1
|
Du S, Meng F, Duan W, Liu Q, Li H, Peng X. Oxidative stress responses in two marine diatoms during acute n-butyl acrylate exposure and the toxicological evaluation with the IBR v2 index. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113686. [PMID: 35636239 DOI: 10.1016/j.ecoenv.2022.113686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
n-Butyl acrylate (nBA), a typical hazardous and noxious substance (HNS), is the largest-volume acrylate ester used to produce various types of polymers. With the increasing volume of nBA subject to maritime transportation, its accidental leakage poses a great risk to the marine organisms. Therefore, it is necessary to evaluate the ecological risk of nBA in marine environments. In this study, two species of marine microalgae, Skeletonema costatum and Phaeodactylum tricornutum, were used to explore the toxic effects of nBA based on their growth, pigment content, and oxidative stress. The growth of each species was significantly inhibited by nBA, showing a 96 h-EC50 value of 2.23 mg/L for P. tricornutum and 8.19 mg/L for S. costatum, respectively. Although chlorophylls a and c exerted a hormesis effect in P. tricornutum, contents of pigments generally decreased at high concentrations. In P. tricornutum, all detected antioxidants (reduced glutathione, GSH; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) were stimulated at concentrations ranging from 1.50 to 3.82 mg/L. However, these elevations were not enough to reduce the oxidative damage caused by nBA, because the content of malondialdehyde (MDA) increased continuously during 96-h exposure. For S. costatum, the activities of only two antioxidants (GSH and CAT) were enhanced, which is enough to prevent the MDA content from rising, even at higher concentrations of nBA (5-10 mg/L). The Integrated Biomarker Response Version 2 (IBRv2) index that combines responses of the above five oxidative stress biomarkers, was not only correlated positively with nBA concentration but could also indicate the occurrence of oxidative stress caused by acute concentration of nBA. These findings showed that P. tricornutum was sensitive to nBA compared to S. costatum, and the IBRv2 index was an effective tool for evaluating ecotoxicological effects on marine microalgae due to nBA spills.
Collapse
Affiliation(s)
- Shuhao Du
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China.
| | - Weiyan Duan
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Qunqun Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Hao Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Xiaoling Peng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| |
Collapse
|
2
|
Yang J, Zhu Q, Chai J, Xu F, Ding Y, Zhu Q, Lu Z, Khoo KS, Bian X, Wang S, Show PL. Development of environmentally friendly biological algicide and biochemical analysis of inhibitory effect of diatom Skeletonema costatum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Wang Y, Gong X, Huang D, Zhang J. Increasing oxytetracycline and enrofloxacin concentrations on the algal growth and sewage purification performance of an algal-bacterial consortia system. CHEMOSPHERE 2022; 286:131917. [PMID: 34426270 DOI: 10.1016/j.chemosphere.2021.131917] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Oxytetracycline (OTC) and enrofloxacin (EFX) pollution in surface water are very common. Using the algal-bacterial consortia system to remove antibiotics remains to be further studied. In this study, the algal growth and sewage purification performance were studied in an algal-bacterial consortia system with different concentrations of antibiotics. The enzyme activity, malondialdehyde content, chlorophyll-a content, extracellular polysaccharide, and protein content of algae were also tested. It was found that the algal growth was promoted by low-dose antibiotics, 21.83% and 22.11% promotion at 0.1 mg L-1 OTC and EFX, respectively. The nutrients and antibiotics removals of the low-dose groups (OTC <5 mg L-1, EFX <1 mg L-1) were not affected significantly. More than 70% of total organic carbon and total phosphorus, and 97.84-99.76% OTC, 42.68-42.90% EFX were removed in the low-dose groups. However, the algal growth was inhibited, and the nutrients removals performance also declined in the high-concentration groups (10 mg L-1 OTC, 5 mg L-1 EFX). The superoxide dismutase and catalase activity, and malondialdehyde content increased significantly (P < 0.05), indicating the increased activity of reactive oxygen species. In addition, the decreased chlorophyll-a content, thylakoid membrane deformation, starch granules accumulation, and plasmolysis showed that the algal physiological functions were affected. These results showed that the algal-bacterial consortia system was more suitable to treat low-concentration antibiotics and provided basic parameters for the consortia application.
Collapse
Affiliation(s)
- Yu Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xinye Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, PR China.
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
4
|
Kapoor S, Singh M, Srivastava A, Chavali M, Chandrasekhar K, Verma P. Extraction and characterization of microalgae-derived phenolics for pharmaceutical applications: A systematic review. J Basic Microbiol 2021; 62:1044-1063. [PMID: 34766645 DOI: 10.1002/jobm.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are regarded as a rich trove of diverse secondary metabolites that exert remarkable biological activities. In particular, microalgae-derived bioactive phenolic compounds (MBPCs) are a boon to biopharmaceutical and nutraceutical industries due to their diverse bioactivities, including antimicrobial, anticancer, antiviral, and immunomodulatory activities. The state-of-the-art green technologies for extraction and purification of MBPCs, along with the modern progress in the identification and characterization of MBPCs, have accelerated the discovery of novel active pharmaceutical compounds. However, several factors regulate the production of these bioactive phenolic compounds in microalgae. Furthermore, some microalgae species produce toxic phenolic compounds that negatively impact the aquatic ecosystem, animal, and human life. Therefore, the focus of this review paper is to bring into light the current innovations in bioprospection, extraction, purification, and characterization of MBPCs. This review is also aimed at a better understanding of the physicochemical factors regulating the production of MBPCs at an industrial scale. Finally, the present review covers the recent advances in toxicological evaluation, diverse applications, and future prospects of MBPCs in biopharmaceutical industries.
Collapse
Affiliation(s)
- Sahil Kapoor
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Botany, Goswami Ganesh Dutta S.D. College, Chandigarh, India
| | - Meenakshi Singh
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Ecology & Biodiversity, Terracon Ecotech Pvt. Ltd., Mumbai, Maharashtra, India
| | - Atul Srivastava
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Science & Technology, Alliance University (Central Campus), Bengaluru, Karnataka, India.,NTRC-MCETRC and Aarshanano Composite Technologies Pvt. Ltd., Guntur, Andhra Pradesh, India
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
5
|
Kottuparambil S, Agusti S. Cell-by-cell estimation of PAH sorption and subsequent toxicity in marine phytoplankton. CHEMOSPHERE 2020; 259:127487. [PMID: 32650165 DOI: 10.1016/j.chemosphere.2020.127487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) have elicited increasing concern due to their ubiquitous occurrence in coastal marine environments and resultant toxicity in organisms. Due to their lipophilic nature, PAHs tend to accumulate in phytoplankton cells and thus subsequently transfer to other compartments of the marine ecosystem. The intrinsic fluorescence properties of PAHs in the ultraviolet (UV)/blue spectral range have recently been exploited to investigate their uptake modes, localization, and aggregation in various biological tissues. Here, we quantitatively evaluate the sorption of two model PAHs (phenanthrene and pyrene) in three marine phytoplankton species (Chaetoceros tenuissimus, Thalassiosira sp. and Proteomonas sp.) using a combined approach of UV excitation flow cytometry and fluorescence microscopy. Over a 48-h exposure to a gradient of PAHs, Thalassiosira sp. showed the highest proportion of PAH-sorbed cells (29% and 97% of total abundance for phenanthrene and pyrene, respectively), which may be attributed to its relatively high total lipid content (33.87 percent dry weight). Moreover, cell-specific pulse amplitude modulation (PAM) microscope fluorometry revealed that PAH sorption significantly reduced the photosynthetic quantum efficiency (Fv/Fm) of individual phytoplankton cells. We describe a rapid and precise hybrid method for the detection of sorption of PAHs on phytoplankton cells. Our results emphasize the ecologically relevant sub-lethal effects of PAHs in phytoplankton at the cellular level, even at concentrations where no growth inhibition was apparent. This work is the first study to address the cell-specific impacts of fluorescent toxicants in a more relevant toxicant-sorbed subpopulation; these cell-specific impacts have to date been unidentified in traditional population-based phytoplankton toxicity assays.
Collapse
Affiliation(s)
- Sreejith Kottuparambil
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Susana Agusti
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids. Sci Rep 2020; 10:8243. [PMID: 32427937 PMCID: PMC7237458 DOI: 10.1038/s41598-020-65219-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfadiazine (SD), sulfamerazine (SM1), and sulfamethazine (SM2) are widely used and disorderly discharged into surface water, causing contamination of lakes and rivers. However, microalgae are regard as a potential resource to alleviate and degrade antibiotic pollution. The physiological changes of Chlorella vulgaris in the presence of three sulfonamides (SAs) with varying numbers of –CH3 groups and its SA-removal efficiency were investigated following a 7-day exposure experiment. Our results showed that the growth inhibitory effect of SD (7.9–22.6%), SM1 (7.2–45.9%), and SM2 (10.3–44%) resulted in increased proteins and decreased soluble sugars. Oxidative stress caused an increase in superoxide dismutase and glutathione reductase levels but decreased catalase level. The antioxidant responses were insufficient to cope-up with reactive oxygen species (hydrogen peroxide and superoxide anion) levels and prevent oxidative damage (malondialdehyde level). The ultrastructure and DNA of SA-treated algal cells were affected, as evident from the considerable changes in the cell wall, chloroplast, and mitochondrion, and DNA migration. C. vulgaris-mediated was able to remove up to 29% of SD, 16% of SM1, and 15% of SM2. Our results suggest that certain concentrations of specific antibiotics may induce algal growth, and algal-mediated biodegradation process can accelerate the removal of antibiotic contamination.
Collapse
|
7
|
Baruah P, Chaurasia N. Ecotoxicological effects of alpha-cypermethrin on freshwater alga Chlorella sp.: Growth inhibition and oxidative stress studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103347. [PMID: 32058321 DOI: 10.1016/j.etap.2020.103347] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Alpha-cypermethrin (ACy) is a synthetic pyrethroid insecticide commonly used in agricultural practices for controlling a broad range of insect pests particularly belonging to the order Lepidoptera and Coleoptera. The present study aims to evaluate the toxic effect of ACy on microalgae by studying its influence on Chlorella sp. According to our knowledge, this is the first detailed study of ACy toxicity on microalgae. Significant growth inhibition of Chlorella sp. was observed at high ACy concentration (6-48 mg L-1) during the entire 96 h bioassay. The 96 h median effective concentration (EC50) of ACy was estimated to be 11.00 mg L-1. Flow cytometry analysis showed an enhanced generation of reactive oxygen species (ROS) and intracellular lipid accumulation after 96 h exposure to 11.00 mg L-1 of ACy. Further, the same ACy concentration showed a significant decrease in photosynthetic pigment content and an increase in antioxidant enzyme activity and malondialdehyde (MDA) content in Chlorella sp.
Collapse
Affiliation(s)
- Prithu Baruah
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
8
|
Qu Q, Zhang Z, Li Y, Zhou Z, Ye Y, Lu T, Sun L, Qian H. Comparative molecular and metabolic responses of wheat seedlings (Triticum aestivum L.) to the imazethapyr enantiomers S-IM and R-IM. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:723-731. [PMID: 31539980 DOI: 10.1016/j.scitotenv.2019.07.333] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The enantioselective effects of imazethapyr (IM) enantiomers on wheat seedlings in a hydroponic medium were studied. R-IM at 0.05mg/L exerted a stronger inhibitory effect on shoot weight and root weight than 0.05mg/L S-IM, suggesting that R-IM more severely inhibited growth. Oxidative damage, based on the anthocyanin content, malondialdehyde (MDA) content, antioxidant enzyme activities and transcript levels of antioxidant enzyme genes, were studied together with the cellular ultrastructure of wheat leaves. The anthocyanin and MDA contents in the R-IM treatment group were significantly increased compared with those in the control group, but no significant changes were observed in the S-IM treatment group. The antioxidant enzyme activities of CAT and SOD were inhibited by 0.32- and 0.73-fold, respectively, in the 14day R-IM treatment group compared to those in the control. However, the transcript levels of antioxidant enzyme genes, including CuZnSOD, POD and CAT, were downregulated in the 14day R-IM exposure group, but those of DHAR were not. The number and size of starch granules increased and chloroplast swelling was observed in wheat leaf cells after R-IM exposure, which showed that photosynthetic functions were potentially disturbed. These results directly or indirectly imply that R-IM exposure causes more oxidative stress and exerts a stronger negative effect on wheat than S-IM. A metabolomics approach revealed that the tricarboxylic acid cycle was heavily suppressed by R-IM treatment. Some amino acids (proline, threonine, lysine, valine) were increased by only the R-IM treatment, indicating the activation of antioxidant pathways. The decrease in a series of fatty acids implied that the cell membrane composition changed in response to R-IM. These results provide a deeper understanding of the enantioselective effects of IM enantiomers on the molecular and metabolic responses in wheat seedlings.
Collapse
Affiliation(s)
- Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yizhi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
9
|
Liu C, Liu S, Diao J. Enantioselective growth inhibition of the green algae (Chlorella vulgaris) induced by two paclobutrazol enantiomers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:610-617. [PMID: 31035143 DOI: 10.1016/j.envpol.2019.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/28/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Enantiomers of chiral pesticides usually display different toxic effects on non-target organisms in surrounding environment, but there are few studies on its enantioselective toxicity of paclobutrazol to aquatic organisms such as Chlorella vulgaris (C. vulgaris). In this study, the enantioselective bioaccumulation and toxicities, such as acute toxicity and oxidative stress, of the racemate, (2S, 3S)-enantiomer (S-enantiomer) and (2R, 3R)-enantiomer (R-enantiomer) of paclobutrazol to the C. vulgaris cells were investigated. The results showed that the algae cells were able to accumulate the paclobutrazol in a short time, while this bioaccumulation had no enantioselective distinction between the two enantiomers during biological metabolism. However, the racemate and two enantiomers of paclobutrazol significantly inhibited the growth of C. vulgaris, displayed different median lethal concentrations. The photosynthetic pigments, photosynthesis-related genes as well as antioxidation-related biomarkers in treated C. vulgaris were also investigated. In general, R-enantiomer was found to be more toxic to C. vulgaris cells than its racemate and S-enantiomer. Additionally, transmission electron microscopy (TEM) analysis showed the R-enantiomer caused more serious changes than S-enantiomer. Moreover, contents of two plant hormones (gibberellin, GA and indoleacetic acid, IAA) were determined in treated C. vulgaris. Higher paclobutrazol concentrations caused lower IAA contents significantly. Nevertheless, the two enantiomers showed no enantioselective effects on the biosynthesis of GA in C. vulgaris. Our results are helpful to understand the enantioselective effects of paclobutrazol enantiomers on non-target organisms, and useful for evaluating their environmental risks.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Shangzhong Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
10
|
Iummato MM, Fassiano A, Graziano M, Dos Santos Afonso M, Ríos de Molina MDC, Juárez ÁB. Effect of glyphosate on the growth, morphology, ultrastructure and metabolism of Scenedesmus vacuolatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:471-479. [PMID: 30738229 DOI: 10.1016/j.ecoenv.2019.01.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The effects of a commercial glyphosate formulation on the oxidative stress parameters and morphology (including the ultrastructure) of the phytoplanktonic green microalga Scenedesmus vacuolatus were evaluated. After 96 h of exposure to increasing herbicide concentrations (0, 4, 6, 8 mg L-1 active ingredient) with the addition of alkyl aryl polyglycol ether surfactant, the growth of the cultures decreased (96 h-IC50- 4.90 mg L-1) and metabolic and morphology alterations were observed. Significant increases in cellular volume (103-353%) and dry weight (105%) and a significant decrease in pigment content (41-48%) were detected. Oxidative stress parameters were significantly affected, showing an increase in the reactive oxygen species (ROS) and reduced glutathione (GSH) contents, oxidative damage to lipids and proteins and a decrease in the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and the detoxifying enzyme glutathione-S-transferase (GST). Cells exposed to glyphosate formulation were larger and showed an increase in vacuole size, bleaching, cell wall thickening and alteration of the stacking pattern of thylakoids. The results of this study showed the participation of oxidative stress in the mechanism of toxic action of the commercial glyphosate formulation on S. vacuolatus and the relation between the biochemical, morphological and ultrastructure alterations.
Collapse
Affiliation(s)
- María Mercedes Iummato
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Anabella Fassiano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Martín Graziano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - María Dos Santos Afonso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - María Del Carmen Ríos de Molina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ángela Beatriz Juárez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina.
| |
Collapse
|
11
|
J Kramer B, J Bourdelais A, Kitchen SA, Taylor AR. Uptake and localization of fluorescently-labeled Karenia brevis metabolites in non-toxic marine microbial taxa. JOURNAL OF PHYCOLOGY 2019; 55:47-59. [PMID: 30239000 DOI: 10.1111/jpy.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Brevetoxin (PbTx) is a neurotoxic secondary metabolite of the dinoflagellate Karenia brevis. We used a novel, fluorescent BODIPY-labeled conjugate of brevetoxin congener PbTx-2 (B-PbTx) to track absorption of the metabolite into a variety of marine microbes. The labeled toxin was taken up and brightly fluoresced in lipid-rich regions of several marine microbes including diatoms and coccolithophores. The microzooplankton (20-200 μm) tintinnid ciliate Favella sp. and the rotifer Brachionus rotundiformis also took up B-PbTx. Uptake and intracellular fluorescence of B-PbTx was weak or undetectable in phytoplankton species representative of dinoflagellates, cryptophytes, and cyanobacteria over the same (4 h) time course. The cellular fate of two additional BODIPY-conjugated K. brevis associated secondary metabolites, brevenal (B-Bn) and brevisin (B-Bs), were examined in all the species tested. All taxa exhibited minimal or undetectable fluorescence when exposed to the former conjugate, while most brightly fluoresced when treated with the latter. This is the first study to observe the uptake of fluorescently-tagged brevetoxin conjugates in non-toxic phytoplankton and zooplankton taxa, demonstrating their potential in investigating whether marine microbes can serve as a significant biological sink for algal toxins. The highly variable uptake of B-PbTx observed among taxa suggests some may play a more significant role than others in vectoring lipophilic toxins in the marine environment.
Collapse
Affiliation(s)
- Benjamin J Kramer
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Andrea J Bourdelais
- MARBIONC, CREST Research Park, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Sheila A Kitchen
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
12
|
Kokushi E, Shintoyo A, Koyama J, Uno S. Evaluation of 2,4-dichlorophenol exposure of Japanese medaka, Oryzias latipes, using a metabolomics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27678-27686. [PMID: 27053050 DOI: 10.1007/s11356-016-6425-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
In this study, the metabolic effects of waterborne exposure of medaka (Oryzias latipes) to nominal concentrations of 20 (L group) and 2000 μg/L (H group) 2,4-dichlorophenol (DCP) were examined using a gas chromatography/mass spectroscopy (GC/MS) metabolomics approach. A principal component analysis (PCA) separated the L, H, and control groups along PC1 to explain the toxic effects of DCP at 24 h of exposure. Furthermore, the L and H groups were separated along PC1 at 96 h on the PCA score plots. These results suggest that the effects of DCP depended on exposure concentration and time. Changes in tricarboxylic cycle metabolites suggested that fish exposed to 2,4-DCP require more energy to metabolize and eliminate DCP, particularly at 96 h of exposure. A time-dependent response in the fish exposed to DCP was observed in the GC/MS data, suggesting that the higher DCP concentration had greater effects at 24 h than those observed in response to the lower concentration. In addition, several essential amino acids (arginine, histidine, lysine, isoleucine, leucine, methionine, phenylalanine, threonine, tryptophan, and valine) decreased after DCP exposure in the H group, and starvation condition and high concentration exposure of DCP could consume excess energy from amino acids.
Collapse
Affiliation(s)
- Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| | - Aoi Shintoyo
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| |
Collapse
|
13
|
Duan W, Meng F, Lin Y, Wang G. Toxicological effects of phenol on four marine microalgae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:170-176. [PMID: 28432996 DOI: 10.1016/j.etap.2017.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The toxic effects of phenol on four marine microalgae (Dunaliella salina, Platymonas subcordiformis, Phaeodactylum tricornutum Bohlin, and Skeletonema costatum) were evaluated. The 96h EC50 values were 72.29, 92.97, 27.32, and 27.32mgL-1, respectively, which were lower than those values of freshwater microalgae reported in the literature. During a 96-h exposure to a sub-lethal concentration of phenol (1/2 96h EC50) with green alga (D. salina) and diatom (S. costatum), reactive oxygen species (ROS) accumulation, and chlorophyll a (Chl a) content decrease were simultaneously observed in diatom cells after 48h treatment. On the contrary, other chlorophylls in both algae were unaffected. Under transmission electron microscopy (TEM), the phenol-induced ultrastructure alterations included disappearance, or shrinkage, of nucleolus and enlargement of vacuoles, which may result in programmed cell death (PCD). The increase in number of lipid droplets may be related to phenol detoxification. These results indicate that the sensitivity of marine microalgae to phenol was dependent on some biotic factors such as cell size, ROS production, and phenol degradation ability in algal cells.
Collapse
Affiliation(s)
- Weiyan Duan
- Key Laboratory for Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Fanping Meng
- Key Laboratory for Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China.
| | - Yufei Lin
- National Marine Hazard Mitigation Service, State Oceanic Administration of China, Beijing, PR China
| | - Guoshan Wang
- National Marine Hazard Mitigation Service, State Oceanic Administration of China, Beijing, PR China
| |
Collapse
|
14
|
Peleyeju MG, Idris AO, Umukoro EH, Babalola JO, Arotiba OA. Electrochemical Detection of 2,4-Dichlorophenol on a Ternary Composite Electrode of Diamond, Graphene, and Polyaniline. ChemElectroChem 2017. [DOI: 10.1002/celc.201600621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Moses G. Peleyeju
- Department of Applied Chemistry; University of Johannesburg; Doornfontein South Africa
- DST/Mintek Nanotechnology Innovation Centre; University of Johannesburg; Johannesburg South Africa
| | - Azeez O. Idris
- Department of Applied Chemistry; University of Johannesburg; Doornfontein South Africa
| | - Eseoghene H. Umukoro
- Department of Applied Chemistry; University of Johannesburg; Doornfontein South Africa
| | | | - Omotayo A. Arotiba
- Department of Applied Chemistry; University of Johannesburg; Doornfontein South Africa
- DST/Mintek Nanotechnology Innovation Centre; University of Johannesburg; Johannesburg South Africa
- Centre for Nanomaterials Science Research; University of Johannesburg; Johannesburg South Africa
| |
Collapse
|
15
|
Liu C, Wang B, Diao J, Zhou Z. Enantioselective toxicity and bioaccumulation of epoxiconazole enantiomers to the green alga Scenedesmus obliquus. RSC Adv 2016. [DOI: 10.1039/c6ra12617k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enantioselectivity in environmental behaviour of chiral pesticides has become a subject of growing interest.
Collapse
Affiliation(s)
- Chunxiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Bo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Jingling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
16
|
Prado R, García R, Rioboo C, Herrero C, Cid Á. Suitability of cytotoxicity endpoints and test microalgal species to disclose the toxic effect of common aquatic pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:117-125. [PMID: 25637746 DOI: 10.1016/j.ecoenv.2015.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Pulse discharges of chemicals to aquatic environments may lead to high concentrations of them in surface waters for short periods of time, but enough to induce toxic effects on aquatic organisms; however, no many methods allow an early warning of toxicity of these agents. Acute effects of one representative chemical from each of three of the main groups of aquatic pollutants (pesticides, metals and pharmaceuticals) are studied on two green microalgal species (Chlamydomonas moewusii and Chlorella vulgaris). Flow cytometry protocols were used to detect the potential application of chlorophyll a fluorescent emission, cell viability, metabolic activity and membrane potential as cytotoxicity endpoints, besides an epifluorescence microscopy protocol for comet assay to detect genotoxicity level of cells. Obtained results confirm the suitability of them for the prospective assessment of the potential cytotoxicity of these aquatic pollutants. The two microalgal species analysed could be used as indicators in toxicity bioassays, being C. moewusii more sensitive than C. vulgaris. Among cell parameters assayed, the metabolic activity and the primary DNA damage stood out as sensitive cytotoxicity endpoints.
Collapse
Affiliation(s)
- Raquel Prado
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | - Rosa García
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15008A Coruña, Spain.
| |
Collapse
|
17
|
Zhang X, Li H, Qiu Q, Qi Y, Huang D, Zhang Y. 2,4-Dichlorophenol induces global DNA hypermethylation through the increase of S-adenosylmethionine and the upregulation of DNMTs mRNA in the liver of goldfish Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:54-9. [PMID: 24316013 DOI: 10.1016/j.cbpc.2013.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022]
Abstract
Altered DNA methylation is associated with changes in gene expression, signal transduction and stress response after exposure to a wide range of exogenous compounds, and abnormal methylation is a major toxic effect induced by chemicals such as benzene and phenols. 2,4-Dichlorophenol (2,4-DCP), a derivative of phenol, has been classified as a priority pollutant by the US EPA due to its toxic effects on aquatic organisms. However, the effect of 2,4-DCP on DNA methylation and its potential mechanism in fish are rarely understood. The present study aims to figure out whether 2,4-DCP could impact DNA methylation and explore its potential mechanisms by measuring the global DNA methylation levels, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) contents, the mRNA expression of DNA methyltransferase1 (DNMT1) and DNA methyltransferase3 (DNMT3) in the liver of goldfish Carassius auratus. DNA methylation levels were analyzed using high performance liquid chromatography (HPLC) and MspI/HpaII ethidium bromide assay, SAM and SAH contents were determined by HPLC, the mRNA expression of DNMT1 and DNMT3 was measured by quantitative-PCR (qPCR). The results showed that 2,4-DCP caused global DNA hypermethylation, elevated the methylation levels of CpG islands, increased the SAM and SAH contents, decreased the SAM/SAH ratio, and upregulated the mRNA expression of DNMT1 and DNMT3, while depletion of SAM with Na2SeO3 and inhibition of DNMTs activity with 5-aza-2'-deoxycytidine (5AdC) impaired 2,4-DCP-induced global DNA hypermethylation, suggesting that the increase of SAM contents and upregulation of the mRNA expression of DNMT1 and DNMT3 may play important roles in 2,4-DCP-induced global DNA hypermethylation process. Our report is the first one to show that short-term 2,4-DCP exposure caused the global DNA hypermethylation via altered SAM level and DNMTs expression in fish.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qian Qiu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dejun Huang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yingmei Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
18
|
Kong Y, Zou P, Yang Q, Xu X, Miao L, Zhu L. Physiological responses of Microcystis aeruginosa under the stress of antialgal actinomycetes. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:274-280. [PMID: 24036150 DOI: 10.1016/j.jhazmat.2013.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/13/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Eutrophication has occurred frequently in various lakes and reservoirs, and the metabolic excretion produced during the algae growth causes serious water pollution and threatens ecological security. Biological control approaches such as screening bacteria with the capability to degrade cyanobacteria are an environment-friendly way. An isolated antialgal strain Streptomyces sp. KY-34, was applied to degrade the cyanobacterium Microcystis aeruginosa, and the possible biodegradation mechanism was investigated. The results showed that the fermentation liquor of Streptomyces sp. KY-34 could inhibit the growth of M. aeruginosa by restrained the synthesis of chlorophyll and photosynthetic pigments, and decreasing the contents of cellular protein and non-protein, accordingly led to the increase of malondialdehyde content, and the activities of superoxide dismutase, catalase and peroxidase in algae cells. In addition, the variation of the cellular ultrastructure indicated a serious change in algal physiology. It's revealed that the biodegradation mechanism of M. aeruginosa should primarily be that Streptomyces sp. KY-34 caused the damage of algae cell membrane and led to the increases of antioxidant enzymes, and then the growth of M. aeruginosawas inhibited.
Collapse
Affiliation(s)
- Yun Kong
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
19
|
Pereira SA, Araújo VQ, Reboucas MV, Vieira FSV, de Almeida MVA, Chinalia FA, Nascimento IA. Toxicity of biodiesel, diesel and biodiesel/diesel blends: comparative sub-lethal effects of water-soluble fractions to microalgae species. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 88:234-238. [PMID: 22120696 DOI: 10.1007/s00128-011-0430-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
The water-soluble-fractions (WSF) from biodiesel and biodiesel/diesel blends were compared to diesel in their sub-lethal toxicity to microalgae. Chemical analyses of aromatics, non-aromatics hydrocarbons and methanol were carried out in the WSF, the former showing positive correlation with increasing diesel concentrations (B100 < B5 < B3 < B2 < D). Biodiesel interacted with the aqueous matrix, generating methanol, which showed lower toxicity than the diesel contaminants in blends. The WSF caused 50% culture growth inhibition (IC50-96 h) at concentrations varying from 2.3 to 85.6%, depending on the tested fuels and species. However, the same species sensitivity trend (S. costatum > N. oculata > T. chuii > P. subcapitata) was observed for all the tested fuels.
Collapse
Affiliation(s)
- Solange A Pereira
- LABIOMAR, Institute of Biology, Federal University of Bahia Campus Ondina, Av Oceânica 2353/403 Ondina, 40170-010 Salvador, Bahia, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Effect of Temperature on the Growth of Marine Diatom, Chaetoceros simplex (Ostenfeld, 1901) with Different Nitrate: Silicate Concentrations. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60501-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Zeng M, Lin Z, Yin D, Zhang Y, Kong D. A K(ow)-based QSAR model for predicting toxicity of halogenated benzenes to all algae regardless of species. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 86:565-570. [PMID: 21516454 DOI: 10.1007/s00128-011-0285-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
In this study, a total of 40 tests of the toxicity of 8 halogenated benzenes to five algal species were performed. The result demonstrated that the toxicity of halogenated benzenes to five algal species was directly related to the hydrophobicity of the chemicals and the lipid content of the algae. Based on the results, we developed a K(ow)-based quantitative structure-activity relationship (QSAR) model: log(1/EC₅₀) = 1.050 logK(ow) + 1.429 log(1/lipid)-3.224 with n = 40, r² = 0.946, S.E. = 0.211, F = 323.933 at p < 0.001. This model provides evidence that the toxicity of halogenated benzenes to these five algae tested is related to the slower transference into lipid. This model can potentially be generalized to other algal species and toxicants.
Collapse
Affiliation(s)
- Ming Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | | | | | | | | |
Collapse
|
22
|
Liu Y, Guan Y, Gao Q, Tam NFY, Zhu W. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. CHEMOSPHERE 2010; 80:592-599. [PMID: 20444488 DOI: 10.1016/j.chemosphere.2010.03.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 03/18/2010] [Accepted: 03/29/2010] [Indexed: 05/29/2023]
Abstract
The cellular responses, biodegradation and bioaccumulation of four endocrine disrupting chemicals, including nonylphenols (NPs), bisphenol A (BPA), 17alpha-ethynylestradiol (EE2), and estradiol (E2), in the marine diatom Navicula incerta, were investigated through the 96-h exposure test. The 50% effective concentration (EC(50)) values in the algal growth inhibition test for NPs, BPA, EE2 and E2 were 0.20mgL(-1), 3.73mgL(-1), 3.21mgL(-1) and >10mgL(-1), respectively. With the increase of test concentrations, the cellular contents of polysaccharides and protein were reduced but the lipid content was increased, while the levels of chlorophyll a and total chlorophyll c were not affected by target EDCs. The activities of superoxidase dismutase and glutathione-S-transferase were stimulated by EDCs. The activities of peroxide dismutase were inhibited by NPs, BPA, and EE2, but were enhanced by E2. The bioaccumulation and biodegradation of target EDCs were inhibited with the increasing exposure concentrations. Nevertheless, the toxic and inhibitory effects of these EDCs on the diatom at their environmental relevant concentrations were relatively low. At the environmental relevant concentration (0.001mgL(-1)), 20.69% of NPs, 37.78% of BPA, 31.26% of EE2 and 52.26% of E2 were removed from the seawater in 96h via biodegradation, and the respective 96-h bioconcentration factor (BCF) values were 2077, 261, 470, and 39. These results showed that among the four target EDCs, NPs would be most problematic as reflecting by their low biodegradation and high BCF in the diatom, suggesting that the NPs would accumulate within the algal cell and pose threats to organisms at higher tropic levels, especially the larvae feeding on the diatom.
Collapse
Affiliation(s)
- Ying Liu
- Department of Environmental Science and Engineering, Tsinghua University, Beijing, PR China
| | | | | | | | | |
Collapse
|
23
|
Ahmed H, Häder DP. Short-Term Bioassay of Chlorophenol Compounds Using Euglena gracilis. ACTA ACUST UNITED AC 2010. [DOI: 10.3814/2010/421950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Gardeström J, Dahl U, Kotsalainen O, Maxson A, Elfwing T, Grahn M, Bengtsson BE, Breitholtz M. Evidence of population genetic effects of long-term exposure to contaminated sediments-a multi-endpoint study with copepods. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 86:426-36. [PMID: 18234358 DOI: 10.1016/j.aquatox.2007.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/09/2007] [Accepted: 12/11/2007] [Indexed: 05/03/2023]
Abstract
In the environment, pollution generally acts over long time scales and exerts exposure of multiple toxicants on the organisms living there. Recent findings show that pollution can alter the genetics of populations. However, few of these studies have focused on long-term exposure of mixtures of substances. The relatively short generation time (ca. 4-5 weeks in sediments) of the harpacticoid copepod Attheyella crassa makes it suitable for multigenerational exposure studies. Here, A. crassa copepods were exposed for 60 and 120 days to naturally contaminated sediments (i.e., Svindersviken and Trosa; each in a concentration series including 50% contaminated sediment mixed with 50% control sediment and 100% contaminated sediment), and for 120 days to control sediment spiked with copper. We assayed changes in F(ST) (fixation index), which indicates if there is any population subdivision (i.e., structure) between the samples, expected heterozygosity, percent polymorphic loci, as well as abundance. There was a significant decrease in total abundance after 60 days in both of the 100% naturally contaminated sediments. This abundance bottleneck recovered in the Trosa treatment after 120 days but not in the Svindersviken treatment. After 120 days, there were fewer males in the 100% naturally contaminated sediments compared to the control, possibly caused by smaller size of males resulting in higher surface: body volume ratio in contact with toxic chemicals. In the copper treatment there was a significant decrease in genetic diversity after 120 days, although abundance remained unchanged. Neither of the naturally contaminated sediments (50 and 100%) affected genetic diversity after 120 days but they all had high within treatment F(ST) values, with highest F(ST) in both 100% treatments. This indicates differentiation between the replicates and seems to be a consequence of multi-toxicant exposure, which likely caused selective mortality against highly sensitive genotypes. We further assayed two growth-related measures, i.e., RNA content and cephalothorax length, but none of these endpoints differed between any of the treatments and the control. In conclusion, the results of the present study support the hypothesis that toxicant exposure can reduce genetic diversity and cause population differentiation. Loss of genetic diversity is of great concern since it implies reduced adaptive potential of populations in the face of future environmental change.
Collapse
Affiliation(s)
- Johanna Gardeström
- Department of Systems Ecology, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chiron S, Minero C, Vione D. Occurrence of 2,4-dichlorophenol and of 2,4-dichloro-6-nitrophenol in the Rhone River Delta (Southern France). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3127-33. [PMID: 17539515 DOI: 10.1021/es0626638] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The compounds 2,4-dichlorophenol (2,4-DCP) and 2,4-dichloro-6-nitrophenol (6-nitro-2,4-DCP) have been detected at microg L(-1) levels (10(-9)-10(-8) M) during the summer season 2005 in the water of the Rhône river delta. Compound 2,4-DCP would mainly derive from the transformation of the herbicide dichlorprop, heavily used in flooded rice farming (1400 kg in the delta region in 2005), in addition to being an impurity of the commercial herbicide. Field data show a fast concentration decrease of 2,4-DCP in the period June 21st to July 5th, accompanied by a corresponding increase of 6-nitro-2,4-DCP. This could imply a possible nitration process of 2,4-DCP into 6-nitro-2,4-DCP, with quite elevated yield (33%). Nitration of 2,4-DCP can be induced by photoproduced *NO2, the reaction kinetics (calculated in the presence of Fe(III) + nitrite under irradiation as model system) being d[6-nitro-2,4-DCP]/dt = 650 [2,4-DCP] [*NO2]. Interestingly, the yield of the process (38%) is similar to that suggested by field data. An indirect assessment of [*NO2] in surface water in different sites of the Rhône delta indicated that 2,4-DCP could be transformed into 6-nitro-2,4-DCP in a couple of weeks or less in the shallow water (10 cm depth) of the rice fields, a time scale that is compatible with field data. Photonitration of 2,4-DCP is thus a possible process to account for the occurrence of 6-nitro-2,4-DCP in the Rhône delta.
Collapse
Affiliation(s)
- Serge Chiron
- Laboratoire Chimie et Environnement, Université de Provence, 3 place Victor Hugo, 13331 Marseille cedex 3, France
| | | | | |
Collapse
|
26
|
Dahl U, Gorokhova E, Breitholtz M. Application of growth-related sublethal endpoints in ecotoxicological assessments using a harpacticoid copepod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 77:433-8. [PMID: 16504314 DOI: 10.1016/j.aquatox.2006.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 05/06/2023]
Abstract
In ecotoxicology, there is an increasing demand for sensitive sublethal endpoints. The primary aim of the present study was therefore to evaluate the relative sensitivity and usefulness of four sublethal endpoints - development time, body length, RNA content and growth rate - in the harpacticoid copepod Nitocra spinipes, using the reference molecule Simvastatin. Development time decreased significantly at low sublethal concentrations of Simvastatin (p < 0.001; F = 13.249; 0.16-1.6 microgL(-1)), while RNA content and body length increased significantly at 0.16 microgL(-1) (p < 0.001; F = 6.13) and 1.6 microgL(-1) (p < 0.01; F = 2.365), respectively. The growth rate increased significantly at 0.16-5 microgL(-1) (p<0.01-0.001). Hence, significant responses of growth-related traits were observed already at 0.16 microgL(-1), which is about 5,000 times lower than the acute toxicity (96 h-LC(50): 810 microgL(-1)). These results show that all assayed endpoints are very sensitive and indicate that current ecotoxicity testing used for environmental protection activities may underestimate the risk for harpacticoid copepods and most likely for other small invertebrates, when relying exclusively on acute toxicity measurements.
Collapse
Affiliation(s)
- Ulrika Dahl
- Department of Applied Environmental Science, ITM, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
27
|
Breitholtz M, Rudén C, Hansson SO, Bengtsson BE. Ten challenges for improved ecotoxicological testing in environmental risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2006; 63:324-35. [PMID: 16406525 DOI: 10.1016/j.ecoenv.2005.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 05/06/2023]
Abstract
New regulations, in particular the new European chemicals legislation (REACH), will increase the demands on environmental risk assessment (ERA). The requirements on efficient ecotoxicological testing systems are summarized, and 10 major issues for the improvement of ERA practices are discussed, namely: (1) the choice of representative test species, (2) the development of test systems that are relevant for ecosystems in different parts of the world, (3) the inclusion of sensitive life stages in test systems, (4) the inclusion of endpoints on genetic variation in populations, (5) using mechanistic understanding of toxic effects to develop more informative and efficient test systems, (6) studying disruption in invertebrate endocrine mechanisms, that may differ radically from those we know from vertebrates, (7) developing standardized methodologies for testing of poorly water-soluble substances, (8) taking ethical considerations into account, in particular by reducing the use of vertebrates in ecotoxicological tests, (9) using a systematic (statistical) approach in combination with mechanistic knowledge to combine tests efficiently into testing systems, and (10) developing ERA so that it provides the information needed for precautionary decision-making.
Collapse
Affiliation(s)
- Magnus Breitholtz
- Department of Applied Environmental Science (ITMm), Stockholm University, Frescativägen 54, S-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|