-linked immunosorbent assay. The results showed chromatin condensation and apoptotic body formation in neural cells 6h after microwave exposure. Moreover, the mitochondria membrane potential decreased, DNA fragmentation increased, leading to an increase in the apoptotic cell percentage. Furthermore, the ratio of Bax/Bcl-2, expression of cytochrome c, cleaved caspase-3 and PARP all increased. In conclusion, microwave radiation induced neural cell apoptosis via the classical mitochondria-dependent caspase-3 pathway. This study may provide the experimental basis for further investigation of the mechanism of the neurological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Hongyan Zuo
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Tao Lin
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China; ; 2. High Magnetic Field Laboratory, Hefei Material Research Institute, Chinese Academy of Science, 350, Shushanhu Road, Shushan District, Hefei 230031, China
| | - Dewen Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Ruiyun Peng
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Shuiming Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Yabing Gao
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Xinping Xu
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Yang Li
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Shaoxia Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Li Zhao
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Lifeng Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Hongmei Zhou
- 3. Department of Radiation Protection and Health Physics, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
20
|
Wang H, Peng R, Zhou H, Wang S, Gao Y, Wang L, Yong Z, Zuo H, Zhao L, Dong J, Xu X, Su Z. Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure. Int J Radiat Biol 2013; 89:1100-7. [PMID: 23786183 DOI: 10.3109/09553002.2013.817701] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess the impact of microwave exposure on learning and memory and to explore the underlying mechanisms. MATERIALS AND METHODS 100 Wistar rats were exposed to a 2.856 GHz pulsed microwave field at average power densities of 0 mW/cm(2), 5 mW/cm(2), 10 mW/cm(2) and 50 mW/cm(2) for 6 min. The spatial memory was assessed by the Morris Water Maze (MWM) task. An in vivo study was conducted soon after microwave exposure to evaluate the changes of population spike (PS) amplitudes of long-term potentiation (LTP) in the medial perforant path (MPP)-dentate gyrus (DG) pathway. The structure of the hippocampus was observed by the light microscopy and the transmission electron microscopy (TEM) at 7 d after microwave exposure. RESULTS Our results showed that the rats exposed in 10 mW/cm(2) and 50 mW/cm(2) microwave displayed significant deficits in spatial learning and memory at 6 h, 1 d and 3 d after exposure. Decreased PS amplitudes were also found after 10 mW/cm(2) and 50 mW/cm(2) microwave exposure. In addition, varying degrees of degeneration of hippocampal neurons, decreased synaptic vesicles and blurred synaptic clefts were observed in the rats exposed in 10 mW/cm(2) and 50 mW/cm(2) microwave. Compared with the sham group, the rats exposed in 5 mW/cm(2) microwave showed no difference in the above experiments. CONCLUSIONS This study suggested that impairment of LTP induction and the damages of hippocampal structure, especially changes of synapses, might contribute to cognitive impairment after microwave exposure.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Aryal B, Maskey D, Kim MJ, Yang JW, Kim HG. Effect of Ginseng on Calretinin Expression in Mouse Hippocampus Following Exposure to 835 MHz Radiofrequency. J Ginseng Res 2013; 35:138-48. [PMID: 23717055 PMCID: PMC3659519 DOI: 10.5142/jgr.2011.35.2.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 12/23/2010] [Accepted: 02/14/2011] [Indexed: 11/18/2022] Open
Abstract
Exponential rise in the use of mobile communication devices has generated health concerns due to radiofrequency (RF) exposure due to its close proximity to the head. Calcium binding proteins like calretinin regulate the levels of calcium (Ca2+) which plays an important role in biological systems. Ginseng is known for maintaining equilibrium in the human body and may play a beneficial radioprotectant role against electromagnetic field (EMF) exposure. In the present study, we evaluated the radioprotective effects of red ginseng (RG) extract in a mouse model. Calretinin (CR) expression was measured using a free-floating immunohistochemical method in the hippocampus of mice after 835 MHz EMF exposure for 5 h/d for 5 d at specific absorption rate=1.6 W/kg for the different experimental groups. The control animals were treated with NaCl while the experimental animals received 10 mg/kg ginseng, or 30 mg/kg; EMF exposed mice were also treated with NaCl, 10 mg/kg ginseng (E10), or 30 mg/kg (E30). Decreases in CR immunoreactivity (IR) along with loss of CA1 and CA3 interneurons and infragranular cells were observed in the ENaCl group while such losses were not observed in the E10 and E30 groups. CR IR significantly increased in the RG-treated group compared to control and EMF-exposed groups treated with NaCl. The study demonstrates that RG extract can serve as a radioprotective agent that maintains Ca2+ homeostasis and prevents neuronal loss in the brain hippocampal region caused by RF exposure.
Collapse
Affiliation(s)
- Bijay Aryal
- Department of Pharmacology, Dankook University College of Medicine, Cheonan 330-714, Korea
| | | | | | | | | |
Collapse
|
22
|
Banaceur S, Banasr S, Sakly M, Abdelmelek H. Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD). Behav Brain Res 2012. [PMID: 23195115 DOI: 10.1016/j.bbr.2012.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present investigation aimed at evaluating the effects of long-term exposure to WIFI type radiofrequency (RF) signals (2.40 GHz), two hours per day during one month at a Specific Absorption Rate (SAR) of 1.60 W/kg. The effects of RF exposure were studied on wildtype mice and triple transgenic mice (3xTg-AD) destined to develop Alzheimer's-like cognitive impairment. Mice were divided into four groups: two sham groups (WT, TG; n=7) and two exposed groups (WTS, TGS; n=7). The cognitive interference task used in this study was designed from an analogous human cognitive interference task including the Flex field activity system test, the two-compartment box test and the Barnes maze test. Our data demonstrate for the first time that RF improves cognitive behavior of 3xTg-AD mice. We conclude that RF exposure may represent an effective memory-enhancing approach in Alzheimer's disease.
Collapse
Affiliation(s)
- Sana Banaceur
- Laboratoire de Physiologie Intégrée, Faculté des sciences de Bizerte, 7021 Jarzouna, Tunisia.
| | | | | | | |
Collapse
|
23
|
Arendash GW, Mori T, Dorsey M, Gonzalez R, Tajiri N, Borlongan C. Electromagnetic treatment to old Alzheimer's mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit. PLoS One 2012; 7:e35751. [PMID: 22558216 PMCID: PMC3338462 DOI: 10.1371/journal.pone.0035751] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/22/2012] [Indexed: 01/10/2023] Open
Abstract
Few studies have investigated physiologic and cognitive effects of "long-term" electromagnetic field (EMF) exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25-1.05 W/kg) by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ) aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21-27 month) Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature) during EMF "ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice) and slight body hyperthermia during "ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF treatment against AD.
Collapse
Affiliation(s)
- Gary W Arendash
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America.
| | | | | | | | | | | |
Collapse
|
24
|
Bouji M, Lecomte A, Hode Y, de Seze R, Villégier AS. Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats. Exp Gerontol 2012; 47:444-51. [PMID: 22507567 DOI: 10.1016/j.exger.2012.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 01/02/2023]
Abstract
The widespread use of mobile phones raises the question of the effects of electromagnetic fields (EMF, 900 MHz) on the brain. Previous studies reported increased levels of the glial fibrillary acidic protein (GFAP) in the rat's brain after a single exposure to 900 MHz global system for mobile (GSM) signal, suggesting a potential inflammatory process. While this result was obtained in adult rats, no data is currently available in older animals. Since the transition from middle-age to senescence is highly dependent on environment and lifestyle, we studied the reactivity of middle-aged brains to EMF exposure. We assessed the effects of a single 15 min GSM exposure (900 MHz; specific absorption rate (SAR)=6 W/kg) on GFAP expression in young adults (6 week-old) and middle-aged rats (12 month-old). Brain interleukin (IL)-1β and IL-6, plasmatic levels of corticosterone (CORT), and emotional memory were also assessed. Our data indicated that, in contrast to previously published work, acute GSM exposure did not induce astrocyte activation. Our results showed an IL-1β increase in the olfactory bulb and enhanced contextual emotional memory in GSM-exposed middle-aged rats, and increased plasmatic levels of CORT in GSM-exposed young adults. Altogether, our data showed an age dependency of reactivity to GSM exposure in neuro-immunity, stress and behavioral parameters. Reproducing these effects and studying their mechanisms may allow a better understanding of mobile phone EMF effects on neurobiological parameters.
Collapse
Affiliation(s)
- Marc Bouji
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques, Parc Technologique ALATA, BP no. 2, 60550 Verneuil-en-Halatte, France
| | | | | | | | | |
Collapse
|
25
|
Chen YB, Li J, Liu JY, Zeng LH, Wan Y, Li YR, Ren D, Guo GZ. Effect of Electromagnetic Pulses (EMP) on associative learning in mice and a preliminary study of mechanism. Int J Radiat Biol 2011; 87:1147-54. [PMID: 21929296 DOI: 10.3109/09553002.2011.584937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the effects of electromagnetic pulses (EMP) on associative learning in mice and test a preliminary mechanism for these effects. MATERIALS AND METHODS A tapered parallel plate gigahertz transverse electromagnetic (GTEM) cell with a flared rectangular coaxial transmission line was used to expose male BALB/c mice to EMP (peak-intensity 400 kV/m, rise-time 10 ns, pulse-width 350 ns, 0.5 Hz and total 200 pulses). Concurrent sham-exposed mice were used as a control. Associative learning, oxidative stress in the brain, serum chemistry and the protective action of tocopherol monoglucoside (TMG) in mice were measured, respectively. RESULTS (1) Twelve hour and 1 day post EMP exposure associative learning was reduced significantly compared with sham control (p<0.05) but recovered at 2 d post EMP exposure. (2) Compared with the sham control, lipid peroxidation of brain tissue and chemiluminescence (CL) intensity increased significantly (p<0.05), while the activity of the antioxidant enzymes Superoxide Dismutase [SOD], Glutathione [GSH], Glutathione Peroxidase [GSH-Px], Catalase [CAT]) decreased significantly (p<0.05) at 3 h, 6 h, 12 h and 1 d post EMP exposure. All these parameters recovered at 2 d post EMP exposure. (3) No significant differences between the sham control group and EMP exposed group were observed in serum cholesterol and triglycerides. (4) Pretreatment of mice with TMG showed protective effects to EMP exposure. CONCLUSIONS EMP exposure significantly decreased associative learning in mice and TMG acted as an effective protective agent from EMP exposure. This mechanism could involve an increase of oxidative stress in brain by EMP exposure.
Collapse
Affiliation(s)
- Yong Bin Chen
- Fourth Military Medical University, Department of Radiation Medicine, Xi'an, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Effect of Exposure to 1,800 MHz Electromagnetic Fields on Heat Shock Proteins and Glial Cells in the Brain of Developing Rats. Neurotox Res 2010; 20:109-19. [DOI: 10.1007/s12640-010-9225-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 09/29/2022]
|
27
|
Ammari M, Gamez C, Lecomte A, Sakly M, Abdelmelek H, De Seze R. GFAP expression in the rat brain following sub-chronic exposure to a 900 MHz electromagnetic field signal. Int J Radiat Biol 2010; 86:367-75. [PMID: 20397841 DOI: 10.3109/09553000903567946] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The rapid development and expansion of mobile communications contributes to the general debate on the effects of electromagnetic fields emitted by mobile phones on the nervous system. This study aims at measuring the glial fibrillary acidic protein (GFAP) expression in 48 rat brains to evaluate reactive astrocytosis, three and 10 days after long-term head-only sub-chronic exposure to a 900 MHz electromagnetic field (EMF) signal, in male rats. METHODS Sprague-Dawley rats were exposed for 45 min/day at a brain-averaged specific absorption rate (SAR) = 1.5 W/kg or 15 min/day at a SAR = 6 W/kg for five days per week during an eight-week period. GFAP expression was measured by the immunocytochemistry method in the following rat brain areas: Prefrontal cortex, cerebellar cortex, dentate gyrus of the hippocampus, lateral globus pallidus of the striatum, and the caudate putamen. RESULTS Compared to the sham-treated rats, those exposed to the sub-chronic GSM (Global System for mobile communications) signal at 1.5 or 6 W/kg showed an increase in GFAP levels in the different brain areas, three and ten days after treatment. CONCLUSION Our results show that sub-chronic exposures to a 900 MHz EMF signal for two months could adversely affect rat brain (sign of a potential gliosis).
Collapse
Affiliation(s)
- Mohamed Ammari
- National Institute of Industrial Environment and Risk (INERIS), Parc technologique ALATA, Verneuil-en-Halatte, France.
| | | | | | | | | | | |
Collapse
|
28
|
Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res 2010; 1313:232-41. [DOI: 10.1016/j.brainres.2009.11.079] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/25/2009] [Accepted: 11/29/2009] [Indexed: 11/23/2022]
|
29
|
Effects of exposure to a mobile phone on sexual behavior in adult male rabbit: an observational study. Int J Impot Res 2009; 22:127-33. [DOI: 10.1038/ijir.2009.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Bas O, Odaci E, Mollaoglu H, Ucok K, Kaplan S. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health 2009; 25:377-84. [DOI: 10.1177/0748233709106442] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Widespread use of mobile phones which are a major source of electromagnetic fields might affect living organisms. However, there has been no investigation concerning prenatal exposure to electromagnetic fields or their roles in the development of the pyramidal cells of the cornu ammonis in postnatal life. Two groups of pregnant rats, a control group and an experimental group, that were exposed to an electromagnetic field were used. For obtaining electromagnetic field offspring, the pregnant rats were exposed to 900 megahertz electromagnetic fields during the 1–19th gestation days. There were no actions performed on the control group during the same period. The offspring rats were spontaneously delivered—control group ( n = 6) and electromagnetic field group ( n = 6). Offspring were sacrificed for stereological analyses at the end of the 4th week. Pyramidal cell number in rat cornu ammonis was estimated using the optical fractionator technique. It was found that 900 megahertz of electromagnetic field significantly reduced the total pyramidal cell number in the cornu ammonis of the electromagnetic field group ( P < 0.001). Therefore, although its exact mechanism is not clear, it is suggested that pyramidal cell loss in the cornu ammonis could be due to the 900 megahertz electromagnetic field exposure in the prenatal period.
Collapse
Affiliation(s)
- O Bas
- Department of Anatomy, Rize University School of Medicine, Rize, Turkey
| | - E Odaci
- Department of Histology and Embryology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - H Mollaoglu
- Department of Physiology, Afyon Kocatepe University School of Medicine, Afyonkarahisar, Turkey
| | - K Ucok
- Department of Physiology, Afyon Kocatepe University School of Medicine, Afyonkarahisar, Turkey
| | - S Kaplan
- Department of Histology and Embryology, Ondokuz Mayis University School of Medicine, Samsun, Turkey
| |
Collapse
|
31
|
Ammari M, Jacquet A, Lecomte A, Sakly M, Abdelmelek H, de Seze R. Effect of head-only sub-chronic and chronic exposure to 900-MHz GSM electromagnetic fields on spatial memory in rats. Brain Inj 2009; 22:1021-9. [DOI: 10.1080/02699050802530599] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohamed Ammari
- INERIS, Parc Technologique ALATA, Verneuil-en-Halatte, France
- Faculté des Sciences de Bizerte, Laboratoire de Physiologie Intégrée, Jarzouna, Tunisia
| | - Aurèlie Jacquet
- INERIS, Parc Technologique ALATA, Verneuil-en-Halatte, France
| | - Anthony Lecomte
- INERIS, Parc Technologique ALATA, Verneuil-en-Halatte, France
| | - Mohsen Sakly
- Faculté des Sciences de Bizerte, Laboratoire de Physiologie Intégrée, Jarzouna, Tunisia
| | - Hafedh Abdelmelek
- Faculté des Sciences de Bizerte, Laboratoire de Physiologie Intégrée, Jarzouna, Tunisia
| | - René de Seze
- INERIS, Parc Technologique ALATA, Verneuil-en-Halatte, France
| |
Collapse
|
32
|
Sinha RK. Chronic non-thermal exposure of modulated 2450 MHz microwave radiation alters thyroid hormones and behavior of male rats. Int J Radiat Biol 2009; 84:505-13. [DOI: 10.1080/09553000802085441] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Maaroufi K, Had-Aissouni L, Melon C, Sakly M, Abdelmelek H, Poucet B, Save E. Effects of prolonged iron overload and low frequency electromagnetic exposure on spatial learning and memory in the young rat. Neurobiol Learn Mem 2009; 92:345-55. [PMID: 19394433 DOI: 10.1016/j.nlm.2009.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 11/30/2022]
Abstract
Low-frequency electromagnetic fields (EMF) have been suggested to affect the brain via alterations of blood-brain barrier permeability to iron. Because of an immature blood-brain barrier, the young brain may be particularly vulnerable to EMF exposure. It is therefore possible that behavioral and neurotoxic effects resulting from EMF-induced iron excess in the brain would be greater in young adults. The objective of the present study was to investigate the interaction between low-frequency EMF and iron overload in young rats. In Experiment 1, we tested the effects of iron overload on spatial learning and memory. Iron treatment did not affect performance in a reference (Morris water maze) and a working memory task (8-arm radial maze). In contrast, detection of a spatial change in an object exploration task was impaired. These effects correlated with modifications of the serotoninergic metabolism. In Experiment 2, the combination of EMF exposure and iron overload was tested. As in Experiment 1, rats were not impaired in reference and working memory tasks but were mildly impaired in the detection of the spatial change. Overall, the results showed an effect of iron overload on spontaneous spatial memory processes. However, low-frequency EMF exposure did not potentiate the effects of iron overload in young rats.
Collapse
Affiliation(s)
- Karima Maaroufi
- Laboratory of Neurobiology and Cognition, UMR 6155 Aix-Marseille Université CNRS, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Bas O, Odaci E, Kaplan S, Acer N, Ucok K, Colakoglu S. 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Res 2009; 1265:178-85. [DOI: 10.1016/j.brainres.2009.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
35
|
Odaci E, Bas O, Kaplan S. Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res 2008; 1238:224-9. [PMID: 18761003 DOI: 10.1016/j.brainres.2008.08.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 12/12/2022]
Abstract
Electromagnetic fields (EMFs) inhibit the formation and differentiation of neural stem cells during embryonic development. In this study, the effects of prenatal exposure to EMF on the number of granule cells in the dentate gyrus of 4-week-old rats were investigated. This experiment used a control (Cont) group and an EMF exposed (EMF) group (three pregnant rats each group). The EMF group consisted of six offspring (n=6) of pregnant rats that were exposed to an EMF of up to 900 megahertz (MHz) for 60 min/day between the first and last days of gestation. The control group consisted of five offspring (n=5) of pregnant rats that were not treated at all. The offspring were sacrificed when they were 4 weeks old. The numbers of granule cells in the dentate gyrus were analyzed using the optical fractionator technique. The results showed that prenatal EMF exposure caused a decrease in the number of granule cells in the dentate gyrus of the rats (P<0.01). This suggests that prenatal exposure to a 900 MHz EMF affects the development of the dentate gyrus granule cells in the rat hippocampus. Cell loss might be caused by an inhibition of granule cell neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Ersan Odaci
- Department of Histology and Embryology, Karadeniz Technical University School of Medicine, Trabzon, Turkey.
| | | | | |
Collapse
|
36
|
Ammari M, Lecomte A, Sakly M, Abdelmelek H, de-Seze R. Exposure to GSM 900MHz electromagnetic fields affects cerebral cytochrome c oxidase activity. Toxicology 2008; 250:70-4. [DOI: 10.1016/j.tox.2008.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 11/25/2022]
|
37
|
Studying the effects of mobile phone use on the auditory system and the central nervous system: a review of the literature and future directions. Eur Arch Otorhinolaryngol 2008; 265:1011-9. [DOI: 10.1007/s00405-008-0703-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
|
38
|
Ammari M, Brillaud E, Gamez C, Lecomte A, Sakly M, Abdelmelek H, de Seze R. Effect of a chronic GSM 900 MHz exposure on glia in the rat brain. Biomed Pharmacother 2008; 62:273-81. [PMID: 18424058 DOI: 10.1016/j.biopha.2008.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 03/04/2008] [Indexed: 01/07/2023] Open
Abstract
Extension of the mobile phone technology raises concern about the health effects of 900 MHz microwaves on the central nervous system (CNS). In this study we measured GFAP expression using immunocytochemistry method, to evaluate glial evolution 10 days after a chronic exposure (5 days a week for 24 weeks) to GSM signal for 45 min/day at a brain-averaged specific absorption rate (SAR)=1.5 W/kg and for 15 min/day at a SAR=6 W/kg in the following rat brain areas: prefrontal cortex (PfCx), caudate putamen (Cpu), lateral globus pallidus of striatum (LGP), dentate gyrus of hippocampus (DG) and cerebellum cortex (CCx). In comparison to sham or cage control animals, rats exposed to chronic GSM signal at 6 W/kg have increased GFAP stained surface areas in the brain (p<0.05). But the chronic exposure to GSM at 1.5 W/kg did not increase GFAP expression. Our results indicated that chronic exposure to GSM 900 MHz microwaves (SAR=6 W/kg) may induce persistent astroglia activation in the rat brain (sign of a potential gliosis).
Collapse
Affiliation(s)
- Mohamed Ammari
- Unité de Toxicologie Expérimentale, INERIS, Parc technologique ALATA, BP2, 60550 Verneuil-en-Halatte, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Study of high-frequency electromagnetic field effect on some somatic and neuro-behavioral characteristics in healthy and neurodefective mice. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s10669-007-9071-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Crouzier D, Testylier G, Perrin A, Debouzy JC. [Which neurophysiologic effects at low level 2.45 GHz RF exposure?]. PATHOLOGIE-BIOLOGIE 2007; 55:235-41. [PMID: 17572243 DOI: 10.1016/j.patbio.2007.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 03/09/2007] [Indexed: 11/16/2022]
Abstract
The LS electromagnetic band (1-4 GHz) is widely used both in domestic and industrial domains. Several studies suggested that the biological systems would exhibit a specific sensitivity to the 2.45 GHz microwaves (water resonance frequency). Potential human health hazards and especially a disruption of the cholinergic system have been reported, due to exposure to microwaves even at low power density. This work presents a multiparametric study of freely moving rat where neurophysiology was investigated during 70 hours using neurochemical (microdialysis technique), electrophysiological, behavioral (vigilance stages quantification) and thermophysiological approaches. The rats were exposed 24 hours to a 2.45 GHz pulsed electromagnetic field at low power density. In this exposure conditions, no significant effect have been reported.
Collapse
Affiliation(s)
- D Crouzier
- Centre de recherches du service Santé des Armées, unité BCM, 24, avenue des Maquis-du-Grésivaudan, BP 87, 38702 La-Tronche cedex, France.
| | | | | | | |
Collapse
|
41
|
Krewski D, Glickman BW, Habash RWY, Habbick B, Lotz WG, Mandeville R, Prato FS, Salem T, Weaver DF. Recent advances in research on radiofrequency fields and health: 2001-2003. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10:287-318. [PMID: 17620203 DOI: 10.1080/15287390600974973] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The widespread use of wireless telecommunications devices, particularly mobile phones, has resulted in increased human exposure to radiofrequency (RF) fields. Although national and international agencies have established safety guidelines for exposure to RF fields, concerns remain about the potential for adverse health outcomes to occur in relation to RF field exposure. The extensive literature on RF fields and health has been reviewed by a number of authorities, including the Royal Society of Canada (1999), the European Commission's Scientific Committee on Toxicity, Ecotoxicity, and the Environment (CSTEE, 2001), the British Medical Association (2001), the Swedish Radiation Protection Authority (Boice & McLaughlin, 2002), and the Health Council of The Netherlands (2002). This report provides an update on recent research results on the potential health risks of RF fields since the publication of the Royal Society of Canada report in 1999 (See Krewski et al., 2001a) and our previous 2001 update (Krewski et al., 2001b), covering the period 2001-2003. The present report examines new data on dosimetry and exposure assessment, biological effects such as enzyme induction, and toxicological effects, including genotoxicity, carcinogenicity, and testicular and reproductive outcomes. Epidemiological studies of mobile phone users and occupationally exposed populations are examined, along with human and animal studies of neurological and behavioral effects. All of the authoritative reviews completed within the last 2 yr have concluded that there is no clear evidence of adverse health effects associated with RF fields. However, following a recent review of nine epidemiological studies of mobile phones and cancer, Kundi et al. (2004) concluded that the possibility of an enhanced cancer risk cannot be excluded. These same reviews support the need for further research to clarify the possible associations between RF fields and adverse health outcomes that have appeared in some reports. The results of the ongoing World Health Organization (WHO) study of mobile phones will provide important new information in this regard.
Collapse
Affiliation(s)
- Daniel Krewski
- R. Samuel McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brillaud E, Piotrowski A, de Seze R. Effect of an acute 900MHz GSM exposure on glia in the rat brain: a time-dependent study. Toxicology 2007; 238:23-33. [PMID: 17624651 DOI: 10.1016/j.tox.2007.05.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 11/25/2022]
Abstract
Because of the increasing use of mobile phones, the possible risks of radio frequency electromagnetic fields adverse effects on the human brain has to be evaluated. In this work we measured GFAP expression, to evaluate glial evolution 2, 3, 6 and 10 days after a single GSM exposure (15min, brain averaged SAR=6W/kg, 900MHz signal) in the rat brain. A statistically significant increase of GFAP stained surface area was observed 2 days after exposure in the frontal cortex and the caudate putamen. A smaller statistically significant increase was noted 3 days after exposure in the same areas and in the cerebellum cortex. Our results confirm the Mausset-Bonnefont et al. study [Mausset-Bonnefont, A.L., Hirbec, H., Bonnefont, X., Privat, A., Vignon, J., de Seze, R., 2004. Acute exposure to GSM 900MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol. Dis. 17, 445-454], showing the existence of glial reactivity after a 15min GSM acute exposure at a brain averaged SAR of 6W/kg. We conclude to a temporary effect, probably due to a hypertrophy of glial cells, with a temporal and a spatial modulation of the effect. Whether this effect could be harmful remains to be studied.
Collapse
Affiliation(s)
- Elsa Brillaud
- INERIS, Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550 Verneuil-en-Halatte, France.
| | | | | |
Collapse
|
43
|
Radiofrequency Biology: In vivo. ELECTROMAGNETICS IN BIOLOGY 2006. [PMCID: PMC7120720 DOI: 10.1007/978-4-431-27914-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Cosquer B, Kuster N, Cassel JC. Whole-body exposure to 2.45GHz electromagnetic fields does not alter 12-arm radial-maze with reduced access to spatial cues in rats. Behav Brain Res 2005; 161:331-4. [PMID: 15922061 DOI: 10.1016/j.bbr.2005.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/08/2005] [Accepted: 02/14/2005] [Indexed: 11/26/2022]
Abstract
Lai et al. [Lai H, Horita A, Guy AW. Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics 1994;15(2):95-104] reported that exposure of rats to pulsed 2.45 GHz microwaves altered maze performance. Their maze was bordered by 20 cm high opaque walls. Using a maze test based on unrestrained access to spatial cues (no walls), we could not replicate this result [Cassel JC, Cosquer B, Galani R, Kuster N. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res 2004;155:37-43]. Here, we attempted another replication using a maze apparatus bordered by 30 cm high opaque walls. Performance of exposed rats was normal. These results show that microwave exposure as used herein does not alter spatial working memory, when access to spatial cues is reduced.
Collapse
Affiliation(s)
- Brigitte Cosquer
- LN2C UMR 7521 Université Louis Pasteur-CNRS, Institut Fédératif de Recherche 37, GDR CNRS 2905, 12 rue Goethe, 67000 Strasbourg, France
| | | | | |
Collapse
|
45
|
Sienkiewicz Z, Jones N, Bottomley A. Neurobehavioural effects of electromagnetic fields. Bioelectromagnetics 2005; Suppl 7:S116-26. [PMID: 16059919 DOI: 10.1002/bem.20141] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Very few laboratory studies in children have explored the effects of exposure to low level electromagnetic fields (EMFs) on neurobehavioural function. Studies investigating effect on neurotransmitters, cognitive function and brain activity in adults and animals indicate that acute exposure to EMFs does not appear to engender any consistent physiological or behavioural impairment although a few subtle effects may occur. This suggests that exposure of children to low level EMFs may not cause significant detrimental effects on brain function. However the available evidence is not sufficient to draw any definite conclusions, and further laboratory studies are required. In particular, experiments investigating the effects of radiofrequency (RF) fields on the performance of well-characterised cognitive and behavioural tasks by immature and developing animals are recommended, if studies with children cannot be performed for ethical and practical reasons.
Collapse
Affiliation(s)
- Zenon Sienkiewicz
- Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Radiation Protection Division, Chilton, Didcot, United Kingdom.
| | | | | |
Collapse
|
46
|
Cassel JC, Cosquer B, Galani R, Kuster N. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res 2004; 155:37-43. [PMID: 15325777 DOI: 10.1016/j.bbr.2004.03.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/30/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Mobile communication is based on utilization of electromagnetic fields (EMFs) in the frequency range of 0.3-300 GHz. Human and animal studies suggest that EMFs, which are in the 0.1 MHz-300 GHz range, might interfere with cognitive processes. In 1994, a report by Lai et al. [Bioelectromagnetics 15 (1994) 95-104] showed that whole-body exposure of rats to pulsed 2.45 GHz microwaves (2 micros pulse width, 500 pps, and specific absorption rate [SAR] 0.6 W/kg) for 45 min resulted in altered spatial working memory assessed in a 12-arm radial-maze task. Surprisingly, there has been only one attempt to replicate this experiment so far [Bioelectromagnetics 25 (2004) 49-57]; confirmation of the Lai et al. experiment failed. In the present study, rats were tested in a 12-arm radial-maze subsequently to a daily exposure to 2.45 GHz microwaves (2 micros pulse width, 500 pps, and SAR 0.6 W/kg) for 45 min. The performance of exposed rats was comparable to that found in sham-exposed or in naive rats (no contact with the exposure system). Regarding the methodological details provided by Lai et al. on their testing protocol, our results might suggest that the microwave-induced behavioral alterations measured by these authors might have had more to do with factors liable to performance bias than with spatial working memory per se.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Institut Fédérératif de Recherche 37, LN2C UMR 7521 Université Louis Pasteur-CNRS, 12 rue Goethe, Strasbourg 67000, France.
| | | | | | | |
Collapse
|
47
|
D'Andrea JA, Chou CK, Johnston SA, Adair ER. Microwave effects on the nervous system. Bioelectromagnetics 2004; Suppl 6:S107-47. [PMID: 14628310 DOI: 10.1002/bem.10179] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies have evaluated the electroencephalography (EEG) of humans and laboratory animals during and after Radiofrequency (RF) exposures. Effects of RF exposure on the blood-brain barrier (BBB) have been generally accepted for exposures that are thermalizing. Low level exposures that report alterations of the BBB remain controversial. Exposure to high levels of RF energy can damage the structure and function of the nervous system. Much research has focused on the neurochemistry of the brain and the reported effects of RF exposure. Research with isolated brain tissue has provided new results that do not seem to rely on thermal mechanisms. Studies of individuals who are reported to be sensitive to electric and magnetic fields are discussed. In this review of the literature, it is difficult to draw conclusions concerning hazards to human health. The many exposure parameters such as frequency, orientation, modulation, power density, and duration of exposure make direct comparison of many experiments difficult. At high exposure power densities, thermal effects are prevalent and can lead to adverse consequences. At lower levels of exposure biological effects may still occur but thermal mechanisms are not ruled out. It is concluded that the diverse methods and experimental designs as well as lack of replication of many seemingly important studies prevents formation of definite conclusions concerning hazardous nervous system health effects from RF exposure. The only firm conclusion that may be drawn is the potential for hazardous thermal consequences of high power RF exposure.
Collapse
Affiliation(s)
- John A D'Andrea
- Naval Health Research Center Detachment, Brooks City-Base, TX 78235-5365, USA.
| | | | | | | |
Collapse
|
48
|
D'Andrea JA, Adair ER, de Lorge JO. Behavioral and cognitive effects of microwave exposure. Bioelectromagnetics 2003; Suppl 6:S39-62. [PMID: 14628306 DOI: 10.1002/bem.10169] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents an overview of the recent behavioral literature concerning microwave exposure and discusses behavioral effects that have supported past exposure standards. Other effects, which are based on lower levels of exposure, are discussed as well, relative to setting exposure standards. The paper begins with a brief discussion of the ways in which behavioral end points are investigated in the laboratory, together with some of the methodological considerations pertinent to such studies when radio frequency (RF) exposure is involved. It has been pointed out by several sources that exposure to RF radiation can lead to changes in the behavior of humans and laboratory animals that can range from the perceptions of warmth and sound to lethal body temperatures. Behavior of laboratory animals can be perturbed and, under certain other conditions, animals will escape and subsequently avoid RF fields; but they will also work to obtain a burst of RF energy when they are cold. Reports of change of cognitive function (memory and learning) in humans and laboratory animals are in the scientific literature. Mostly, these are thermally mediated effects, but other low level effects are not so easily explained by thermal mechanisms. The phenomenon of behavioral disruption by microwave exposure, an operationally defined rate decrease (or rate increase), has served as the basis for human exposure guidelines since the early 1980s and still appears to be a very sensitive RF bioeffect. Nearly all evidence relates this phenomenon to the generation of heat in the tissues and reinforces the conclusion that behavioral changes observed in RF exposed animals are thermally mediated. Such behavioral alteration has been demonstrated in a variety of animal species and under several different conditions of RF exposure. Thermally based effects can clearly be hazardous to the organism and continue to be the best predictor of hazard for homosapiens. Nevertheless, similar research with man has not been conducted. Although some studies on human perception of RF exist, these should be expanded to include a variety of RF parameters.
Collapse
Affiliation(s)
- John A D'Andrea
- Naval Health Research Center Detachment, Brooks City-Base, Texas, USA.
| | | | | |
Collapse
|
49
|
Dubreuil D, Jay T, Edeline JM. Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav Brain Res 2003; 145:51-61. [PMID: 14529805 DOI: 10.1016/s0166-4328(03)00100-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Over the last decade, exposure to high frequency (2450 MHz) electromagnetic fields (EMFs) has been found to induce performance deficit in rodents in spatial memory tasks. As concern was expressed about potential biological effects of mobile communication microwaves, studies testing the effects of signals such as GSM were required. In a previous study, using head-only exposure to 900 MHz GSM EMF, we could not demonstrate any behavioural deficit in two simple learning tasks. The present study aimed at extending these results with more complex spatial learning tasks and a non-spatial task. In a first experiment, rats were trained in a radial-arm maze with a 10-s confinement between each visited arm. In a second experiment, a 15-min intra-trial delay was introduced after four visited arms. In a third experiment, non-spatial memory was tested in an object recognition task. In all experiments, performance of the head-only exposed rats (1 and 3.5 W/kg) was compared with that of sham and control rats. In the first experiment, a slightly improved performance was found after 3.5 W/kg exposure, a result that was not observed in the delay-task. In the third experiment, although some effects on exploratory activity were found, recognition memory was unaffected in exposed rats. Altogether, this set of experiments provides no evidence indicating that spatial and non-spatial memory can be affected by a 45-min head-only exposure to 900 MHz GSM EMF.
Collapse
Affiliation(s)
- Diane Dubreuil
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, UMR CNRS 8620, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
50
|
Abstract
In the present study we report on the effects of mobile phone exposure on short- and long-term memory in male and female subjects. Subjects were university undergraduate students, and consisted of right-handed, males (n = 33) and females (n = 29). Individuals were randomly assigned to one of three experimental conditions: no phone exposure; inactive phone exposure; and active phone exposure. They were provided with a series of words to learn, structured in a two-dimensional shape, and given 3 min to memorise the words. After a 12 min distraction task, they were then asked to draw the shape (spatial) and place the correct words (semantic) into the appropriate boxes. One week later the same subjects were brought back to again redraw the shape and words. Error scores were determined and analysed by non-parametric techniques. The results show that males exposed to an active phone made fewer spatial errors than those exposed to an active phone condition, while females were largely unaffected. These results further indicate that mobile phone exposure has functional consequences for human subjects, and these effects appear to be sex-dependent.
Collapse
Affiliation(s)
- James W Smythe
- Department of Pharmacology, School of Pharmacy, University of Bradford, UK.
| | | |
Collapse
|